人胰腺癌细胞中对5-氟尿嘧啶耐药相关基因的检测分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的:化疗耐药的发生限制了5-氟尿嘧啶(5-FU)对胰腺癌的治疗疗效,明确化疗耐药机制,进行针对性的治疗是解决化疗耐药的有效方法。目前的研究提示很多耐药机制都涉及到基因水平的变化。随着基因芯片技术的发展,我们可以通过对在体外筛选获得的不同胰腺癌5-FU耐药细胞表型及其原代细胞进行基因表达数据对比分析,找出不同耐药表型细胞相对原代细胞的基因表达改变情况,从而发现一些可能的与胰腺癌细胞5-FU耐药相关的重要基因或通路。
     方法:用不断增加浓度的5-FU反复进行胰腺癌MIAPaCa-2细胞培养直到细胞完全耐受不同浓度的5-FU,并且能在所耐受相应浓度的5-FU中维持稳定生长至少三个月,最终获得二株稳定的耐不同浓度5-FU的MIAPaCa-2细胞表型。再用含人类20,000个检测探针的基因芯片对原代MIAPaCa-2细胞和二个不同耐药表型的基因进行检测分析。基因芯片结果由Codelink系统软件进行数据分析。结合基因功能分析筛选出的基因再进行实时PCR检测验证。
     结果:我们成功地获得了二种耐药细胞表型:低耐药浓度表型MIA-FU-2.4和高耐药浓度表型MIA-FU-10.0,这二种表型分别能在浓度为2.4μg/ml和10.0μg/ml的5-FU中稳定生长。对不同浓度5-FU耐药的胰腺癌细胞表型和胰腺癌原代细胞进行基因数据对比分析,结果提示耐药可能与广泛的基因表达改变相关。在低耐药表型MIA-FU-2.4和高耐药表型MIA-FU-10.0中分别有1075种和1628种基因的表达情况存在差异。通过与基因数据库的对比分析,发现这些差异表达基因主要涉及细胞周期,细胞粘附,信号转导,DNA修复和凋亡等多种细胞生物学功能。
     讨论:研究结果提示胰腺癌MIAPaCa-2细胞株5-FU耐药的发生主要与调控多种细胞生物学功能的基因表达水平改变相关,如:凋亡、DNA修复和细胞周期等。同时还涉及这些差异表达基因共同参与的一些信号转导途径的改变,所以在化疗耐药的研究中可以更多地关注参与细胞生物学功能调控的相关基因及途径,指导临床治疗,改善化疗疗效。
Background & Aims: Using gene expression data, we compared the expression profile of 5-fluorouracil (5-FU) resistance in pancreatic cancer cells after in vitro selection low- and high-resistance phenotypes. The aims of our study were to identify genes showing altered expression in resistant derivatives, as well as several central genes or important pathways that were associated with 5-FU resistance in pancreatic cancer cells.
     Methods: The 5-FU-resistant MIAPaCa-2 derivatives were developed through exposure to increasing concentrations of 5-FU with repeated subcultures until the cells became fully resistant to 5-FU. Gene array analysis of the 5-FU-resistant MIAPaCa-2 derivatives and the parent cell line was performed using a Uniset Human 20K I Codelink Bioarray. Data were analyzed with CodeLink System Software. The expression profiling of selected genes were confirmed by real-time PCR assays. Results: We got successively two resistant derivatives, the low-resistance phenotype MIA-FU-2.4 and the high-resistance phenotype MIA-FU-10.0, These two derivatives can grow stably in 2.4μg/ml and 10.0μg/ml of 5-FU concentration respectively. Analysis of array data showed that the resistance of 5-FU in pancreatic cancer cell involved in widespread transcriptional activation. In MIA-FU-2.4 and MIA-FU-10.0, we identified respectively 1075 and 1628 differentially expressed genes. The biological functions of these genes included cell cycle, cell adhesion, signal transduction, DNA repair and apoptosis et al.
     Conclusions: Our data suggest that 5-FU resistance development in pancreatic cancer cell MIAPaCa-2 involves in many aspects of the biological functions and might be mainly attributed to apoptosis, DNA repair and cell cycle mechanisms and some signal transductions or some pivotal genes.
引文
[1]. Parker SL, Tong T, Bolden S, Wingo PA: Cancer statistics. CA Cancer J Clin. 1997;47:5-27
    [2]. Greenlee RT, Murray T, Bolden S, Wingo PA: Cancer statistics. CA Cancer J Clin. 2000;50(1);47:7-33
    [3]. Gudjonsson B: Cancer of the pancreas. 50 years of surgery. Cancer. 1987; 60: 2284-2303
    [4]. Blaszkowsky L: Treatment of advanced and metastatic pancreatic cancer. Front Biosci. 1998; 3: E214-25
    [5]. Bramhall SR , Allum WH , Jones AG ,Allwood AG, Cummins C, Neoptolemos JP. Treatment and survival in 13560 patients with pancreatic cancer, and incidence of the disease, in the West Midlands: an epidemiological study. Br J Surg. 1995;82:111-5.
