香蕉(Musa spp.)MeSGT1基因的克隆与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
香蕉是人们喜爱的热带水果,也是非洲等地的主要粮食作物。但长久以来枯萎病、尤其是枯萎病4号小种,严重影响香蕉生产,造成了大量损失。目前尚无理想的防治药剂,迫切需要培育抗枯萎病的香蕉品种,但是栽培香蕉多为三倍体,难以通过有性杂交的方式改良,植物抗病基因工程为改良香蕉对枯萎病的抗性提供了新的途径。
     SGT1基因是调控植物抗病反应的一个重要元件,其本身对病原物并无抑制作用,但在植物多种R基因介导的对细菌、真菌和病毒等抗性反应中起着重要作用。本项研究选用抗逆性强,尤其是高抗香蕉枯萎病的中山大蕉,克隆了其中的SGT1基因和病程相关蛋白基因PR-1,获得了以下结果:
     利用同源序列法克隆了中山大蕉中的MeSGT1基因,该基因cDNA全长为1438bp,5’非翻译区为137bp,开放阅读框为1119bp,3’非翻译区为182bp,该基因没有内含子。推测的编码蛋白为372个氨基酸,分子量大小41645.03 Da,含有三个保守结构域:TRP (tetratricopeptide repeats)、CS(CHORD-containing protein and SGT1)和SGS (SGT1-specific domain),命名为MeSGT1(GenBank:GU591491,2010年3月)。克隆了中山大蕉中的病程相关蛋白基因MePR-1 (GenBank:GU591492,2010年3月),开放阅读框为492bp,编码163个氨基酸。
     利用RT-PCR的方法分析了MeSGT1、MuNPR1-1和MePR-1基因对香蕉枯萎病4号小种(FOC 4)的应答反应,结果表明:抗病的中山大蕉幼苗叶片经FOC 4接菌诱导后,MeSGT1基因的表达水平在诱导后12h达到最高,高表达持续到24h,在72h降到接近起始状态; MuNPR1-1在诱导后的表达水平与MeSGT1基因同步,病程相关蛋白MePR-1基因的表达在24 h达到最高,48h开始下降,72h又恢复到起始水平。而感病粉蕉中的MeSGT1和MuNPR1-1在0、12和24h无明显变化,48h开始增加并在72h达到最高值,病程相关蛋白MePR-1基因的表达在0、12、24 h无明显变化,在48-72 h有增加。这表明了抗病的中山大蕉的MeSGT1和MePR-1基因对病原菌信号分子的反应比感病品种粉蕉更加敏感,有助于激活下游防卫基因的表达。
     构建了35S启动子驱动的植物表达载体pCam-MeSGT1,利用农杆菌介导的方法转入烟草NC89,为进一步的功能分析打下了基础。
Banana is a widely favored tropical fruit all over the world. Cultivation of banana and plantain is now threatened by many fungal diseases, of which the fungal disease, Panama wilt in particular, caused by Fusarium oxysporum f. sp. Cubense.race 4 (FOC4) is most serious that caused dramatic crop damage and economic loss. As almost all banana and plantain cultivars are highly susceptible to race 4 of this pathogen and the chemical and cultural control measures are not efficient, the creation of new banana varieties resistant to this disease is crucial. Cross breeding program is difficult to be conducted due to the predominantly asexual behavior of edible bananas, which are triploid and sterile. With the development and optimization of genetic transformation protocol in banana and the discovery of more genes resistant to pathogens, the genetic engineering of banana has paved a new way for its improvement.
