硬质合金刀具车削半奥氏体沉淀硬化不锈钢的磨损机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半奥氏体沉淀硬化不锈钢以其独特的优越性,在航空航天工业方面,尤其是飞机蒙皮制造方面获得了广泛的应用。本文对硬质合金刀具与半奥氏体沉淀硬化不锈钢的氧化性能以及二者间的扩散性能进行了研究,并通过半奥氏体沉淀硬化不锈钢的车削试验对其加以验证,从而对硬质合金刀具车削半奥氏体沉淀硬化不锈钢的磨损机理进行了系统研究。
     通过对硬质合金刀具和半奥氏体沉淀硬化不锈钢的化学热力学计算和氧化试验进行研究,发现YT类硬质合金刀具相对氧化失重较少,抗氧化能力较强;加热温度为1200K时,YG类硬质合金刀具中的WC和Co元素已经部分被氧化,而YT类硬质合金刀具中的TiC则未被氧化;细晶粒硬质合金刀具的抗氧化能力要比粗晶粒硬质合金刀具要好。五种硬质合金刀具的抗氧化性能的优劣顺序为:YT15>YT5>YG6X>YG6>YG8。而半奥氏体沉淀硬化不锈钢在加热温度T=1300K时,试样块表面被完全氧化,Fe元素被氧化为Fe2O3,Cr元素被氧化为Cr3O8,Mn元素被氧化为Mn2O3,Ni元素被氧化为NiO。
     通过对硬质合金刀具与半奥氏体沉淀硬化不锈钢间的扩散试验进行研究,发现加热温度为200℃时,硬质合金刀具与半奥氏体沉淀硬化不锈钢间已经开始发生扩散,而且加热温度越高,扩散程度越剧烈;当加热温度为400℃时,扩散现象更为明显,且YT类硬质合金刀具与半奥氏体沉淀硬化不锈钢间的扩散程度要高于YG类硬质合金刀具。硬质合金刀具晶粒越细小,扩散就越难于进行。而且,发生扩散后,靠近扩散偶接触面的试样硬度均明显低于试样的硬度正常值。因而,五种硬质合金刀具与半奥氏体沉淀硬化不锈钢间扩散剧烈程度大小顺序为:YT15>YT5>YG8>YG6>YG6X。
     通过对半奥氏体沉淀硬化不锈钢的车削试验进行研究,发现从切削力、加工表面质量和切削温度来看,YT类硬质合金刀具更适合于车削半奥氏体沉淀硬化不锈钢;从硬质合金刀具后刀面磨损量来看,YT类硬质合金刀具的后刀面耐磨性要好于YG类硬质合金刀具;YT类硬质合金刀具的主要磨损机理为氧化磨损、粘结磨损和扩散磨损,YG类硬质合金刀具的主要磨损机理为氧化磨损、边界磨损、粘结磨损和扩散磨损。
At present, semi-austenitic precipitation hardening stainless steel has been used widely in the aerospace industry, especially in the skin of the aircraft because of the unique advantages. The research of oxidation and diffusion properties between cemented carbide tools and semi-austenitic precipitation hardening stainless steel was carried out, and the results were confirmed through turning experiment of semi-austenitic precipitation hardening stainless steel, thus the main wear mechanism of cemented carbide tools was obtained.
     The chemical thermodynamics computation and oxidation test on cemented carbide tools and semi-austenitic precipitation hardening stainless steel were studied, the results indicated that:the oxidation weightlessness of YT cemented carbide tools is less, so the anti-oxidation ability is stronger; the WC and Co in YG cemented carbide tools had already been oxidized in 1200K, but the TiC in YT cemented carbide tools had not been oxidized; the anti-oxidized ability of fine grain cemented carbide tools is better than that with coarse grains. So the preferential order of anti-oxidized ability on five cemented carbide tools is as follows:YT15>YT5>YG6X>YG6>YG8. The specimen of semi-austenitic precipitation hardening stainless steel was completely oxidized in 1300K, and the oxidation product of Fe, Cr, Mn and Ni is respectively Fe2O3, Cr3O8, Mn2O3 and NiO.