    [6]. Oncology, Sixth Edition: DeVita VT, H S, Rosenberg SA, eds. Philadelphia, PA. Lippincott Williams and Wilkins. 2001:1126-61.
    [7]. Neoptolemos JP, Dunn JA, Stocken DD, Almond J, Link K, Beger H, Bassi C, Falconi M, Pederzoli P, Dervenis C, Fernandez-Cruz L, Lacaine F, Pap A, Spooner D, Kerr DJ, Friess H, Büchler MW; European Study Group for Pancreatic Cancer. Adjuvant chemoradiotherapy and chemotherapy in respectable pancreatic cancer: a randomized controlled trial. Lancet. 2001;358(9293): 1576-85
    [8]. Okada S. Non-surgical treatment of pancreatic cancer. Int J Clin Oncol. 1999;4:257-66.
    [9]. Kelsen D, Hudis C, Niedzwiecki D, Dougherty J, Casper E, Botet J, Vinciguerra V, Rosenbluth R. A phaseⅢcomparison trial of streptozotocin, mitomycin, and 5-fluorouracil with cisplatin, cytosine arabinoside, and caffeine in patients with advanced pancreatic carcinoma. Cancer. 1991;68: 965-69
    [10]. Burris HA 3rd, Moore MJ, Andersen J, Green MR, Rothenberg ML, Modiano MR, Cripps MC, Portenoy RK, Storniolo AM, Tarassoff P, Nelson R, Dorr FA, Stephens CD, Von Hoff DD. Improvement in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol. 1997;15: 2403-13
    [11].Ishii H, Furuse J, Nagase M, Yoshino M. Impact of gemcitabine on the treatment of metastatic pancreatic cancer. Journal of Gastroenterology and Hepatology. 2005;20: 62-66
    [12]. S. Shore; M. G. T. Raraty; P. Ghaneh; J. P. Neoptolemos. Chemotherapy for pancreatic cancer. Aliment Pharmacol Ther. 2003;18:1049-69.
    [13]. Haller DG. Chemotherapy for advanced pancreatic cancer. Int J Radiat Oncol Biol Phys. 2003;56(Suppl):16-23.
    [14]. Johnston PG, Lenz HJ, Leichman CG, Danenberg KD, Allegra CJ, Danenberg PV, Leichman L. Thymidylate synthase gene and protein expression correlate and are associated with response to 5-fluorouracil in human colorectal cancer and gastric tumors. Cancer Res. 1995;55: 1407-12
    [15]. Habara K, Ajiki T, Kamigaki T, Nakamura T, Kuroda Y. High expression of thymidylate synthase leads to resistance to 5-fluorouracil in biliary tract carcinoma in vitro. Jpn J Cancer Res. 2001;92(10):1127-32
    [16]. Aschele C, Lonardi S, Monfardini S. Thymidylate synthase expression as a predictor of clinical response to fluoropyrimidine-based chemotherapy in advanced colorectal cancer. Cancer Treat. Rev. 2002;28:27-47
    [17]. Hu YC, Komorowski RA, Graewin S, Hostetter G, Kallioniemi OP, Pitt HA, Ahrendt SA. Thymidylate synthase expression predicts the response to 5-fluorouracil-based adjuvant therapy in pancreatic cancer. Clin Cancer Res. 2003;15;9(11):4165-71
    [18]. Nozoe Y, Ogata Y, Araki Y, Sasatomi T, Fukumori H, Shirouzu K. Up-regulation in dihydropyrimidine dehydrogenase activity by raltitrexed causes antagonism in combination with 5-fluorouracil. Anticancer Res. 2003;23(6C):4663-9
    [19]. Takechi T, Fujioka A, Matsushima E, Fukushima M. Enhancement of the antitumour activity of 5-fluorouracil (5-FU) by inhibiting dihydropyrimidine dehydrogenase activity (DPD) using 5-chloro-2,4-dihydroxypyridine (CDHP) in human tumour cells. Eur J Cancer. 2002;38(9):1271-7
    [20]. Salonga D, Danenberg KD, Johnson M, Metzger R, Groshen S, Tsao-Wei DD, Lenz HJ, Leichman CG, Leichman L, Diasio RB, Danenberg PV. Colorectal tumors responding to 5-fluorouracil have low gene expression levels of dihydropyrimidine dehydrogenase, thymidylate synthase, and thymidine phosphorylase. Clin Cancer Res. 2000;6(4):1322-7
    [21]. Aschele C, Sobrero A, Faderan MA, Bertino JR. Novel mechanism(s) of resistance to 5-fluorouracil in human colon cancer (HCT-8) sublines following exposure to two different clinically relevant dose schedules. Cancer Res. 1992;52(7):1855-64
    [22]. Ichikawa W, Uetake H, Shirota Y, Yamada H, Takahashi T, Nihei Z, Sugihara K, Sasaki Y, Hirayama R. Both gene expression for orotate phosphoribosyl transferase and its ratio to dihydropyrimidine dehydrogenase influence outcome following fluoropyrimidine-based chemotherapy for metastatic colorectal cancer. Br J Cancer. 2003;89(8):1486-92
    [23]. Look KY, Moore DH, Sutton GP, Prajda N, Abonyi M, Weber G. Increased thymidine kinase and thymidylate synthase activities in human epithelial ovarian carcinoma. Anticancer Res. 1997;17(4A):2353-6
    [24]. I Ischenko, P Camaj, H Seeliger, A Kleespies, M Guba, E N De Toni, B Schwarz, C Graeb1, M E Eichhorn, K-W Jauch, C J Bruns. Inhibition of Src tyrosinekinase reverts chemoresistance toward 5-fluorouracil in human pancreatic carcinoma cells: an involvement of epidermal growth factor receptor signaling. Oncogene (2008) 27(57), 7212–22.
