黄瓜离体再生和遗传转化体系的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄瓜是国内外广泛种植的一类重要蔬菜作物,在蔬菜周年化供应中具有重要作用,实际生产栽培中常因各种病虫的危害造成巨大的经济损失。由于传统病虫害防治方法的种种不利因素,因此,选育抗性品种从根本上提高黄瓜抗病虫能力,是防治的最佳途径。但是黄瓜种内抗性材料缺乏,传统育种很难获得突破。本研究以不同材料的黄瓜子叶、子叶节作外植体,研究了基因型、激素对黄瓜离体分化的影响,建立了高效的离体再生体系;同时研究了AS、侵染时间、PH值对黄瓜遗传转化的影响,优化了转化体系;在此基础之上,通过根癌农杆菌介导法,将GUS基因导入黄瓜,对转化体系进行了初步探索,并进一步将抗线虫基因MiMPK1导入黄瓜,为黄瓜遗传转化的相关研究提供理论依据。
     主要研究结果如下:
     1.基因型是植物离体再生能力高低的重要影响因素之一,不同基因型之间的再生能力差异很大。黄瓜子叶再生体系建立所用的6份材料(中农8号、吉林旱瓜选系、四川白瓜选系、Gy14、65G、9110Gt)中,华南类型材料吉林旱瓜的再生能力最强,在培养基MS+1.5 mg/L 6-BA+0.5 mg/L ABA+2 mg/L AgNO_3上,再生频率和每外植体再生芽数分别为96.7 %和5.2;黄瓜子叶节再生体系的建立所用的8份材料(吉林旱瓜选系、四川白瓜选系、0513、228、Gy14、65G、185、K2148)之中,华南类型材料四川白瓜的再生能力最强,在培养基MS+0.5 mg/L 6-BA+2 mg/L AgNO_3上,再生频率和每外植体再生芽数分别为100 %和6.4。
     2.植物激素是植物离体再生所必需,6-BA是黄瓜离体分化中最常用的植物激素之一。对于黄瓜子叶外植体的分化而言,6-BA是不定芽发生的主导因素,而ABA的添加能显著提高不定芽数目。美国加工类型材料Gy14和欧洲华北混合类型材料9110Gt的最佳诱芽培养基为MS+1.0 mg/L 6-BA+1.0 mg/L ABA+2 mg/L AgNO_3;华南类型材料吉林旱瓜和四川白瓜的最佳诱芽培养基为MS+1.5 mg/L 6-BA+0.5 mg/L ABA+2 mg/L AgNO_3;欧洲温室类型材料65G的最佳诱芽培养基为MS+1.5 mg/L 6-BA+1.0 mg/L ABA+2 mg/L AgNO_3;华北类型中农8号最佳诱芽培养基为MS+2.0 mg/L 6-BA+0.5 mg/L ABA+2 mg/L AgNO_3。对于黄瓜子叶节外植体的分化而言,培养基中仅附加6-BA即可得到很好的再生效果,不同材料对激素的敏感程度不同。材料228、185、65G的最佳诱导培养基为MS+2.0 mg/L 6-BA+2 mg/L AgNO_3;材料四川白瓜、吉林旱瓜、K2148、0513的最佳幼芽培养基为MS+0.5 mg/L 6-BA+2 mg/L AgNO_3;GY14的最佳幼芽培养基为MS+1.0 mg/L 6-BA+2 mg/L AgNO_3。
     3.在黄瓜再生体系建立的基础之上,研究了子叶节对Km和Hyg的耐受性和敏感度,确定了含不同抗性基因载体的筛选剂浓度,Km的选择压为75 mg/L,Hyg的选择压浓度为10 mg/L。
     4.黄瓜遗传转化体系优化的结果表明,在预培养基、菌液、共培养基中添加AS能显著提高抗性芽数量,最佳浓度分别为250 ul/L、500 ul/L、250 ul/L;侵染时间为15 min时,外植体再生频率和抗性芽数最高;选择培养基pH较低时有利于外植体分化,以PH=5.40最佳。
     5.采用根癌农杆菌介导法将GUS基因转化黄瓜,对转化体系作初步探索。得到了Km抗性植株,取幼嫩叶片,经GUS组织化学染色,共有14株显示蓝色,表明GUS基因已整合到黄瓜基因组,并实现表达,初步统计阳性率为7.4 %。
     6.在遗传转化体系的优化和探索的基础之上,将抗线虫基因MiMPK1导入黄瓜,筛选获得了Hyg抗性植株。提取抗性植株的基因组DNA,经PCR检测,共有28株扩增出500 bp左右的特异条带,初步统计阳性率为5.3 %,为黄瓜的抗线虫病育种提供了理论依据。
Cucumber (Cumcumis sativus L.) is one of the important vegetable crops widely cultivated around the world. It plays a very significant role to the annual supply of vegetables. But cucumber often suffers from a number of diseases and pests, and has caused huge economic losses in actual cultivation and production. Because the traditional methods of insect prevention and control have many disadvantageous factors, selection and breeding resistant variety is the best way to improve the resistance to disease and pect of cucumber. However, conventional breeding is difficult to obtain breakthrough for the lack of resistant materials. In this study, the effects of genotype and