     The diffusion test from cemented carbide tools to semi-austenitic precipitation hardening stainless steel (vice versa) was studied. The results showed that:the diffusion had took place along the interface of the diffusion couple composed of cemented carbide tools and semi-austenitic precipitation hardening stainless steel in 200℃, and the diffusion degree was more violent with increasing temperature. Diffusing phenomena are quite obvious in 400℃, the diffusion degree in YT cemented carbide tools is more obvious than that in YG cemented carbide tools, and crystal grain of cemented carbide tools material is finer, the diffusion is more difficult. The Vickers hardness near the interface of the diffusion couple is lower than far away from the interface owing to element diffusion. So the size order of diffusion degree on five cemented carbide tools is as follows:YT15>YT5>YG8>YG6>YG6X.
     The turning test on semi-austenitic precipitation hardening stainless steel was carried out with cemented carbide tools. Results showed that:YT cemented carbide tools were more suitable for turning semi-austenitic precipitation hardening stainless steel than YG cemented carbide tools through analyzing tool flank wear, cutting force, surface roughness and cutting temperature. Oxidation wear, adhesive wear and diffusion wear were the main wear mechanism of YT cemented carbide tools; oxidation wear, boundary wear, adhesive wear and diffusion wear were the main wear mechanism of YG cemented carbide tools.
引文
[1]Lo K H, Shek C H and Lai J K L. Recent developments in stainless steels [J]. Materials Science and Engineering:R:Reports.2009,65 (4-6):39-104.
    [2]王正樵等编著.不锈钢[M].北京:化学工业出版社,1991:1-27.
    [3]陆世英等编著.不锈钢[M].北京:原子能出版社,1995:1-30.
    [4]刘晓东,许耀东.不锈钢的切削研究.机械.2005,32(10):52-53.
    [5]徐增华.金属耐蚀材料第八讲沉淀硬化不锈钢[J].腐蚀与防护.2001,22(8):367-370.
    [6]Smith W F. Structure and properties of engineering alloys [M].2nd edtion. New York: McGraw-Hill Inc,1993:8-20.
    [7]Bogaard R H, Desai P D, Li H H, etal. Thermophysical properties of stainless steels [J]. Thermochimica Acta.1993,218:373-393.
    [8]Maki T. Stainless steel:progress in thermomechanical treatment [J]. Current Opinion in Solid State and Materials Science.1997,2 (3):290-295.
    [9]肖纪美.不锈钢的金属学问题[M].北京:冶金工业出版社,2006:220-225.
    [10]Zakeri M, Bahrami A and Mousavi Anijdan S H. Using genetic algorithm in heat treatment optimization of 17-4PH stainless steel [J]. Materials & Design.2007,28 (7):2034-2039.
    [11]Kochmanski P and Nowacki J. Activated gas nitriding of 17-4 PH stainless steel [J]. Surface and Coatings Technology.2006,200 (22-23):6558-6562.
    [12]Zdzislaw K, Elmekki E, Marek B, etal. Cutting tool reliability analysis for variable feed milling of 17-4PH stainless steel [J]. Wear.1996,195 (1-2):206-213.
    [13]Balazinski M and Ennajimi E. Influence of feed variation on tool wear when milling stainless steel 17-4PH [J]. Journal of Engineering for Industry.1994,116 (4):516-520.
    [14]Chien W T and Tsai C S. The investigation on the prediction of tool wear and the determination of optimum cutting conditions in machining 17-4PH stainless steel [J]. Journal of Material Processing Technology.2003,140 (1-3):340-345.
    [15]Liu R L and Yan M F. The microstructure and properties of 17-4PH martensitic precipitation hardening stainless steel modified by plasma nitrocarburizing [J]. Surface and Coatings Technology.2010,204 (14):2251-2256.
    [16]Liu R L and Yan M F. Improvement of wear and corrosion resistances of 17-4PH stainless steel by plasma nitrocarburizing [J]. Materials & Design.2010,31 (5):2355-2359.
    [17]Hsiao C N, Chiou C S and Yang J R. Aging reactions in a 17-4 PH stainless steel. Materials Chemistry and Physics.2002,74 (2):134-142.
    [18]Ping D H, Ohnuma M, Hirakawa Y, etal. Microstructural evolution in 13Cr-8Ni-2.5Mo-2Al martensitic precipitation-hardened stainless steel [J]. Materials Science and Engineering A. 2005,394(1-2):285-295.
    [19]李松涛,徐春.半奥氏体沉淀硬化不锈钢PH15-7Mo的合金成分与热处理工艺研究[J].机械管理开发.2002年增刊.5-7.
    [20]李峰.控制相变沉淀硬化不锈钢处理工艺与组织性能关系研究[D].南京理工大学硕士学位论文,2008:1-10.