    [25]. Cao D, Pizzorno G. Uridine phosophorylase: an important enzyme in pyrimidine metabolism and fluoropyrimidine activation. Drugs Today (Barc). 2004;40(5):431-43
    [26]. Chen Y, Wang Z, Chang P, Xiang L, Pan F, Li J, Jiang J, Zou L, Yang L, Bian Z, Liang H. The effect of focal adhesion kinase gene silencing on 5-fluorouracil chemosensitivity involves an Akt/NF-kappaB signaling pathway in colorectal carcinomas. Int J Cancer. 2010 Jul 1;127(1):195-206.
    [27]. Violette S, Poulain L, Dussaulx E, Pepin D, Faussat AM, Chambaz J, Lacorte JM, Staedel C, Lesuffleur T. Resistance of colon cancer cells to long-term 5-fluorouracil exposure is correlated to the relative level of Bcl-2 and Bcl-X(L) in addition to Bax and p53 status. Int J Cancer. 2002;98(4):498-504
    [28]. Mader RM, Muller M, Steger GG. Resistance to 5-fluorouracil. Gen. Pharmacol. 1998; 31 (5):661–6
    [29]. Kazuya K, Manasi R, Roald R, Abdel G, Elkahloun, Michael L. Bittner, Paul S. Meltzer, Jeffrey M. Trent, William S. Dalton and Khew-Voon Chin. Monitoring the Expression Profile of Doxorubicin-induced and Doxorubicin-resistant Cancer Cells by cDNA Microarray. Cancer Res. 2000; 60: 4161-4166.
    [30] Pamela J. Maxwell, Daniel B. Longley, Tariq Latif, John Boyer, Wendy Allen, Maria Lynch, Ultan McDermott, D. Paul Harkin, Carmen J. Allegra and Patrick G. Johnston. Identification of 5-fluorouracil-imducible Target Genes Using cDNA Microarray Profiling[J]. Cancer Res. 2003; 63: 4602-4606.
    [31] ZHAO Yu-pei, CHEN Ge, FENG Bin, ZHANG Tai-ping, MA En-ling, WU Yuan-de. Microarray analysis of gene expression profile of multidrug resistance inpancreatic cancer[J]. Chinese Medical Journal 2007; 120(20): 1743-1752, 1743.
    [32]. Arumugam T, Ramachandran V, Fournier KF, Wang H, Marquis L, Abbruzzese JL, Gallick GE, Logsdon CD, McConkey DJ, Choi W. Epithelial to mesenchymal transition contributes to drug resistance in pancreatic cancer. Cancer Res. 2009 Jul 15;69(14):5820-8. Epub 2009 Jul 7.
    [33]. Kang HC, Kim IJ, Park JH, Shin Y, Ku JL, Jung MS, Yoo BC, Kim HK, Park JG. Identification of genes with differential expression in acquired drug-resistant gastric cancer cells using high-density oligonucleotide microarrays. Clin Cancer Res. 2004 Jan 1; 10(1 Pt 1):272-84
    [34]. Elstein KH, Mole ML, Setzer RW, Zucker RM, Kavlock RJ, Rogers JM, Lau C. Nucleoside-mediated mitigation of 5-fluorouracil-induced toxicity in synchronized murine erythroleukemic cells.Toxicol Appl Pharmacol. 1997 Sep; 146(1):29-39
    [35]. Bush JA, Li G. Cancer chemoresistance : the relationship between p53 and multidrug resistance[J ] . Int J Cancer ,2002 ,98 (3) :323-330. 2.
