大白菜抗霜霉病同源基因的克隆与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大白菜(Brassica campestris ssp.pekinensis)原产我国,其栽培面积及产量均居我国蔬菜之首。霜霉病是大白菜三大病害之一,严重影响大白菜的产量和品质,因此,抗霜霉病育种一直是大白菜的重要育种目标。随着分子生物学技术的发展,克隆并利用植物的抗性基因,研究这些基因的结构和功能已成为生物技术领域的热点。本研究以大白菜自交系‘85-1’的BAC文库为材料,应用同源序列法筛选抗病同源基因的BAC克隆,对获得的10个阳性克隆进行酶切分析,构建了亚克隆文库,并对筛选的阳性亚克隆进行了测序分析。本试验的研究结果如下:
     1.根据植物抗霜霉病基因保守区设计简并引物,利用三步PCR方法对大白菜‘85-1’BAC文库进行筛选,从19200个BAC克隆中筛选到含有目的基因的10个阳性克隆。对10个阳性克隆进行NotⅠ酶切,经脉冲场电泳检测,10个克隆的插入片段在80-100kb之间。将10个阳性克隆分别用EcoRⅠ、BamHⅠ及HindⅡ酶切,电泳检测酶切结果,由酶切图谱显示,选择阳性克隆94-G-17和限制性内切酶HindⅡ建立亚克隆文库。
     2.含抗霜霉病同源基因的亚克隆文库含有6200个克隆,覆盖BAC克隆的180倍左右。随机挑取85个亚克隆进行EcoRI,PstI双酶切,经琼脂糖凝胶电泳检测,其中78个克隆酶切后均有插入片段,其大小基本分布在1-5kb之间,平均插入片段大小为3kp左右。7个克隆酶切后只有载体片段,无插入片段,空载率为8.36%。
     3.利用上述简并引物,采用三步PCR方法对亚克隆文库进行筛选,获得抗霜霉病同源基因全长,编码区长度为3063bp,含有抗病同源基因具有的TIR结构域、NB-AR结构域和NB-ARC结构域。
Chinese cabbage (Brassica campestris L.ssp. pekinensis) originating from China, is one of the most important vegetable crops in China,with the largest cultivated area and yield. Downy mildew is one of three most important diseases in Chinese cabbage, impacting on its yield and quality seriously. Therefore, resistant to downy mildew has been an important objective in Chinese cabbage breeding. With the development of molecular biology techniques, cloning and using of plant resistance genes, studying on the structure and function have become a hot point in biotechnology field. In this study, the resistance gene analogs analysis was used to screen resistance gene from the BAC library of Chinese cabbage inbred line‘85-1’and 10 positive clones were obtained and analyzed by restriction enzyme digestion. A sub-clone library was constructed and the screened positive sub-clone was sequenced. The main results are as follows:
     1. The degenerated primers were designed according to the conserved domain of downy mildew resistant genes in plants. The Chinese cabbage‘85-1’BAC library was screened through three steps of PCR amplification, and 10 positive clones contained target gene from 19200 BAC clones were achieved. Ten positive clones were digested by NotⅠ, in which the inserted fragments ranged from 80 to 100kb revealed by pulsed-field gel electrophoresis. The positive clone 94-G-17 and restriction enzyme HindⅡwere selected to construct a sub-clone library based on the result of pulsed-field gel electrophoresis, digesting the 10 positive clones by EcoRⅠ, BamHⅠand HindⅡ.
     2. The sub-clone library with downy mildew resistant genes consisted of 6 200 clones, covering 180-fold of the BAC clone in size. Eighty-five sub-clones picked at random were double digested by restriction enzyme EcoRI and PstI, of which 78 clones were digested into fragments by agrose gel electrophoresis, ranging from 1 to 5kb, with an average insert size 3kb .Seven clones had vector fragments without inserts, with a empty clones rate of 8.36%.
     3. Using above degenerated primers, the sub-clone library was screened through three steps of PCR and achieved the whole length of Downy Mildew Resistance Gene Analogs,the effective coding length 3063 bp, containing TIR domain, NB-AR domain and NB-ARG domain within disease resistant genes.