    [21]69111专题组.Cr12Mn5Ni4Mo3Al半奥氏体沉淀硬化不锈钢的研制[J].1974
    [22]魏振宇.某些沉淀硬化不锈钢的金属学问题(续)[J].钢铁.1980,15(2):45-53.
    [23]Bhargava A K and Tiwari AN. Rapid solidification of 17-7PH stainless steel:Heat treatment response [J]. International Journal of Rapid Solidification.1996,9 (2):121-136
    [24]Bhargava A K and Tiwari AN. Boron modified 17-7 PH stainless steel via rapid solidification processing [J]. Transactions of the Indian Institute of Metals.2003,56 (1):9-17.
    [25]Bayera R G and Trivedia A K. The tribological properties of electrochemically machined 17-7pH steel [J]. Wear.1976,36 (1):127-129.
    [26]San Martina D, Rivera Diaz del Castilloa P E J, Peekstokb E, etal. A new etching route for revealing the austenite grain boundaries in an 11.4% Cr precipitation hardening semi-austenitic stainless steel [J]. Materials Characterization.2007,58 (5):455-460.
    [27]Posta J, Nollesb H, Dattac K, etal. Experimental determination of the constitutive behaviour of a metastable austenitic stainless steel [J]. Materials Science and Engineering A.2008,498 (1-2): 179-190.
    [28]Posta J, Dattab K and Beyerc J. A macroscopic constitutive model for a metastable austenitic stainless steel [J]. Materials Science and Engineering A.2008,485 (1-2):290-298.
    [29]孙轩华,王学优,姜子科,等.半奥氏体沉淀硬化不锈钢PH15-7Mo“TH制度”热处理的研究[J].沈阳工业大学学报.1986,8(1):93-102.
    [30]陈国辉,罗承萍,刘江文,等.固溶处理对PH15-7Mo不锈钢组织和性能的影响[J].热加工工艺.2008,37(8):60-63.
    [31]郭永良,刘兴秋.固溶处理温度对0Cr12Mn5Ni4Mo3Al钢拉-疲劳寿命的影响[J].物理测试.2005,23(3):27-29.
    [32]Guo Y L, Liu X Q, Zhang X M, etal. Effect of heat treatment on mechanical properties of 0Cr12Mn5Ni4Mo3Al [J]. Acta Metallurgica Sinica.2004,17 (2):118-121.
    [33]谷兴年,崔文琴,林翠娣.半奥氏体沉淀硬化不锈钢的氟弧焊[J].焊接技术.1982,(4):1-7.
    [34]樊兆宝.Cr12Mn5Ni4Mo3Al钢小型高压容器的焊接工艺[J].电焊机.2008,38(3):48-52.
    [35]赵冬梅,毛志远.时效工艺对沉淀硬化不锈钢弹簧低周疲劳性能的影响[J].机械工程材料.1997,21(3):24-25.
    [36]韩荣第,于启勋主编.难加工材料切削加工[M].北京:机械工业出版社,1996:61-77.
    [37]李企芳主编.难加工材料的加工技术[M].北京:北京科学技术出版社,1992:9-11.
    [38]刘景复.不锈钢的车削[M].北京:机械工业出版社,1981:4-6.
    [39]孟繁茂,付俊岩.现代含铌不锈钢[M].北京:冶金工业出版社,2004:2-6.
    [40]Poulachon G, Dessoly M, Calvez C Le, etal. An investigation of the influence of sulphide inclusions on tool-wear in high speed milling of tool steels [J]. Wear.2001,250 (1-12): 334-343.
    [41]邓建新,赵军.数控刀具材料选用手册[M].北京:机械工业出版社,2005:117-127.
    [42]李友生,邓建新,张辉,等.硬质合金刀具材料的抗氧化性能研究[J].材料工程.2009,(2):34-37.
    [43]谢国如.不锈钢切削加工的研究[J].工具技术.2004,38(2):23-25.
    [44]Chang C S and Tsai G C. A force model of turning stainless steel with worn tools having nose radius [J]. Journal of Materials Processing Technology.2003,142 (1):112-130.
    [45]Sarwar M, Persson M and Hellbergh H. Wear of the cutting edge in the bandsawing operation when cutting austenitic 17-7 stainless steel [J]. Wear.2007,263 (7-12):1438-1441.
    [46]Chen W C and Liu X D. Study on the various coated twist drills for stainless steels drilling [J]. Journal of Materials Processing Technology.2000,99 (1-3):226-230.