    [36]. Brangi M, Litman T, Ciotti M, Nishiyama K, Kohlhagen G, Takimoto C, Robey R, Pommier Y, Fojo T, Bates SE. Camptothecin resistance: role of the ATP-binding cassette (ABC), mitoxantrone-resistance half-transporter (MXR), and potential for glucuronidation in MXR-expressing cells. Cancer Res. 1999 Dec 1; 59(23):5938-46
    [37]. Zhao YP, Chen G, Feng B, Zhang TP, Ma EL, Wu YD. Microarray analysis of gene expression profile of multidrug resistance in pancreatic cancer. Chin Med J (Engl). 2007 Oct 20; 120(20):1743-52.
    [38]. de Angelis PM, Fjell B, Kravik KL, Haug T, Tunheim SH, Reichelt W, Beigi M, Clausen OP, Galteland E, Stokke T. Molecular characterizations of derivatives of HCT116 colorectal cancer cells that are resistant to thechemotherapeutic agent 5-fluorouracil. Int J Oncol. 2004 May; 24(5):1279-88.
    [39] Yasuda M, Chinnadurai G. Functional identification of the apoptosis effector BH3 domain in cellular protein BNIP1[J]. Oncogene. 2000 May 4;19(19):2363-7.
    [40] Piecyk M, Wax S, Beck AR, Kedersha N, Gupta M, Maritim B, Chen S, Gueydan C, Kruys V. Streuli M, Anderson P. TIA-1 is a translational silencer that selectively regulates the expression of TNF-alpha[J]. EMBO J. 2000 Aug 1; 19(15): 4154-63.
    [41]. Forch P, Valcarcel J. Molecular mechanisms of gene expression regulation by the apoptosis-promoting protein TIA1. Apoptosis. 2001 Dec; 6(6):463-8.
    [42]. Nolan B, Kim R, Duffy A, Sheth K, De M, Miller C, Chari R, Bankey P. Inhibited neutrophil apoptosis: proteasome dependent NF-kappaB translocation is required for TRAF-1 synthesis. Shock. 2000 Sep; 14(3):290-4.
    [43]. Nakano H, Oshima H, Chung W, Williams-Abbott L, Ware CF, Yagita H, Okumura K. TRAF5, an activator of NF-kappaB and putative signal transducer for the lymphotoxin-beta receptor. J Biol Chem. 1996 Jun 21; 271(25):14661-4
    [44]. Force WR, Cheung TC, Ware CF. Dominant negative mutants of TRAF3 reveal an important role for the coiled coil domains in cell death signaling by the lymphotoxin-beta receptor. J Biol Chem. 1997 Dec 5; 272(49):30835 -40.
    [45]. Hauer J, Püschner S, Ramakrishnan P, Simon U, Bongers M, Federle C, Engelmann H. TNF receptor (TNFR)-associated factor (TRAF) 3 serves as an inhibitor of TRAF2/5-mediated activation of the noncanonical NF-kappaB pathway by TRAF-binding TNFRs. Proc Natl Acad Sci USA. 2005 Feb 22;102(8):2874-9 .
    [46]. Paillard F. Induction of apoptosis with I-kappaB, the inhibitor of NF-kappaB. Hum Gene Ther.1999 Jan 1; 10(1):1-3.
    [47]. Karin M, Cao Y, Greten FR, Li ZW. NF-kappaB in cancer: from innocentbystander to major culprit. Nat Rev Cancer. 2002 Apr; 2(4):301-10 .
    [48]. Alexander Arlt, Jens Vorndamm,a, Maike Breitenbroich, Ulrich R F?lsch, Holger Kalthoff, Wolfgang E Schmidt, Heiner Sch?fer. Inhibition of NF-ΚB sensitizes human pancreatic carcinoma cells to apoptosis induced by etoposide (VP16) or doxorubicin. Oncogene. 2001 Feb15; 20(7):859-68.
    [49]. Arlt A, Gehrz A, Müerk?ster S, Vorndamm J, Kruse ML, F?lsch UR, Sch?fer H. Role of NF-kappaB and Akt/PI3K in the resistance of pancreatic carcinoma cell lines against gemcitabine-induced cell death. Oncogene. 2003 May 22; 22(21):3243-51.
    [50]. Dodson GE, Shi Y, Tibbetts RS. DNA replication defects, spontaneous DNA damage, and ATM-dependent checkpoint activation in replication protein A-deficient cells. J Biol Chem. 2004 Aug 6;279(32):34010-4. Epub 2004 Jun 14.
    [51]. De Smaele E, Zazzeroni F, Papa S, Nguyen DU, Jin R, Jones J, Cong R, Franzoso G. Induction of gadd45beta by NF-kappaB downregulates pro-apoptotic JNK signalling. Nature. 2001 Nov 15; 414(6861):308-13.
