泰乐菌素在黑土胶体和矿物表面吸附解吸及热力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采集吉林公主岭的土壤,沉降虹吸法分离小于2μam的土壤胶体,离心分离出0.2-2μm和小于0.2μm的粗细粘粒,取部分粘粒经H202去有机质处理得到四种黑土胶体:0.2-2μm含有机质粘粒、0.2-2μm去有机质粘粒、小于0.2μm含有机质粘粒和小于0.2μm去有机质粘粒。以上述四种黑土胶体、高岭石、针铁矿和蒙脱石为实验材料,研究了大环内酯类抗生素-泰乐菌素在其表面的吸附、解吸特性及吸附前后的官能团变化和吸附过程的热力学特性。主要结果如下:
     1、土壤细粘粒的吸附量高于粗粘粒,有机质对泰乐菌素的吸附起促进作用,蒙脱石的吸附量远远高于黑土胶体和高岭石、针铁矿。泰乐菌素与蒙脱石之间的亲和力最大,黑土胶体次之,针铁矿最小。
     2、阳离子对泰乐菌素的吸附起抑制作用,CaCl2比NaCl的抑制作用更强。同时,阳离子对黑土胶体和高岭石、针铁矿的抑制强度大于蒙脱石。
     3、采用Tris-HCl缓冲液和氯化钠缓冲液连续解吸了土壤胶体和矿物表面吸附的泰乐菌素,结果表明,吸附于黑土胶体表面的泰乐菌素80%结合较松散,可以被解吸剂解吸;蒙脱石的解吸率最低,说明它与泰乐菌素结合最紧密。
     4、应用傅里叶红外光谱仪对泰乐菌素、黑土胶体和矿物及其复合物的结构进行了分析,发现两者作用后,泰乐菌素的大环内酯类特征峰均有所减小或消失,可能是因为羰基与OH形成了分子间或分子内氢键,导致羰基消失。
     5、泰乐菌素在黑土胶体和矿物表面的吸附是自发过程。泰乐菌素与黑土胶体、高岭石、针铁矿的吸附过程均为放热反应;而泰乐菌素在蒙脱石上的吸附为吸热反应。
     6、根据土壤胶体矿物表面抗生素吸附解吸和热力学特性,分析认为泰乐菌素在黑土胶体表面的吸附主要通过静电力的作用;针铁矿表面可能是氢键和范德华力的作用;而泰乐菌素与蒙脱石之间也许是疏水作用。
Black soil was sampled from gongzhuling, Jilin province.Soil colloids were obtained through siphon method after dispersion, and separated into coarse clays(0.2-2μm) and fine clays(<0.2μm) by centrifugation. Part of fine and coarse clays were oxidized by H2O2 to remove organic matter. The types of clays were as follows:0.2-2μm organic clay,0.2-2μm inorganic clay,<0.2μm organic clay and<0.2μm inorganic clay. This study investigated the adsorption-desorption, changes in functional groups and thermodynamic characterics of tylosin on soil colloids and minerals.The main results were listed as following:
     1.The amount of tylosin adsorbed by fine clays was higher than that of coarse clays. Montmorillonite dominates the amount of tylosin adsorption and organic matter also contributes to the tylosin adsorption. Tylosin was adsorbed more tightly on montmorillonite than on Black soil colloids and goethite.
     2.Ionic species and strength have significant effects on tylosin adsorption on Black soil colloids or minerals.The inhibiting effect of Ca2+ ions was stronger than that of Na+ ions.Meanwhile, the inhibiting effect of cation of soil colloids, kaolinite and goethite was stronger than that of montmorillonite.
     3.To determine the percentage of various forces involved in tylosin adsorption, tylosin adsorbed by soil colloids and minerals were desorbed by sequential washing with 10 mM Tris-HCl and 100 mM NaCl at pH 7.0.80% of tylosin combined loosely with Black soil colloids which can be desorbed easily; the desorption rate of montmorillonite was the lowest, indicating that it combined with tylosin most closely.
     4.Fourier transform infrared spectra (FTIR) was employed to investigate the structure characteristics of tylosin, Black soil colloids and minerals as well as their complexes.The results showed that the peaks of macrolide decreased or disappeared after tylosin adsorbed, which may be due to the formation of hydrogen bonds within or between molecules.
     5.The thermodynamic data of tylosin adsorption on soil colloids and minerals were provided. Tylosin adsorption on Black soil colloids or minerals is a spontaneous process. The adsorption of tylosin on Black soil, kaonite and goethite were exothermic. However, the adsorption of tylosin on montmorillonite was endothermic.