引文
[1]李妍,申书兴,轩淑欣,等.大白菜DREB类转录因子cDNA的克隆及植物表达载体的构建[J].华北农学报, 2009, 24(1): 69-73.
    [2]王文生,王省芬,马峙英,等.棉花抗黄萎病相关基因筛选与亚克隆文库构建[J].华北农学报, 2006, 21(增刊): 147-150.
    [3]王神云.结球甘蓝霜霉病杭性的AFLP分子标记的研究[D].浙江大学硕士论文. 2006.
    [4] Monteiro AA, Coelho PS, Bahcevandziev K, et al. Inheritance of downy mildew resistance at cotyledon and adult-plant stages in‘Couve Algarvia’[J]. Euphytica, 2005, 141: 85-92.
    [5] Wang, M.,M.W. Farnham,C.E. Thomas. Inheritance of true leaf stage downy mildew resistance in broccoli [J]. Journal of the American Society for Horticultural Science, 2001, 126(6): 727-729.
    [6] Coelho P S, Monteiro A A. Inheritance of downy mildew resistance in mature broccoli plants[J]. Euphytica, 2003, 131: 65-69.
    [7]钮心格.大白菜抗霜霉病,病毒病原始材料的筛选及抗性遗传的研究[J].中国蔬菜, 1984, 4: 28-32.
    [8]邸青.大白菜抗缘枯病及霜霉病基因的SRAP标记筛选[D].中国农业科学院硕士论文, 2010.
    [9]冷月强.不结球白菜霜一霉病抗性机制及其分子标记[D].南京农业大学硕士毕业论文, 2003.
    [10] Giovannelli J L, Farnham M W, Wang M. Development of sequence characterized amplified region markers linked to downy mildew resistance in broccoli [J]. Journal of the American Society for Horticultural Science, 2002, 127: 597-601.
    [11] Farinho M J, Coelho P S, Carlier J, et al. Mapping of a locus for adult plant resistance to downy mildew in broccoli (Brassica oleracea convar. italica) [J]. Theoretical and Applied Genetics, 2004, 109: 1392-1398.
    [12]虞慧芳,钟新民,李必元,等.与大白菜抗霜霉病基因连锁的分子标记研究[J].中国农学通报, 2010, 26(15): 66-70.
    [13]冷月强,侯喜林,史公军.白菜抗霜霉病基因的RAPD标记[J].园艺学报, 2007, 34 (3) : 763-766.
    [14] Yu SC, Zhang FL, Yu RB, et al. Genetic mapping and localization of a major QTL for seedling resistance to downy mildew in Chinese cabbage[J]. Molecular Breeding, 2009, 23:573~590.
    [15]唐永洽,于拴仓,朱月林等.大白菜霜霉菌诱导抑制性消减杂交cDNA文库的构建和分析[J].植物生理学通讯, 2010, 46( 5): 453-458.
    [16] Jobal G S, Briggs S P. Reductase activity encoded by the HMI disease resistance gene in maize[J]. Science, 1992, 258: 985-987.
    [17] Grant M R, Godiard L, Straube E, et al. Struchme of the Arabidopsis RPMl gene enabling dual specificity disease resistance[J]. Science, 1995, 269(11): 843-846.
    [18] Lawrence G J, Fumengan E J, Aylcuffe M A, et al. The L6 gene forflax rust resistance is relatedto the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N [J]. The Plant Cell, 1995, 7(8): 1195-1206.
    [19] Jones D A, Thomas C M, Hammondkosack Ih E, et al. Isolation of the tomato Cf29 gene for Cladosporinm fnlvnm by transpose on tagging[J]. Science, 1994, 266(4): 789-793.
    [20] Song W Y, Wang G L, Chen L L, et al.A receptor kinase like protein encoded by the rice disease resistance gene Xa21[J]. Science, 1995, 270(15): 1804-1806.