    [52]. Durant ST, Morris MM, Illand M, McKay HJ, McCormick C, Hirst GL, Borts RH, Brown R. Dependence on RAD52 and RAD1 for anticancer drug resistance mediated by inactivation of mismatch repair genes. Curr Biol. 1999 Jan 14;9(1):51-4.
    [53] Xuan Li, Wolf-Dietrich Heyer. Homologous recombination in DNA repair and DNA damage tolerance[J] Cell Research (2008) 18:99–113.
    [54]. Wu X, Shell SM, Zou Y. Interaction and colocalization of Rad9/Rad1/Hus1 checkpoint complex with replication protein A in human cells. Oncogene. 2005 Jul 7;24(29):4728-35.
    [55]. Kawabe T. G2 checkpoint abrogators as anticancer drugs. Mol Cancer Ther. 2004 Apr;3(4):513-9.
    [56]. Bartek J, Lukas J. Mammalian G1- and S-phase checkpoints in response to DNA damage. Curr Opin Cell Biol. 2001 Dec;13(6):738-47.
    [57]. McGowan CH. Checking in on Cds1 (Chk2): A checkpoint kinase and tumor suppressor. Bioessays. 2002 Jun;24(6):502-11.
    [58].陆云飞,向俾廷,曾健,廖清华,林坚.乳腺癌细胞周期调定点激酶基因突变的研究[J].中华普通外科学文献(电子版). 2007,2(1): 81-84.
    [59].薛建秀,赵再秋,胡玉顺,孙丽君,孟繁杰,段润卿.鼻腔鼻窦内翻性乳头状瘤组织PCNA、bcl-2和p53的表达活性观察[J].中国中西医结合耳鼻咽喉科杂志. 2008, 16(4):241-244.
    [60]. Hall PA,Lerrison DA,Woods AL, Yu CC, Kellock DB, Watkins JA, Barnes DM, Gillett CE, Camplejohn R, Dover R. Proliferating cell nuclear antigen (PCNA) immunolocalization in paraffin sections:an index of cell proliferation with evidence of deregulated expression in some neoplasma[J].Am J Pathol,1990,160(4):285
    [61]. Oyama T,Watanabe H,Iwafuchi M,Maejima T, Ajioka Y. Diagnostic value of proliferating cell nuclear antigen for myogenic tumors of the stomach[J].Gastrentero Jpn。1993,28:193-200.
    [62]. Dianova II, Bohr VA, Dianov GL. Interaction of human AP endonuclease 1 with flap endonuclease 1 and proliferating cell nuclear antigen involved in long-patch base excision repair. Biochemistry. 2001 Oct 23;40(42):12639-44.
    [63]. Lee D, Pearsall RS, Das S, Dey SK, Godfrey VL, Threadgill DW. Epiregulin is not essential for development of intestinal tumors but is required for protection from intestinal damage. Mol Cell Biol. 2004 Oct;24(20):8907-16.
    [64]. Irniger S. Cyclin destruction in mitosis: a crucial task of Cdc20. FEBS Lett. 2002 Dec 4;532(1-2):7-11.
    [65]. Sato N, Matsubayashi H, Abe T, Fukushima N, Goggins M. Epigenetic down-regulation of CDKN1C/p57KIP2 in pancreatic ductal neoplasms identified bygene expression profiling. Clin Cancer Res. 2005 Jul 1;11(13):4681-8.
    [66].鄢爱红,Cdt1和Geminin在白血病细胞中的表达及细胞周期各时相分布,硕士学位论文,湖南,中南大学,2008.
    1. Ahmedin Jemal, DVM, Rebecca Siegel, Elizabeth Ward, Yongping Hao, Jiaquan Xu, Taylor Murray, Michael J. Thun. Cancer statistics, 2008. CA Cancer J Clin 2008;58:71–96.
    2. Li D, Xie K, Wolff R, Abbruzzese JL. Pancreatic cancer. Lancet 2004; 363:1049–57.
    3. Philadelphia, PA. Lippincott Williams, Wilkins. Oncology, Sixth Edition: DeVita VT, H S, Rosenberg SA, eds. 2001:1126-1161.
    4. Bramhall SR, Allum WH, Jones AG, Allwood A, Cummins C, Neoptolemos JP. Treatment and survival in 13560 patients with pancreatic cancer, and imcidence of the disease, in the West Midlands: an epidemiological study. Br J Surg. 1995; 82: 111-115.
    5. Oncology, Sixth Edition: DeVita VT, H S, Rosenberg SA, eds. Philadelphia, PA. Lippincott Williams and Wilkins. 2001:1126-61.