     6.Tylosin was adsorbed by electrostatic forces on soil colloids; hydrogen bonding and Van der Waals forces played a important role in the adsorption on goethite and the adsorption between tylosin and montmorillonite was a hydrophobic interaction.
引文
1.顾觉奋.抗生素.上海:上海科学技术出版社,2001
    2.侯放亮.饲料添加剂应用大全.北京:中国农业出版社,2003
    3.姜蕾.在社区开展产后访视保障母婴安全.中国全科医学,2002,5:477-478
    4.焦少俊,孙兆海,郑寿荣,尹大强,浦海青,陈良燕.四环素在乌栅土中的吸附与解吸.农业环境科学学报,2008,27:1732-1736
    5.普锦成,章明奎.泰乐菌素和土霉素在农业土壤中的消解和运移.中国生态农业学报,2009,17:954-959
    6.王丽平,章明奎,郑顺安.土壤中恩诺沙星的吸附-解吸特性和生物学效应.土壤通报,2008,39:393-397
    7.王丽平,章明奎.土壤性质对抗生素吸附的影响.土壤通报,2009,40:420-423
    8.王冉,刘铁铮,王恬.抗生素在环境中的转归及其生态毒性.生态学报,2006,265-270
    9.武庭瑄,周敏,郭宏栋,段辉,陈慧.四环素在黄土中的吸附行为.环境科学学报,2008,28:2311-2314
    10.熊毅等主编.土壤胶体(第二册).北京:科学出版社,1985
    11.Atkinson R J, Posner A M, Quirk J P.Adsorption of potential determining ions at the ferric oxcide aqueous electrolyte interface. J. Phy. Chem.,1967,71:550-558
    12.Batchelder A R. Chlortetracycline and oxytetracycline effects on plant growth and development in soil systems.J. Environ. Qual.,1982,11:675-678
    13.Beezer A E. Biological Microcalorimetry Academic Press, London.1980, Chapter one
    14. Bogaard A E v d, Stobberingh E E. Epidemiology of resistance to antibiotics links between animals and humans. Int, J. Antimicrob.Ag.,2000,14:327-335
    15.Boxall A B A, Blackwell P, Cavallo R, Kay P, Tolls J. The sorption and transport of a sulphonamide antibiotic in soil systems.Toxicol.,2002,131:19-28
    16.Boxall A B A, Johnson P, Smith E J, Sinclair C J, Stutt E, Levy L S.Uptake of veterinary medicines from soils into plants.J. Agric. Food Chem.,2006,54: 2288-2297
    17.Chander Y, Kumar K, Goyal S M, Gupta S C.Antibacterial activity of soil-bound antibiotics.J. Environ. Qual.,2005,34:1952-1957
    18.Christian T, Scheider R J, Farber H A, Skutlarek D, Meyer M T, Goldbach H E. Determination of antibiotic residues in manure, soil and surface waters.Acta hydrochim. hydrobiol.,2003,31:78-79
    19. Critter S A M, Simoni J D A, Airoldi C.Microcalorimetric study of glucose degradation in some brazilian soils.Thermochim. Acta,1994,232:145-154
    20.Figueroa R A, Mackay A A. Sorption of oxytetracycline to iron oxides and iron oxide-rich soils.Environ. Sci.Technol.,2005,39:6664-6671
    21.Franchi M, Bramanti E, Morassi B L, Orioli P L, Vettori C, Gallri E. Clay-nucleic acid complexes:Characteristics and implications for the preservation of genetic material in primeval habitats.Origins of Life and Evol.Biosphere.,1999,29: 297-315
    22.Gavalchin J, Katz S E. The persistence of faecal-borne antibiotics in soil.J. AOAC Int.,1994,77:481-485
    23.Halling-Sφrensen B,Nielsen S N, Lanzky P F, Ingerslev F,Holten Lutzheft H C, Jφrgensen S E. Occurence, fate and effects of pharmaceutical substances in the environment-a review. Chemosphere,1998,36:357-393
    24.Halling-Sφrensen B, Sengelφv G, Tjφrnelund J. Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria. Arch. Environ. Contam.Toxicol.,2002,42: 263-271
    25.Halling-Sφrensen B, Sengelφv G, Ingerslev F, Jensen L B.Reduced antimicrobial potencies of oxytetracycline, tylosin, sulfadiazin, streptomycin, ciprofloxacin, and olaquindox due to environmental processes. Arch. Environ. Contam. Toxicol.,2003, 44:7-16
    26.Haynes C A, Norde W J. Structures and stabilities of adsorbed proteins.J. Colloid Interf. Sci.,1995,169:313-328
    27. He H P, Yang D, Yuan P, Shen W, Frost R L. A novel organoclay with antibacterial activity prepared from montmorillonite and Chlorhexidini acetas. J. Colloid Interf. Sci.,2006,297:235-243
    28.Hektoen H, Berge J A, Hormazabal V, Yndestad M. Persistence of antibacterial agents in marine sediments.Aquaculture,1995,133:175-184