phytohormone on regeneration in vitro were studied by using different cucumber materials cotyledon and cotyledon node as explants, a highly efficient regeneration was established. The effects of AS, infection time, PH value on cucumber genetic transformation was studied as well. Then, the GUS gene and MiMPK1 gene were transferred into cucumber, which medied by Agrobacterium tumefaciens. It provided theoretical basis for the study of cucumber genetic transformation.
     The main results were as follow:
     1. Genotype was one of the influence factors on regeneration. The regeneration capacity of different genotypes explants was very significantly. In the study of cucumber cotyledon regeneration, Jilinhangua had the highest differentiation ability among the six materials (Zhongnong No.8, Jilinhangua, Sichuanbaigua, Gy14, 65G, 9110Gt). Its regeneration frequency and shoots per explants were 96.7% and 5.2 in the medium MS+1.5mg/L6-BA+0.5mg/LABA+2mg/LAgNO_3. In the study of cucumber cotyledon node regeneration, Sichuanbaigua had the highest differentiation ability among the eight materials (Jilinhangua, Sichuanbaigua, Gy14, 65G, 0513, 228, 185, K2148), its regeneration frequency and shoots per explant were 100 % and 6.4 in the medium (MS+0.5mg/L6-BA+2mg/LAgNO_3).
     2. Plant hormone is necessary for explants regeneration. 6-BA is one of the most common hormones in cucumber differentiation in vitro . In the study of cucumber cotyledon regeneration, 6-BA was the dominant factor of adventitious buds regeneration, but the addition of ABA significantly increased the number of adventitious buds. The best inducing medium of shoots for Gy14 and 9110Gt was MS+1.0mg/L6-BA+1.0mg/LABA+2mg/LAgNO_3, the best inducing medium for Jinlinhangua and Sichuanbaigua was MS+1.5mg/L6-BA+0.5mg/LABA+2mg/LAgNO_3, the best inducing medium for 65G was MS+1.5mg/L6-BA+1.0mg/LABA+2mg/LAgNO_3, and the best inducing medium for Zhongnong No.8 was MS+2.0mg/L6-BA+0.5mg/LABA+2mg/LAgNO_3. In the study of cucumber cotyledon node regeneration, The best inducing medium of shoots for 228,185 and 65G was MS+2.0 mg/L 6-BA+2 mg/L AgNO_3, The best inducing medium for Sichuanbaigua, Jilinhangua, K2148 and 0513 was MS+0.5mg/L6-BA+2mg/LAgNO_3, and in the medium MS+1.0 mg/L 6-BA+2 mg/L AgNO_3, Gy14 had the best regeneration frequency.
     3. The tolerance and sensitivity of cucumber cotyledon to Km and Hyg was studied. The selection pressure concentration of Km and Hyg were 75 mg/L and 10 mg/L.