    6. Neoptolemos JP, Dunn JA, Stocken DD, Almond J, Link K, Beger H, Bassi C, Falconi M, Pederzoli P, Dervenis C, Fernandez-Cruz L, Lacaine F, Pap A, Spooner D, Kerr DJ, Friess H, Büchler MW; European Study Group for Pancreatic Cancer. Adjuvant chemoradiotherapy and chemotherapy in respectable pancreatic cancer: a randomized controlled trial. Lancet. 2001;358(9293): 1576-85
    7. Fung MC, Takayama S, Ishiguro H, Sakata T, Adachi S, Morizane T (2003) Chemotherapy for advanced or metastatic pancreatic cancer: analysis of 43 randomized trials in 3 decades (1974–2002). Gan To Kagaku Ryoho, 2003, 30(8): 1101-1111.
    8. Okada S. Non-surgical treatment of pancreatic cancer. Int J Clin Oncol. 1999;4:257-66.
    9. Kelsen D, Hudis C, Niedzwiecki D, Dougherty J, Casper E, Botet J, Vinciguerra V, Rosenbluth R. A phaseⅢcomparison trial of streptozotocin, mitomycin, and 5-fluorouracil with cisplatin, cytosine arabinoside, and caffeine in patients with advanced pancreatic carcinoma. Cancer. 1991;68: 965-69.
    10. Sultana A, Smith CT, Cunningham D, Starling N, Neoptolemos J. P., Ghaneh P. Meta-analyses of chemotherapy for locally advanced and metastatic pancreatic cancer[J]. J Clin Oncol, 2007, 25(18): 2607-2615.
    11. Ychou M, Conroy T, Seitz JF, M. Ychou, T. Conroy, J. F. Seitz, S. Gourgou, A. Hua, D. Mery-Mignard, A. Kramar. An open phaseⅠstudy assessing the feasibility of the triple combination: oxaliplatin plus irinotecan plus leucovorin/5-fluorouracil every 2 weeks in patients with advanced solid tumors[J]. Ann Oncol , 2003, 14(3):481-489.
    12. Conroy T, Paillot B, Fran?ois E, Bugat R, Jacob JH, Stein U, Nasca S, Metges JP, Rixe O, Michel P, Magherini E, Hua A, Deplanque G. Irinotecan plus oxaliplatin and leucovorin-modulated fluorouracil in advanced pancreatic cancer—a groupe tumeurs digestives of the fédération nationale des centres de lutte contre le cancer study[J]. J Clin Oncol, 2005,23(6): 1228-1236.
    13. Kurtz JE, Négrier S, Husseini F, Limacher JM, Borel C, Wagner JP, Prevot G, Bergerat JP, Dufour P. A phaseⅡstudy of docetaxel-irinotecan combination in advanced pancreatic cancer[J]. Hepatogastroenterology, 2003, 50(50): 567-570.
    14. S. Shore; M. G. T. Raraty; P. Ghaneh; J. P. Neoptolemos. Chemotherapy for pancreatic cancer. Aliment Pharmacol Ther. 2003;18:1049-69.
    15. Haller DG. Chemotherapy for advanced pancreatic cancer. Int J Radiat Oncol Biol Phys. 2003;56(Suppl):16-23.
    16. Johnston PG, Lenz HJ, Leichman CG, Danenberg KD, Allegra CJ, Danenberg PV, Leichman L. Thymidylate synthase gene and protein expression correlate and areassociated with response to 5-fluorouracil in human colorectal cancer and gastric tumors. Cancer Res. 1995;55: 1407-12
    17. Habara K, Ajiki T, Kamigaki T, Nakamura T, Kuroda Y. High expression of thymidylate synthase leads to resistance to 5-fluorouracil in biliary tract carcinoma in vitro. Jpn J Cancer Res. 2001;92(10):1127-32
    18. [Aschele C, Lonardi S, Monfardini S. Thymidylate synthase expression as a predictor of clinical response to fluoropyrimidine-based chemotherapy in advanced colorectal cancer. Cancer Treat. Rev. 2002;28:27-47
    19. Hu YC, Komorowski RA, Graewin S, Hostetter G, Kallioniemi OP, Pitt HA, Ahrendt SA. Thymidylate synthase expression predicts the response to 5-fluorouracil-based adjuvant therapy in pancreatic cancer. Clin Cancer Res. 2003;15;9(11):4165-71
    20. Nozoe Y, Ogata Y, Araki Y, Sasatomi T, Fukumori H, Shirouzu K. Up-regulation in dihydropyrimidine dehydrogenase activity by raltitrexed causes antagonism in combination with 5-fluorouracil. Anticancer Res. 2003;23(6C):4663-9