    [21]马维,巩振辉,李大伟,等.辣椒LRR类抗病基因同源序列的克隆与分析[J].西北农林科技大学学报(自然科学版), 2008, 36(1):143-148.
    [22] Deng Z, Huang S, Ling P, et al. Cloning and characterization of NBS-LRR clas resistance-gene candidate sequence in citrus[J]. Theoretical and Applied Genetics, 2000, 101: 814-822.
    [23]李金玉,李冠,赵惠新,等.甜瓜抗霜霉病基因同源序列克隆与分析[J].植物生理学通讯, 2006, 42(3): 435-440.
    [24]丁国华,秦智伟,刘宏宇,等.黄瓜NBS类型抗病基因同源序列的克隆与分析[J].园艺学报, 2005, 32(4): 638-642.
    [25]曹必好,雷建军,夏勇等.结球甘蓝NBS-LRR类R基因同源序列的分离[J].中国农业科学,2004,37(7):1081-1085.
    [26] Jeong-Hwan Mun, Hee-Ju Yu, Soomin Park, et al. Park Genome-wide identification of NBS- encoding resistance genes in Brassica rapa[J]. Molecular Genetics Genomics, 2009(282): 617-631.
    [27] Bent AF, Kunkel BN, Dahlbeck D, et al. RPS2 of Arabidopsis thaliana: A leucine-rich repeat class of plant disease resistance genes [J]. Science, 1994, 265: 1856-1860.
    [28] Grant MR, Godiard L, Straube E, et al. Structure of the Arabidopsis RPM1 gene enabling dual specificiy disease resistance [J]. Science, 1995, 269: 843-846.
    [29] Bitter-Eddy PD, Crute I R, Holub EB, et al. RPP13 is a simple locus in Arabidopsis thaliana for alleles that specify downy mildew resistance to different avirnlence determinants in Peronospora parasitica [J]. Plant, 2000, 21(2): 177-188.
    [30] Barbara Baker, Patricia Zambryski, Brian Staskawicz, et al. Signaling in plant microbe interactions [J]. Science, 1997, 276: 726-733.
    [31] Kobe B, Reisenhofer J. The leucine rich repeat: Aversatile binding mobif [J]. Trends Biotechnology Science, 1994, 19: 415-421.
    [32] Jones J D G. Plant disease resistance genes: Structure, function and evolution[J]. Plant Biotechnology, 1996,7: 155-160
    [33]王沛雅,王跃进,张建文,等.华东葡萄白河-35-1株系抗霜霉病基因cDNA文库构建及EST分析[J].农业生物技术学报, 2009, 17(2): 294-300.
    [34] Hommon-Kosack K E, Jones J D G. Resistance gene-dependent plant defense response[J]. Plant Cell, 1996, 8: 1773-1791.
    [35] Ronald P.C. The molecular basis of disease resistance in rice[J]. Plant Molecuar Biology, 1997, 85(1-2): 179-186.
    [36] YU Zhi-hua. Technology of cloning plant genes and its progress [J]. World Agriculture, 2000, 2: 37-39.
    [37] Multani DS , Meeley RB, Paterson AH, et al. Plant-patho genmic revolution : molecular basis for the origin of a fungal disease in maize[J]. Proceedings of the National Academy of Sciences of the USA, 1998, 95: 1686-1691.
    [38] Nicholas Collins, Jeff Drake, Michael Ayliffe, et al. Molecular char acterization of the maize Rpl-D rust resistance haplo type and its mutants [J]. Plant Cell, 1999, 11: 1365-1376.
    [39] Giraudat J, Hauge BM, Valon L, et al. Isolation of the Arabidopsis ABIs gene by positional cloning [J]. Plant Cell, 1992,4: 1251-1261.
    [40] Arondel V, Lemieux B, Hwang I, et al. Mapp-based cloning of a gene control in gomega-3fattyaciddesatu-rationin Arabidopsis[J]. Science, 1992, 258: 1353-1355.