     4. The results of transgenic system improvement were that the number of resistant shoots significantly increased, while AS added to the pre-culture medium, bacteria liquid and co-culture medium, the best concentration was 250 ul/L, 500 ul/L and 250 ul/L. The regeneration frequency and resistant shoots per explants were highest when the infection time was 15 min. The lower PH value selective medium promoted explants differentiation while it was 5.4.
     5. The GUS gene was transferred into cucumber medied by Agrobacterium tumefaciens. There were 14 resistant plantlets showed blue via gus histochemical identification. This indicated that GUS gene had been integrated into the cucumber genome, and expressed in tissues, the preliminary positive rate was 7.4 %.
     6. The MiMPK1 gene was transferred into cucumber medied by Agrobacterium tumefaciens. PCR analysis showed that a total of 28 resistant plantlets amplified were specific bands about 500 bp, the the preliminary positive rate was 5.3 %.
引文
1.白吉刚,王秀娟,尹谦逊,田明.生长素结合蛋白基因转化黄瓜的研究.中国农业科学,2004,37(2):263-267.
    2.陈峥,金红,程奕,杜胜利,魏爱民.提高黄瓜农杆菌遗传转化体系再生频率的研究.天津农业科学,2001,7(4):47-49.
    3.陈丽梅.黄瓜的高效再生和根癌农杆菌介导的遗传转化.[硕士学位论文].甘肃:西北师范大学,2004.
    4.曹利仙,赵鹂,唐宇力.硝酸银对黄瓜离体子叶再生的促进效应.甘肃农业大学学报,2001,36(2):171-173.
    5.杜胜利,魏惠军,魏爱民,王艳飞,马德华,霍振荣.苗龄、基因型和外植体类型对黄瓜离体器官发生的影响.天津农业科学,2000,6(4):1-5.
    6.东丽,李杰,朱延明.抗真菌、抗渗透胁迫基因多价植物表达载体构建及对黄瓜遗传转化的研究.农业科技通讯,2008,(3):37-41.
    7.邓小燕,张兴国,井鑫,邵长文,苏承刚.冷诱导转录因子基因CBF 3转化黄瓜的研究.西南农业大学学报(自然科学版),2004,26(5):603-605.
    8.傅荣昭,孙勇如,贾士荣主编.植物遗传转化技术手册.北京:中国科学技术出版社,1994.
    9.范爱丽.根癌农杆菌介导的黄瓜遗传转化体系的研究.[硕士学位论文].陕西杨凌:西北农林科技大学,2006.
    10.范爱丽,孙艳,徐凌飞,梁东,邹志荣.黄瓜子叶节再生体系优化研究.西北农林科技大学学报(自然科学版),2006,34(9):69-73.
    11.冯斌,赵春晖,王关林.发根农杆菌A4转化黄瓜获得发状根再生植株.辽宁师范大学学报(自然科学版),2000,23(2):171-174.
    12.冯嘉玥,邹志荣,秦胜华,王新宝,陈修斌.黄瓜子叶节高频再生体系建立及再生植株倍性观察.西北植物学报,2008,28(5):0956-0962.
    13.郭晓丽.根癌农杆菌介导植物遗传转化的分子机制.衡水学院学报,2008,10(1):52-54.
    14.郭亚华,邓立平,杨晓辉.采用花粉管通道技术将外源DNA导入黄瓜青椒研究初报.哈尔滨师范大学自然科学学报,1995,11(2):91-93.
    15.侯爱菊,朱延眀,杨爱馥,张彬彬等.诱导黄瓜直接器官发生主要影响因素的研究.园艺学报,2003,30(1):101-103.
    16.侯爱菊,朱延明,李杰,张彬彬,丁晓东.菜豆几丁质酶基因对黄瓜的遗传转化及转基因植株的获得.中国首届农业生物技术发展论坛文集:2004:145-150.
    17.何铁海,应成波,钱剑锐,严成其,杨金水.抗CMV病毒外壳蛋白CP基因导入黄瓜的研究.河南职技师范学报,2001,29(3):27-28.
    18.韩欣,张卫华,曹齐卫,艾辛,杜永丽,孙小镭.黄瓜子叶节再生体系的建立.吉林蔬菜,2009,86-87.