    [47]Savas T,徐侠凯,吴小明.奥氏体不锈钢在干切削和微量润滑条件下的切削力的研究[J].组合机床与自动化加工技术.2009,(5):25-28.
    [48]龙震海,王西彬,王好臣.难加工材料高速切削力非线性特征规律的最大熵谱分析与小波分析[J].中国工程科学.2004,6(10):28-31.
    [49]龙震海,王西彬,王好臣.难加工材料高速切削过程中切削力的非线性特征规律析因研究[J].机械工程学报.2006,42(1):30-34.
    [50]Ciftci I. Machining of austenitic stainless steels using CVD multi-layer coated cemented carbide tools [J]. Tribology International.2006,39 (6):565-569.
    [51]徐强,张弘弢,董海,等.涂层硬质合金刀具切削奥氏体不锈钢切削力的试验研究[J].工具技术.2008,42(4):22-25.
    [52]Korkut I, Kasap M, Ciftci I, etal. Determination of optimum cutting parameters during machining of AISI 304 austenitic stainless steel [J]. Materials & Design.2004,25 (4):303-305.
    [53]Gu J, Barber G, Tung S, etal. Tool life and wear mechanism of uncoated and coated milling tools [J]. Wear.1999,225 (1):273-284.
    [54]Ghani J A, Choudhury I A and Masjuki H H. Wear mechanism of TiN coated carbide and uncoated cermets tools at high cutting speed applications [J]. Journal of Materials Processing Technology.2004,153-154:1067-1073.
    [55]Liu N, Han C L, Yang H D, etal. The milling performances of TiC-based cermet tools with TiN nanopowders addition against normalized medium carbon steel AISI1045 [J]. Wear.2005,258 (11-12):1688-1695.
    [56]Dolinsek S, Sustarsic B and Kopac J. Wear mechanisms of cutting tool in high-speed milling [J]. Wear.2001,350 (1-12):349-356.
    [57]Abou-El-Hossein K A and Yahya Z. High-speed end-milling of AISI 304 stainless steels using new geometrically developed carbide inserts [J]. Journal of Materials Processing Technology. 2005,162-163:596-602.
    [58]Nouari M and Molinari A. Experimental verification of a diffusion tool wear model using a 42CrMo4 steel with an uncoated cemented tungsten carbide at various cutting speeds [J]. Wear. 2005,259(7-12):1151-1159.
    [59]戴振东,王珉,薛群基.摩擦体系热力学引论[M].北京:国防工业出版社,2002:30-42.
    [60]白锦会,戴志松.化学热力学的历史发展[J].华中师范大学学报(自然科学版).1991,25(2):242-247.
    [61]万洪文,詹正坤.物理化学[M].北京:高等教育出版社,2002:17-86.
    [62]叶大伦,胡建华.实用无机物热力学数据手册[M].第2版.北京:冶金工业出版社,2002:1-480.
    [63]肖诗纲.刀具材料及其合理选择[M].第二版.北京:机械工业出版社,1990:49-238.
    [64]孙振岩,刘春明.合金中的扩散与相变[M].沈阳:东北大学出版社,2002:21-48.
    [65]周泽华.金属切削原理[M].北京:机械工业出版社,1992:131-137.
    [66]戚止风.固态金属中的扩散与相变[M].北京:机械工业出版社,1998:22-97.
    [67]黄继华.金属及合金中的扩散[M].北京:冶金工业出版社,1996:14-67.
    [68]马兹·希拉特.合金扩散和热力学[M].北京:冶金工业出版社,1984:20-93.
    [69]Deng J X, Li Y S and Song W L. Diffusion wear in dry cutting of Ti-6A1-4V with WC/Co carbide tools [J]. Wear.2008,265 (11-12):1776-1783.
    [70]69111专题组.Crl2Mn5Ni4Mo3Al半奥氏体沉淀硬化不锈钢性能简介[J].1974
    [71]刘占强,艾兴.高速切削刀具磨损表面形态研究[J].摩擦学报.2002,22(6):468-471.
    [72]艾兴等.高速切削加工技术[M].北京:国防工业出版社,2003:227-262.
    [73]李友生,邓建新,张辉,等.高速车削钛合金的硬质合金刀具磨损机理研究[J].摩擦学报.2008,28(5):443-447.
    [74]陈日曜.金属切削理论[M].北京:机械工业出版社,1985:92-97.
    [75]周泽华.金属切削原理[M].第二版.上海:上海科学技术出版社,1993:112-116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700