    21. Takechi T, Fujioka A, Matsushima E, Fukushima M. Enhancement of the antitumour activity of 5-fluorouracil (5-FU) by inhibiting dihydropyrimidine dehydrogenase activity (DPD) using 5-chloro-2,4-dihydroxypyridine (CDHP) in human tumour cells. Eur J Cancer. 2002;38(9):1271-7
    22. Salonga D, Danenberg KD, Johnson M, Metzger R, Groshen S, Tsao-Wei DD, Lenz HJ, Leichman CG, Leichman L, Diasio RB, Danenberg PV. Colorectal tumors responding to 5-fluorouracil have low gene expression levels of dihydropyrimidine dehydrogenase, thymidylate synthase, and thymidine phosphorylase. Clin Cancer Res. 2000;6(4):1322-7
    23. Aschele C, Sobrero A, Faderan MA, Bertino JR. Novel mechanism(s) of resistance to 5-fluorouracil in human colon cancer (HCT-8) sublines followingexposure to two different clinically relevant dose schedules. Cancer Res. 1992;52(7):1855-64
    24. Ichikawa W, Uetake H, Shirota Y, Yamada H, Takahashi T, Nihei Z, Sugihara K, Sasaki Y, Hirayama R. Both gene expression for orotate phosphoribosyl transferase and its ratio to dihydropyrimidine dehydrogenase influence outcome following fluoropyrimidine-based chemotherapy for metastatic colorectal cancer. Br J Cancer. 2003;89(8):1486-92
    25. Look KY, Moore DH, Sutton GP, Prajda N, Abonyi M, Weber G. Increased thymidine kinase and thymidylate synthase activities in human epithelial ovarian carcinoma. Anticancer Res. 1997;17(4A):2353-6
    26. I Ischenko, P Camaj, H Seeliger, A Kleespies, M Guba, E N De Toni, B Schwarz, C Graeb1, M E Eichhorn, K-W Jauch, C J Bruns. Inhibition of Src tyrosine kinase reverts chemoresistance toward 5-fluorouracil in human pancreatic carcinoma cells: an involvement of epidermal growth factor receptor signaling. Oncogene (2008) 27(57), 7212–22.
    27. Cao D, Pizzorno G. Uridine phosophorylase: an important enzyme in pyrimidine metabolism and fluoropyrimidine activation. Drugs Today (Barc). 2004;40(5):431-43
    28. Chen Y, Wang Z, Chang P, Xiang L, Pan F, Li J, Jiang J, Zou L, Yang L, Bian Z, Liang H. The effect of focal adhesion kinase gene silencing on 5-fluorouracil chemosensitivity involves an Akt/NF-kappaB signaling pathway in colorectal carcinomas. Int J Cancer. 2010 Jul 1;127(1):195-206.
    29. Violette S, Poulain L, Dussaulx E, Pepin D, Faussat AM, Chambaz J, Lacorte JM, Staedel C, Lesuffleur T. Resistance of colon cancer cells to long-term 5-fluorouracil exposure is correlated to the relative level of Bcl-2 and Bcl-X(L) in addition to Bax and p53 status. Int J Cancer. 2002;98(4):498-504
    30. Bush JA, Li G. Cancer chemoresistance : the relationship between p53 and multidrug resistance[J ] . Int J Cancer ,2002 ,98 (3) :323-330. 2.
    31. Mader RM, Muller M, Steger GG. Resistance to 5-fluorouracil. Gen. Pharmacol. 1998; 31 (5):661–6.
    32. Flens MJ, Scheffer GL, Van Der Valk P, Broxterman HJ, Eijdems EW, Huysmans AC, Izquierdo MA, Scheper RJ. Identification of nover drug resistance-associated by a paner of rat monoclonal antibodies [J]. Int Cancer, 1997, 73(2): 249-257.
    33. Juliano RL ,Ling V. A surface glycoprotein modulating drug permeabily in Chinese bamster ovary cell mutans [ J ] . Bilchem Biophys Acta , 1976 ,455 (1) :152-162.
    34. Lu Z, Kleeff J, Shrikhande S, Zimmermann T, Korc M, Friess H, Büchler MW. Expression of the multidrug resistance1 (MDR1) gene and prognosis in humn a pancreatic cancer [J ] .Pancreas ,2000 ,21 (3) :240-247.
    35.李骥,傅德良,倪泉兴.胰腺癌和肿瘤多种耐药[J].国外医学外科学分册, 2004, 31(2): 69-72.
    36. Krishnamachary N, Center MS. The MRP gene associated with a non2 pglycoprotein multidrug resistance encodes a 190kD membrance bound glycoprotein [J]. Cancer Res, 1993 , 53(16) : 3658-3661.
    37.常新忠,丁伟,丁印鲁,张波,赵峰。多药耐药基因产物在胰腺癌中的表达及临床意义[J].中国现代普通外科进展, 2003 , 6 (3) : 1682.