    19.贾士荣,罗美中,林云.黄瓜胚性细胞悬浮培养及原生质体的植株再生.植物学报,1988,30(5):463-467.
    20.贾金生,司龙亭,韩贵超,杨皓宁.不同基因型黄瓜离体再生及其影响因素的研究.河南农业科学,2008,6:99-102.
    21.金宝燕,苏华,任华中.影响黄瓜直接不定芽诱导的品种等因素研究.中国农学通报,2006,22(6):45-48.
    22.金红,杜胜利,陈峥,魏爱民.抗除草剂转基因黄瓜的获得及T1植株抗性鉴定.华北农学报2003,18(1):44-46.
    23.纪巍,李杰,朱延明,柏锡,代翠红,侯爱菊.不同启动子调控的DREB1A基因对黄瓜的遗传转化.东北农业大学学报,2005,36(4):442-447.
    24.孔青,丰震,刘林,孔雨光,张颖.外源DNA导入花粉管通道技术的发展和应用.分子植物育种,2005,3(1):113-116.
    25.赖来,潘俊松,何欢乐,蔡润.农杆菌介导的MADS-box基因转化黄瓜初步研究.上海交通大学学报(农业科学版),2007,25(4):374-382.
    26.吕德扬,E.C.Cocking.黄瓜子叶原生质体苗的再生.科学通报,1984,7:434-436.
    27.李建欣,李建吾,葛桂民.黄瓜子叶离体再生体系研究.长江蔬菜,2008,1:44-47.
    28.李晓丹,司龙亭,刘志勇,叶雪凌.黄瓜组织培养中外植体的选择及播种方式.蔬菜,2004,7:30-31.
    29.刘伟华,姜静,石锐,任如意.发根土壤杆菌Ri质粒对黄瓜进行遗传转化的研究.植物研究,1997,17(4):436-44.
    30.刘文萍,卢淑雯,刘建新,南相日,柳景兰,李柱刚.农杆菌介导的BnCS基因对黄瓜遗传转化研究.北方园艺,2009(1):20-22.
    31.刘春香,赵俊利,王海霞,文进才让.黄瓜再生体系的建立.潍坊学院学报,2006,6(4):82-84.
    32.刘维志.植物病原线虫学.北京:中国农业出版社,2000.
    33.梅茜,张兴国.黄瓜组织培养研究.西南农业大学学报,2002,24(3): 266-267.
    34.潘瑞炽.植物生理学(第五版).北京:高等教育出报社, 2004.
    35.秦华伟,徐跃进,何丹,汪祖程,万正杰.不同因素对黄瓜子叶再生植株影响的研究.湖北农业科学,2009,48(7):1548-1550.
    36.任永霞,季静,王罡,王萍.植物遗传转化方法概述.河北北方学院学报(自然科学版).2005,21(6):38-42.
    37.邵长文.抗寒相关基因导入黄瓜的研究.[硕士学位论文].重庆:西南农业大学,2004.
    38.苏绍坤,刘宏宇,秦智伟.农杆菌介导iaaM基因黄瓜遗传转化体系的建立.东北农业大学学报,2006,37(3),289-293.
    39.施和平,李玲,潘瑞炽.发根农杆菌对黄瓜的遗传转化.植物学报,1998,40(5):470- 473.
    40.佟新萍.黄瓜子叶下胚轴愈伤组织诱导及植株再生试验.石河子科技,1996,4:11-12.
    41.王关林,方宏箔主编.植物基因工程.北京:科学出版社,2002.
    42.王翠艳,丁东风,于小菊,韦珊,魏爱民,杜胜利,等.用floral dip法对黄瓜遗传转化的初步研究.生物学通报,2008,43(2):9-12.
    43.吴迪,周长梅,朱延明.酚类物质对葡萄遗传转化效率的影响.园艺学报,2003,30(1):77-78.
    44.王慧中,赵培洁,周晓云.转WMV-2 CP基因黄瓜植株的再生.植物生理学通报,2000,26(3):267-272.