    29.Hirsch R, Ternes T, Haberer K, Kratz K L. Occurrence of antibiotics in the aquatic environment. Sci. Total Environ.,1999,225:109-118
    30.Ingerslev F, Halling-Sφrensen B.Biodegradability properties of sulfonamides in activated sludge. Environ. Toxicol. Chem.,2000,19:2467-2473
    31.Jensen J. Veterinary medicines and soil quality:the Danish situation as an example. In:Daughton, C.G.,Jones-Lepp, T. (Eds.),Pharmaceuticals and Personal Care Products in the Environment:Scientific and Regulatory Issues, Symposium Series, American Chemical Society, Washington, DC,2001,pp:282-302
    32.Jjemba P K. The potential impact of veterinary and human therapeutic agents in manure and biosolids on plants grown on arable land:a review. Agr. Ecosyst. Environ.,2002,93:267-278
    33.Jφrgensen S E, Halling-Sφrensen B.Drugs in the environment. Chemosphere,2000, 40:691-699
    34.Kolz A C, Ong S K, Moorman T B.Sorption of tylosin onto swine manure. Chemosphere,2005,60:284-289
    35.Kong W D, Zhu Y G, Fu B J, Marschner P, He J Z. The veterinary antibiotic oxytetracycline and Cu influence functional diversity of the soil microbial community. Environ. Pollut.,2006,143:129-137
    36. Kong W D, Zhu Y G, Liang Y C, Zhang J, Smith F A, Yang M. Uptake of oxytetracycline and its phytotoxicity to alfalfa(Medicago sativa L.).Environ. Pollut., 2007,147:187-193
    37.Kubicki J D, Schroeter L M, Itoh M J, Nguyen B N, Apitz S E. Attenuated total reflectance Fourier-transform infrared spectroscopy of carboxylic acids adsorbed onto mineral surfaces.Geochim. Cosmochim. Acta,1999,63:2709-2725
    38.Kulshrestha P, Rossman J r F G, Aga D.Investigating the molecular interactions of oxytetracycline in clay and organic matter:insights on factors affecting its mobility in soil.Environ. Sci.Technol,2004,38:4097-4105
    39.Lin F Y, Chen W L, Sang L C.Microcalorimetric Studies of the interactions of Lysozyme with immobilized Metal Ions:Effects of Ion, pH Value and Salt Concentration. J. Colloid Interf. Sci.,1999,214:373-379
    40.Loke M L, Tjornelund J, Halling-Sφrensen B.Determination of the distribution coefficient (log Kd) of oxytetracycline, tylosin A, olaquindox and metronidazole in manure. Chemosphere,2002,48:351-361
    41.McFarland J W, Berger C M, Froshauer S A, Hayashi S F, Hecker S J, Jaynes B H, Jefson M R, Kamicker B J, Lipinski C A, Lundy K M, Reese C P, Vu C B. Quantitative structure-activity relationships among macrolide antibacterial agents:In vitro and in vivo potency against Pasteurella multocida. J. Med. Chem.,1997,40: 1340-1346
    42.Migliore L, Brambilla G, Casoria P, Civitareale C,Cozzolino S,Gaudio L. Effects of sulphadimethoxine on barley in Laboratory terrestrial models.Agric. Ecosyst. Environ.,1996,60:121-128
    43.Nowara A, Burhenne J, Spiteller M. Binding of fluoroquinolone carboxylic acid derivatives to clay minerals. J. Agric. Food Chem.,1997,45:1459-1463
    44.Omoike A, Chorover J.Adsorption to goethite of extracellular polymeric substances from Bacillus subtilis. Geochim. Cosmochim. Acta,2006,70:827-838
    45.Paesen J, Cypers W, Busson R, Roets E, Hoogmartens J.Isolation of decomposition products of tylosin using liquid chromatography. J. Chromatogr.,1995,699:99-106
    46.Phippa M A, Mackin L A. Application of isothermal microcalorimetry in solid state drug development. Pharm. Sci.Technol.Today,2000,3:9-17
    47. Pils J R V, Laird D A. Sorption of tetracycline and chlortetracycline on K-and Ca-saturated soil clays, humic substances, and clay-humic complexes.Environ. Sci. Technol.,2007,41:1928-1933
    48.Rabφlle M, Spliid N H. Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil.Chemosphere,2000,40:715-722