     In plants, SGT1 positively regulates disease resistance conferred by many Resistance (R) proteins and developmental responses to the phytohormone, auxin. In this research, we use Zhongshandajiao which has a high resistant ability, especially to Panama wilt disease as a starting material. The results are as follow:
     We cloned the full-length cDNA of MeSGT1gene and MePR1 using homologous cloning and RACE techniques from Zhongshandajiao. The full-length cDNA was 1438bp long, the 5’-untranslated region (5' -UTR)is 137bp,the 3’-untranslated region (3' -UTR)is 182bp, and an ORF that putatively encoded a polypeptide of 372 amino acids, with a predicted molecular weight of 41645.03 Da. It had a relatively high homology at the functional domain. MeSGT1 contained the TRP (tetratricopeptide repeats), CS(CHORD-containing protein and SGT1)and SGS (SGT1-specific domain) that was the molecular basis for MeSGT1 function(Genbank:GU591491,March 2010)。MePR1 encoded a polypeptide of 163 amino acids(GU591492, March 2010)。
     RT-PCR is used to analyze the expression changes of MeSGT1 ,MuNPR1-1 and MePR-1 in zhongshandajiao after FOC 4 treatment, The results show that MeSGT1 the expression level reached the highest point in 12h and MePR-1 in 24h after FOC 4 treatment, when it is 72h after FOC 4 treatment, the expression level is just as non-treated.The expression level of MuNPR1-1 show synchronization with MeSGT1 after FOC 4 treatment. It indicates that zhongshandajiao MeSGT1 is sensitive to FOC 4 treatment, and it will activate the expression of defensive genes downstream. However, The MeSGT1 and MuNPR1 -1 from susceptible-Fenjiao have no distinct changes until 48 h after treatment, and the highest level last to 72h.The MePR-1 from Fenjiao show the similar changes,it have no obvious increase before 48h and its peak level take place on 72 h after inducing treatment.It indicated that the MeSGT1 and MePR-1 of resistant-Zhongshandajiao show more sensitive to pathogen signal molecules than that of susceptible-Fenjiao.This sensitivity to pathogen may be favorable to express downstream plant defense genes.
     Plant expression vector pCamMeSGT1 was constructed and transferred into tobacco var. NC89 via Agrobaterium-mediated method. Analysis for transgenic plant is carrying out.
引文
1.王旭静,窦道龙,王志兴等. 2006.海岛棉GbNPR-1基因全长cDNA的克隆及其在烟草中的表达.中国农业科学39(5): 886-894.
    2.王凯,杜丽璞,张增艳等. 2008.中间偃麦草SGT1基因的克隆及其抗病功能的分析.作物学报34(3).952-956.
    3.李华平,胡晋生,王敏等.2000.香蕉茎尖遗传转化法研究.热带作物学报21(4): 33-39.
    4.裴新梧,叶尚,张永强等.2005.葡萄糖氧化酶基因转入香蕉及枯萎病抗性鉴定.自然科学进展15(4): 411-416.
    5. Alvarez ME, Pennell RI, Meijer PJ, et al. 1998. Reactive Oxygen Intermediates Mediate a Systemic Signal Network in the Establishment of Plant Immunity. Cell 92: 773-784.
    6. Arilla MC, Ibarrola I, Puente Y, et al. 2007. Cloning, expression and characterization of mugwort pollen allergen Art v 2, a pathogenesis-related protein from family group 1. Mol Immunol 44: 3653-3660.
    7. Azevedo C, Sadanandom A, Kitagawa K, et al. 2002. The RAR1 Interactor SGT1, an Essential Component of R Gene-Triggered Disease Resistance. Science 295: 2073-2076.
    8. Azevedo C, Betsuyaku S, Peart J, et al. 2006. Role of SGT1 in resistance protein accumulation in plant immunity. EMBO J 25: 2007-2016.
    9. Becker DK, Dugdale B, Smith M K, et al. 2000. Genetic transformation of Cavendish banana (Musa spp. AAA group) cv’Grand Nain’via microprojectile bombardment. Plant Cell Reports 19: 229~234.
    10. Bhaskar P, Raasch J, Kramer L, et al. 2008. Sgt1, but not Rar1, is essential for the RB-mediated broad-spectrum resistance to potato late blight. BMC Plant Biology 8: 8.
    11. Bhattarai K, Li Q, Liu Y, et al. 2007. The Mi-1-Mediated Pest Resistance Requires Hsp90 and Sgt1. Plant Physiol. 144: 312-323.
    12. Bonasera JM, Kim JF, Beer SV. 2006. PR genes of apple: identification and expression in response to elicitors and inoculation with Erwinia amylovora. BMC Plant Biol 6: 23.
    13. Bos JIB, Kanneganti TD, Young C, et al. 2006. The C-terminal half of Phytophthora infestans RXLR effector AVR3a is sufficient to trigger R3a-mediated hypersensitivity and suppress INF1-induced cell death in Nicotiana benthamiana .The Plant Journal 48: 165-176.
    14. Cao Hui, Scott A, Bowling A, et al. 1994. Characterization of an Arabidopsis Mutant That Is Nonresponsive to Inducers of Systemic Acquired Resistance. Plant Cell 6(11): 1583-1592.
    15. Caroline C, von Dahl, Ian T Baldwin (2007). Deciphering the Role of Ethylene in Plant-Herbivore Interactions .Journal of Plant Growth Regulation 26: 201-209.
    16. Catlett MG, Kenneth BK .2006. Sgt1p Is a Unique Co-chaperone That Acts as a Client Adaptor to Link Hsp90 to Skp1p. Journal of Biological Chemistry 281(44): 33739-33748.