    45.王艳蓉,陈丽梅,潘俊松,何欢乐,蔡润.黄瓜子叶高效再生体系得建立与遗传转化.上海交通大学学报(农业科学版),2006,24(2):152-156.
    46.王景雪,孙毅.农杆菌介导的植物基因转化研究进展.生物技术通报,1999(l):7-13.
    47.韦献雅,付绍红,牛应泽.农杆菌介导floral-dip转基因方法研究进展.中国油料作物学报,2006,28(3):362-367.
    48.魏爱民,张文珠,杜胜利,韩毅科,张桂华,张历.影响农杆菌介导的黄瓜抗虫基因遗传转化体系的因素研究.天津农业科学,2006,12(3):1-3.
    49.魏爱民,张文珠,杜胜利,韩毅科,张桂华,刘楠.黄瓜花粉管通道法抗虫基因导入及卡那霉素抗性筛选.华北农学报,2008,23(6):54-57.
    50.杨爱馥,朱延明,侯爱菊.几个影响黄瓜子叶体细胞胚胎发生的因.植物生理学通讯,2003,39(3):206-208.
    51.杨东霞.黄瓜离体再生系统的建立.丹东纺织学报,2004,2(11):41-42.
    52.余阳俊,朱其杰.黄瓜成熟胚离体培养中的胚状体诱导和植株再生.植物生理学通讯,1992,28(1):37-39.
    53.姚春娜,王亚馥.超声波辅助发根农杆菌对黄瓜遗传转化的影响.园艺学报,2001,28(1):80-82.
    54.叶永亮,杜波.黄瓜再生体系和遗传转化的建立.黑龙江农业科学,2009(5:5-6.
    55.于玉梅.根结线虫16D10基因转化黄瓜的研究.硕士学位论文.湖南:湖南农业大学:2008.
    56.张兴国,刘佩瑛.黄瓜原生质体培养再生胚状体和植株研究.西南农业大学学报,1998,20(4):288-292.
    58.张猛.黄瓜遗传转化体系的建立及Go和Chi/Glu基因的导入.[硕士学位论文].陕西杨凌:西北农林科技大学,2000.
    59.张卫华,朱妍妍,王志峰,曹齐卫,于玉梅,孙小镭.三个不同基因型黄瓜再生体系的优化.山东农业科学,2007,6:6-7.
    60.张承妹,陆家安.黄瓜(Cucumis sativus L.)组织培养与诱导四倍体再生植株.上海农业学报,1995,11(3):31-36.
    61.张鹏,傅爱根,王爱国.AgNO3在植物离体培养中的作用及可能的机制.植物生理学通讯,1997,33(5):376-379.
    62.赵泓,刘凡,姚磊.简单快捷建立高频黄瓜子叶离体再生体系.生物技术,2000,10(2):9-11.
    63.赵隽,王华,潘俊松,蔡润,吴爱忠.黄瓜子叶节离体再生体系的研究.上海交通大学学报(农业科学版),2004,22(1):43-47.
    64.赵军良,马蓉丽,李昌华.黄瓜子叶组织培养再生植株.山西农业科学,1996,24(1):39-41.
    65.赵秀娟,吴定华.黄瓜的组织培养.华南农业大学学报,1998,19(4):125-126.
    66.郑伟,杨苹,李洪志,王艳芳,徐岩,庞实锋.金属硫蛋白基因转化黄瓜的研究.北方园艺,2009,10:58-61.
    67.郑丽娟.黄瓜离体培养及根癌农杆菌介导的遗传转化体系的研究.[硕士学位论文].江苏:扬州大学,2009.
    68.朱妍妍.RNAi技术在黄瓜抗根结线虫遗传转化中的应用研究.[硕士学位论文].山东:山东农业大学,2008.
    69.佐藤正孝·今西,茂·桶浦严.黄瓜下胚轴及愈伤组织的植株分化.育种学杂志,1979,29(1):33-38.