    38. Doyle LA , Yang W, Abruzzo LA, Krogmann T, Gao Y, Rishi AK, Ross DD. A multidrug transporter from humanMCF 27 breast cancer cells [ J ] . Proc Natl Sci USA , 1998 , 95 (26) :15665-15670.
    39. Konig J ,Hartel M,Nies AT, Martignoni ME, Guo J, Buchler MW, Friess H, Kepplwer D. Expression and localization of human multidrug protein (ABCC) family members in pancreatic carcinoma [J] . Int J Cancer ,2005 ,115(3) :359-367.
    40. Honjo Y, Hrycyna CA, Yan QW, Medina-Perez WY, Robey RW, van de Laar A, Litman T, Dean M, Bates SE. Acquired mutations in the MXR/BCRP/ABCP gene alter substrate specificity in MXR/BCRP/ABCP-overexperssing cells[J]. Cancer Res, 2001; 61(18): 6635.
    41.曹越. GPX3基因与胰腺癌化疗耐药相关性的实验研究.博士学位论文.北京.中国协和医科大学. 2006.
    42.曲卓慧,刘云鹏.胃肠道肿瘤化疗多药耐药的研究进展[J].现代肿瘤医学, 2007; 15(7): 1025-28
    43. Tsuruo T, Nato M, Tomida A, Fujita N, Mashima T, Sakamoto H, Haga N. Molecular targeting therapy of cancer: drug resistance , apoptosis and survival signa[J] . Cancer Sci , 2003 , 94(1) : 15-21.
    44. Ramachandran C ,Melnick SJ, Escalon E, Jhabvala P, Khatib Z, Alamo A, Smith S. Expression of apoptosis ,cell proliferation ,and drug resistance gene in pediatric Wilm’s tumors[J] . Anticancer Res , 2000 , 20(50) : 3759- 3765.
    45. Hashimoto Y, Deda K, Minami K, Watatani M. The potential clinical value of GMC and the p53 gene as a predictor [J] . Int J Clin Oncol ,2001 ,6 (2) :90-96.
    46. Van Brussel JP, Jan Van Steenbrugge G, Van Krimpen C, Boqdanowicz JF, Van Der Kwast TH, Schroder FH, Mickisch GH. Expression of multidrug resistance related proteins and proliferative activity is increased in advanced clinical prostate cancer [J] . J Urol ,2001 ,165(1) :130-135.
    47. Anderson KM, Alrefai WA, Anderson CA, Ho Y, Jadko S, Ou D, Wu YB, Harris JE. A response of Panc-1 cells to cis-platinum. assessed with a cDNA aray[J ] . Anticancer Res , 2002 ,22 (1A) :75-81.
    48. Schniewind B, Christgen M, Kurdow R, Haye S, Kremer B, Kalthoff H, Ungefroren H. Resistance of pancreatic cancer to gemcitabine t reatment isdependent on mitochondriamediated apoptosis [J] . Int J Cancer , 2004 ; 109(2): 182.
    49. Shi X, Liu S, Kleeff J, Friess H, Buchler MW. Acquired resistance of pancreatic cancer cells towards 5-Fluorouracil and gemcitabine is associated with altered expression of apoptosis regulating genes [J] . Oncology , 2002 ; 62 (4)∶354.
    50. Duxbury MS , Ito H, Zinner MJ, Ashley SW, Whang EE. siRNA directed against c-Src enhances pancreatic adenocarcinoma cell gemcitabine chemosensitivity [J] . J Am Coll Surg , 2004 ; 198 (6): 953-9.
    51. Li D, Xie K, Wolff R, Abbruzzese JL.. Pancreatic cancer [J]. Lancet , 2004 ; 363 (9414): 1049-57.
    52. Plath T, Peters M , Detjen K, Welzel M, von Marschall Z, Radke C, Wiedenmann B, Rosewicz S. Overexpression of pRB in human pancreatic carcinoma cells : function in chemot herapy-induced apoptosis [J]. J Natl Cancer Inst, 2002; 94 (2): 129.
    53. eaglotti G V,Novello S,Selvaggi G.Mutidurg-resistance in on-small-cell lung cancer[J].Ann oncol, 1999, (5): 83.
    54.周炳刚,陈志宏,范玉琢,黄允宁,苏刚,王炜.苦参碱对人乳腺癌细胞阿霉素多药耐药性的逆转作用[J].中华实验外科杂志. 2006, 23(1): 106.
    55.茆俊卿,张育,顾健,等.麻黄碱逆转K562/A02细胞多药耐药性的研究[J].中国医院药学杂. 2007, 27(2): 156-159.
    56.解霞,杨毅,高清波,等.川芎嗪对人乳腺癌MCF-7/ADM细胞多药耐药性的逆转及P-糖蛋白表达的影响[J].大连大学学报, 2006, 27(4): 76-78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700