    [41]王春连,陈乐天,曾超珍,等.利用基因组文库加速Xa23基因定位的染色体步移[J].中国水稻科学, 2006, 20(4): 355-360.
    [42] Dodds P, Schwechheimer C. A breakdown in defense signaling[J]. Plant Cell, 2002, 14: 55-58.
    [43]侯仙慧,丁茂予,刘赛男,等.拟南芥MelAA抗性突变体的筛选和初步图位克隆分析[J].植物学报, 2009, 44(1): 52-58.
    [44]张丽英,陈儒钢,张俊红,等.辣椒抗病基因同源序列的克隆与分析[J].中国农业科学, 2008, 41(1): 169-175.
    [45]袁克华,冯仁军,程萍,等.香蕉NBS-LRR类抗病基因同源序列的克隆与分析[J].中国农学通报, 2009, 25(05): 271-274.
    [46]黄代青,王平,吕柳新.柚cDNA中NBS-LRR类R基因同源序列的分离[J].中国农业科学, 2004, 37(10): 1580-1584.
    [47] Collins N, Drake J, Ayliffe M,et al. Molecular characterization of the maizeRp1-D rust resistance haplotype and its mutants[J]. Plant Cell, 1999, 11(7): 1365-1376.
    [48]林巧玲,曾会.甘薯中NBS-LRR类抗病基因同源序列的克隆及序列分析[J].西北农业学报, 2007, 16(2): 65-69.
    [49]李金玉,颜雪,黄琼,等.甜瓜抗枯萎病基因同源序列克隆与序列分析[J].生物技术, 2006, 16(3): 3-9.
    [50]张楠,王海燕,刘大群.小麦STK类抗病基因同源序列的克隆与分析[J].华北农学报, 2010, 25(5): 20-24.
    [51] WANG Bang-Jun, ZHANG Zhi-Gang, LI Xue-Gang, et al. Cloning and Analysis of a Disease Resistance Gene Homolog from Soybean[J]. Acta Botanica Sinica, 2003, 45(7): 864-870.
    [52]孙涛,卢美光,简桂良,等.棉花NBS类抗病基因类似物的生物信息学分析[J].棉花学报, 2005, 17(3): 182-183.
    [53]杨学玲,王述彬,刘金兵,等.辣椒抗黄瓜花叶病毒同源序列的克隆与分析[J].江苏农业学报, 2009, 25(4): 838-842.
    [54]丁国华,池春玉,周秀艳,等.黄瓜抗病基因类似序列(RGA)的同源性分析和Southern鉴定[J].园艺学报, 2007, 34 (2): 355-360.
    [55]陈观水,周以飞,林生,等.甘薯NBS类抗病基因类似物的分离与序列分析[J].热带亚热带植物学报, 2006, 14(5): 359-365.
    [56]张建文,王跃进,朱自果,等.中国野生华东葡萄抗霜霉病抑制消减文库构建及初步分析[J].中国农业科学, 2009, 42(3): 960-966.
    [57]任斐.细菌人工染色体基因组文库的构建及应用[J].河南科技学院学报(自然科学版), 2010, 38(1): 44-48.
    [58]冯大领,石学萍,杨煜,等.大白菜细菌人工染色体文库的构建及鉴定[J].园艺学报2011, 38(1): 151-158.
    [59]石学萍.大白菜BAC文库的鉴定以及开花相关基因FLC1的筛选[D].河北农业大学硕士毕业论文, 2010.
    [60]黄晋玲.晋A棉花线粒体基因组BAC文库的构建及重要功能基因筛选[R].中国农业科学院博士后研究工作报告, 2006.
    [61]刘越.矮败-中国春小麦品系BAC文库的构建与筛选[D].中国农业科学院硕士毕业论文, 2003.
    [62]王文生. Pima90-53细菌人工染色体(BAC)文库构建及抗黄萎病相关基因筛选[D].河北农业大学硕士毕业论文, 2006.
    [63]陈凡国,封德顺,夏光敏.野生一粒小麦着丝粒RCS1相关序列的克隆鉴定[J].山东大学学报(理学版), 2003, 38(4): 109-112.