    70. A. K. M. Mohiuddin, M. K. U. Chowdhury, Zaliha C. Abdullah, Suhaimi Napis. Influence of silver nitrate (ethylene inhibitor) on cucumber in vitro shoot regeneration. Plant Cell, Tissue and Organ Culture.1997, 51: 75–78.
    71. Ashok Kumar H. G., Murthy H. N., Paek K. Y. Embryogenesis and plant regeneration from anther cultures of Cucumis sativus L. Sci. Hort. 2003, 98: 213–222.
    72. A. Vasudevan, N. Selvaraj, A. Ganapathi, C.W. Choi, M. Manickavasagam, S.Kasthurirengan. Direct plant regeneration from cucumber embryonal axis. Biologia plantarum, 2007, 51(3): 521-524.
    73. A. Vasudevan, N. Selvaraj, A. Ganapathi, S. Kasthurirengan,V. Ramesh Anbazhagan, M. Manickavasagam , C. W. Choi. Leucine and spermidine enhance shoot differentiation in cucumber (Cucumis sativus L.). In Vitro Cell.Dev.Biol.-Plant , 2008, 44: 300-306.
    74. Burza.W, Malepszy S. Direct plant regeneration from leaf explants in cucumber(Cucumis sativus L.) is free of stable genetic variation. Plant breeding, 1995, 114(4): 341-345.
    75. Cade R. M., Wehner T. C., Blazick F. Somatic embryogenesis derived from cotyledons of cucumber plants. J. Am. Soc. Hort. Sci. 1990, 115: 691–696.
    76. Chee, P.P. High frequency of somatic embryogenesis and recovery of fertile cucmber plants. HortScience. 1990, 25: 792-793.
    77. Chee P P, Slightom J L. Transfer and Expression of Cucumber Mosaic Virus Coat Protein Gene in the Genome of Cucumis sativas L. J Amer Soc Hort Sci. 1991, 116(6): 1-6.
    78. ElifI AyLlin Ozudogru, Yelda Ozden-Tokatli, Abdulkadir Akcin. Effect of Silver Nitarte on Multiple Shoot fou Mation of Virginia-type peanut Through Shoot Tip Culture. In Vitro Cell. Dev. Biol.-Plant. 2005, 41:151–156.
    79. G.G. Sarmento, K. Alpert, F.A. Tang, Z.K. Punja. Factors influencing Agrobacterium tumefaciens mediated transformation and expression of kanamycin resistance in pickling cucumber. Plant Cell, Tissue and Organ Culture, 1992, 31: 185-193.
    80. G. Vengadesan, N. Selvaraj, R. Prem Anand, V. Gaba, A. Ganapathi. ONTOGENY OF SOMATIC EMBRYOS IN CUCUMBER (CUCUMIS SATIVUS L.). In Vitro Cell. Dev. Biol.-Plant. 2005, 41: 789-793.
    81. H. Lou, S.Kako. Somatic Embryogenesis and plant Regeneration in Cucumber. Hortscience, 1994, 29(8): 906-909.
    82. H. Lou, P., S.Kako. Effects of auxin combinations on somatic embryogenesis in Cucumis sativas L. Journal of the Japanese Society for Horticultural Science, 1995, 64: 571-9.
    83. Paula P. Chee. High Frequency of somatic Embryogenesis and Recovery of Fertile CucumberPlants. HortScience. 1990, 25(7): 792-793.
    84. Jefferson R A, Kavanagh T A, Bevan M V. Gus fudion:β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal. 1987, 6: 3901-3907.
    85 Khaled M, Suliman Elmeer, Michael J, Hennerty. Observations on the combined effects of light, NAA and 2,4-D on somatic embryogenesis of cucumber(Cucumis sativus) hybrids. Plant Cell Tiss Organ Cult, 2008, 95: 381-384.
    86. McInnes E, Morgan A J, Mulligan B T J, Davey M R. Roots induced on cucumber cotyledons by the agropine Ri plasmid TR-DNA exhibit the transformed phenotype. Plant Cell Rep, 1991, 9: 647-650.
    87. Nawab Ali, Robert M.Skirvin, Walter E.Splittstoesser. Regeneration of Cucumis sativus from cotyledon of Small Explants. HortScience, 1991, 26(7): 925.