    49.Richardson B J, Lam P K S,Marton M. Emerging chemicals of concern: Pharmaceuticals and personal care products(PPCPs)in Asia,with particular reference to Southern China. Mar. Pollut. Bull.,2005,50:913-920
    50. Ross P D, Subramanian S.Thermodynamics of protein association reactions:Forces contributing to stability. Biochemistry,1981,20:3096-3102
    51.Sarmah A K, Meyer M T, Boxall A B A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere,2006,65:725-759
    52.Sassman S A, Sarmah A K, Lee L S.Sorption of tylosin A, D, and a-aldol and degradation of tylosin A in soils.Environ. Toxicol.Chem.,2007,26:1629-1635
    53.Sithole B, Guy R D.Models for tetracycline in aquatic environments 1.Interaction With Bentonite Clay Systems. Water Air Soil Poll.,1987,32:303-314
    54. Stoob K, Singer H P, Stettler S,Hartmann N, Mueller S R, Stamm C H. Exhaustive extraction of sulfonamide antibiotics from aged agricultural soils using pressurized liquid extraction. J. Chromatogr. A,2006,1128:1-9
    55.Suan D T, Dmitrenko L V. Effect of the structure of sulfocationites on the sorption of the antibiotic tetracycline.Appl.Biochem. Microbiol.,1994,30:629-633
    56.Sukul P, Lamshoft M, Zuhlke S,Spiteller M. Sorption and desorption of sulfadiazine in soil and soil-manure systems.Chemosphere,2008,73:1344-1350
    57.Tate III R L.Soil microbiology(second ed.).New York, NY:John Wiley and Sons, 2000
    58.Thiele-Bruhn S.Adsorption of the antibiotic pharmaceutical compound sulfapyridine by a long-term differently fertilized loess Chernozem. J. Plant Nutr. Soil Sci.,2000, 163:589-594
    59.Thiele-Bruhn S.Pharmaceutical antibiotic compounds in soils-a review, J. Plant Nutr. Soil Sci.,2003,166:145-167
    60.Thiele-Bruhn S,Seibicke T, Schulten H-R, Leinweber P. Sorption of sulfonamide pharmaceutical antibiotics on whole soils and particle-size fractions. J. Environ. Qual.,2004,33:1331-1342
    61.Thiele-Bruhn S,Beck I C.Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass. Chemosphere,2005,59:457-465
    62.Tsai Y S,Lin F Y, Chen W Y, Lin C C.Isothermal titration microcalorimetric studies of the effect of salt concentrations in the interaction between proteins and hydrophobic adsorbents. Colloids and Surfaces A:Physicochem. Eng. Aspects.,2002, 197:111-118
    63.Tolls J.Sorption of veterinary pharmaceuticals in soils:a review. Environ. Sci. Technol.,2001,35:3397-3406
    64.Vaclavik E, Halling-Sφrensen B, Ingerslev F. Evaluation of manometric respiration tests to assess the effects of veterinary antibiotics in soil.Chemosphere,2004,56: 667-676
    65.Vasudevan D, Bruland G L, Torranceet B S,Upchruch V G, MacKay A A. pH-dependent ciprofloxacin sorption to soils:Interaction mechanisms and soil factors influencing sorption. Geoderma,2009,151:68-76
    66.Wang R, Liu T Z, Wang T. The fate of antibiotics in environment and its ecotoxicology:A review. Acta Ecologica Sinica,2006,26:265-270
    67. Werner J J, McNeill K, Arnold W A. Photolysis of Chlortetracycline on a Clay Surface. J. Agr. Food Chem.,2009,57:6932-6937
    68.Xue W, He H, Zhu J, Yuan P.FTIR investigation of CTAB-Al-montmorillonite complexes. Spectrochim. Acta, Part A:Molecular and Biomolecular Spectroscopy, 2007,67:1030-1036
    69.Yang J F, Ying G G, Zhou L J, Liu S,Zhao J L. Dissipation of oxytetracycline in soils under different redox conditions.Environ. Poll.,2009,157:2704-2709
    70. Yang Y, Zhu J, Liu Y, Shen P, Qu S.Microcalorimetry is a sensitive method for studying the effect of nucleotide mutation on promoter activity. J.Biochem. Bioph. Meth.,2005,62:183-189

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700