    [64] Suzuki K. Construction of a porcine BAC library and its 4-Dimensional PCR screening system [J]. Report of International workshop on Animal Genome Analysis, 1997, 51-58.
    [65]潘腾飞,潘东明,姜翠翠,等.馆溪蜜袖BAC文库的构建和汁胞粒化相关基因的筛选[J].中国农业科学, 2010, 43(18): 3791-3797.
    [66]吴新东.中国美利奴细毛羊BAC文库的筛选及混合[D].石河子大学硕士毕业论文, 2008.
    [67]吴琼,程华,刘方,等.棉属D基因组棉种着丝粒FISH标记的筛选初报[J].科学通报, 2010, 55(21): 2099-2105.
    [68]石学萍,冯大领,王彦华,等.大白菜开花相关基因FLC1的BAC克隆筛选及分析[J].园艺学报, 2010, 37(9): 1513-1516.
    [69] Hunger S, Di Gaspero G, Mohring S, et al. Isolation and linkage analysis of expressed disease-resistance gene analogues of sugar beet [J]. Genome, 2003, 46: 70-82.
    [70]王世全,张德春,李平,等.水稻中一个NBS-LRR抗病同源基因家族的克隆和分析[J].遗传学报, 2005, 32 (7): 704-711.
    [71]赵圣国,王加启,卜登攀,等.奶牛瘤胃微生物BAC文库中ACCase基因的筛选与生物信息学分析[J].中国农业科学, 2011, 44(5): 1015-1021.
    [72] He CF, Takao KS. PCR-based screening BAC library and direct end wequencing of BAC clones[J]. Acta Gene Sinica, 2004, 31(11): 1262-1267.
    [73]邓梅.野生二粒小麦抗病基因同源序列的克隆及其分子标记的开发和鉴定[D].四川农业大学硕士毕业论文, 2009.
    [74]曹必好,雷建军,夏勇,等.结球甘蓝NBS-LRR类R基因同源序列的分离[J].中国农业科学2004, 37(7): 1 081-1 084.
    [75]张前军,祖旭宇,梁宋平,等.拖丝蛋白全基因亚克隆文库的构建和部分序列的测定[J].南华大学学报(医学版), 2004, 32 (2): 151-154.
    [76]张伟,艾秀莲,王玮,等.提高平末端连接效率的研究[J].新疆农业科学, 2002, 39(5): 300-301.
    [77]王海燕,刘大群,杨文香.植物抗病基因类似序列研究进展及展望[J].河北农业大学学报, 2002, 25(增刊): 164-168.
    [78] Botella M A, Parker J E, FrostL N, et al. Three genes of the Arabidopsis RPP1 complex resistance locus recognize distinct Peronospora parasitica avirulence determinants[J]. Plant Cell, 1998, 10(11): 1847-1860.
    [79] Vander E A, Freddie C T, Kahk K, et al. Arabidopsis RPP4 is a member of the RPP5 multigene family of TIR-NB-LRR genes and confers downy mildew resistance through multiple signaling components [J]. Plant , 2002, 29(4): 439-451.
    [80] Mcdowell J M, Dhandaydham M, Long T A, et al. Intragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the RPP8 locus of Arabidopsis[J]. Plant Cell, 1998, 10(11): 1861-1874.
    [81] Bittner-eddy P D, Crute I R, Holub E B, et al. RPP13 is a simple locus inArabidopsis thalianafor alleles that specifydowny mildew resistance to different avirulence determinants in Peronospora parasitica[J]. Plant, 2000, 21(2): 177-188.
    [82] Neuwald AF. AAA +: a class of chaperone-like ATPase associated with the assembly, operation, and disassembly of protein complex[J]. Genome Research, 1999,9: 27-43.
    [83]王红杨,潘亚萍,付浩,等.血链球菌ATCC10556中保守蛋白基因的克隆与分析[J].中华医学遗传杂志, 2001, 18(6): 435-440.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700