    88. N. Selvaraj, A. Vasudevan, M. Manickavasagam, S. Kasthurirengan, A. Ganapathi. High frequency shoot regeneration from cotyledon explants of cucumber via organogenesis. Scientia Horticulturae, 2007, 112: 2-8.
    89. Punja Z K, Tang F A, Sarmento G G. Isolation, culture and plantlet regeneration from cotyledon and mesophyll protoplasts of two pickling cucumber (C. sativus L.) genotypes. Plnate Cell Reports, 1990, 9(2): 61-64.
    90. Paula P. Chee, Jerry L. Slightom. Transfer and Expression of Cucumber Mosaic Virus Coat Protein in the Genome of Cucumis Sativus. J. Amer. Soc. Hort. Sci. 1991, 116(6): 1098-1102.
    91. Paula P. Chee, Jerry L. Slightom. Transformation of cucumber tissues by microprojectile bombardment: dentification of plants containing functional and non-functional transferred genes. Hortscience, 1992, 118: 255-260.
    92. Rebecca M. Cade, Todd C. Wehner, Frank A. Blazich. Somatic Embryos Derived from Cotyledons Cucumber. J. Amer. Soc. Hort. Sci. 1990, 115(4): 691-696.
    93. Raharjo S H T, Hernandez M O, Zhang Y Y, Punja Z K. Transformation of Pickling Cucumber with Chintinase-enco-ding Genes using Agrobacterium tumefaciens. Plant Cell Rep. 1996, 15: 591-596.
    94. Szwacka M, Malepszy S. Evaluation of transgenic cucumbers expressing the thaumatin gene. Current Plant Science and Biotechnology in Agriculture, 1999, 36: 609-612.
    95. Todd C W, Robert D L. In vitro adventitious shoot and root formation of cultivars and lines of Cucumis sativus L. Hortscience, 1981. 16(6): 759-760.
    96. Tabei Y, Kitade S, Nishizawa Y, Kikuhi N, Kayano T, Hibi T, Akutsu K. Transgenic cucumber plants harboring a rice chitinase gene exhibit enhanced resistance to gray mold(Botrytis cinerea). Plant Cell Rep, 1998, 17: 159-164.
    97. Trulso A J, Simpson R B, Shahin E A. Transformation of Cucumber(Cucumis Sativus L.) Plants with Agrolacterium rhizogenes. Theor Appl Genet, 1986, 73: 11-15.
    98. Vengadesan. G., Anand. R. Prem, Selvaraj. N., Perl-Treves. R., Ganapathi. A..Transfer and expression of nptⅡand bar genes in cucumber(Cucumis Sativus L.). The Society for In VitroBiology. 2005, 41(1): 17-21.
    99. W. Msilita, R.M. Skirvin, J.A. Juvik, W.E. Splittstoesser, N. Ali. Regeneration and Flowering in vitro of‘Burpless Hybrid’Cucumber Cultured from Excised Seed. HortScience, 1990, 25(4): 474-477.
    100. Wei-Ping Diao, Yuan-Yuan Jia, Hui Song, Xiao-Qing Zhang, Qun-Feng Lou, Jin-Feng Chen Efficient embryo induction in cucumber ovary culture and homozygous identification of the regenetants using SSR markers. Scientia Horticulturae. 2009, 119 , 246–251.
    101. Yutaka Tabei, Takeshi Nishio, Kazunori Kurihara, Tsuguo Kanno. Selection of Transformed Callus in a Liquid Medium and Regeneration of Transgenic Plants in Cucumber(Cucumis Sativus L.). Breeding Science, 1994, 44: 47-51.
    102. Yin. Z, Pawlowicz. I., Bartoszewski.G., Malinowski. R., Malepszy. S., Rorat. T. Transcriptional expression of a Solanum sogarandinum pGT:Dhn 10 gene fusion in cucumber, and its correlation with chilling tolerance in transgenic seedlings. Cellular and Molecular Biology Letters, 2004, 9(4B): 891-902.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700