    17. Century KS, Shapiro AD, Repetti PP, et al. 1997. NDR1, a Pathogen-Induced Component Required for Arabidopsis Disease Resistance. Science 278(5345): 1963-1965.
    18. Chern MS, Fitzgerald HA, Yadav RC, et al. 2001. Evidence for a disease-resistance pathway in rice similar to the NPR-1-mediated signaling pathway in Arabidopsis. The Plant Journal 27: 101-113.
    19. Chow LP, Chiu LL, Khoo KH, et al. 2005. Purification and structural analysis of the novel glycoprotein allergen Cyn d 24, a pathogenesis-related protein PR-1, from Bermuda grass pollen. FEBS Journal 272: 6218-6227.
    20. Christensen AB, Cho BaikHo, Naesby M, et al. 2002. The molecular characterization of two barley proteins establishes the novel PR-17 family of pathogenesis-related proteins. Molecular Plant Pathology 3(3): 135-144.
    21. Conrath US, Herman, Klessig, et al. 1997. Protein dephosphorylation mediates salicylic acid-induced expression of PR-1 genes in tobacco The Plant Journal 11: 747-757.
    22. Custers JHH V, Harrison SJ, Sela-Buurlage MB, et al. 2004. Isolation and characterisation of a class of carbohydrate oxidases from higher plants, with a role in active defence. The Plant Journal 39(2): 147-160.
    23. Harcharan S .1999. Genetic Engineering for Disease and Pest Resistance in Plants. Plant Biotechnol 16(4): 255-261.
    24. Lu R, Martin-Hernandez AM, Peart JR, et al. 2003. Virus-induced gene silencing. Methods Mol Biol(236): 287-94.
    25. Dong X. (2004). NPR-1, all things considered. Current Opinion in Plant Biology 7(5): 547-552.
    26. Dubacq C, Guerois R, Courbeyrette R. et al. 2002. Sgt1p Contributes to Cyclic AMP Pathway Activity and Physically Interacts with the Adenylyl Cyclase Cyr1p/Cdc35p in Budding Yeast. Eukaryotic Cell 1(4): 568-582.
    27. Durrant WE, Dong X. 2004. Systemic acquired resistance. Annual Review of Phytopathology 42: 185-209.
    28. Endah R, Beyene G, Kiggundu A, et al. 2008. Elicitor and Fusarium-induced expression of NPR-1-like genes in banana. Plant Physiology and Biochemistry 46: 1007-1014.
    29. Epple P, Apel K, Bohlmann H. 1997. Overexpression of an Endogenous Thionin Enhances Resistance of Arabidopsis against Fusarium oxysporum. Plant Cell 9: 509-520.
    30. Falk A, Feys BJ, Frost LN, et al. 1999. EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases. Proceedings of the National Academy of Sciences of the United States of America 96(6): 3292-3297.
    31. Fernández C, Szyperski T, Bruyère T, et al. 1997. NMR solution structure of the pathogenesis-related protein P14a. Journal of Molecular Biology 266(3): 576-593.
    32. Feys BJ, MoisanL J,Newman MA et al. 2001. Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. EMBO J 20(19): 5400-5411.
    33. Ganapathi TR, Higgs NS, Balint-Kurti PJ, et al.2001. Agrobacterium-mediated transfomation of embryogenic cell suspensions of the banana cultivar Rasthali (AAB). Plant Cell Reports 20: 157~162.
    34. García-Olmedo F, Molina A, Segura A et al. 1995. The defensive role of nonspecific lipid-transfer proteins in plants. Trends in Microbiology 3(2): 72-74.
    35. Glazebrook J. 2001. Genes controlling expression of defense responses in Arabidopsis. Current Opinion in Plant Biology 4: 301-308.
    36. Gordon TR, Martyn RD. 1997. The evolutionary biology of fusarium oxysporum. Annual Review of Phytopathology 35: 111-128.
    37. Gray WM, Muskett PR, Chuang HW, et al. 2003. Arabidopsis SGT1b Is Required for SCFTIR1-Mediated Auxin Response. Plant Cell 15(6): 1310-1319.
    38. Harcharan SD, Hirofumi U. 1999. Genetic Engineering for Disease and Pest Resistance in Plants. Plant Biotechnol 16: 255-261.
    39. Hein I, Barciszewska-Pacak M, Hrubikova K, et al. 2005. Virus-Induced Gene Silencing-Based Functional Characterization of Genes Associated with Powdery Mildew Resistance in Barley. Plant Physiol. 138: 2155-2164.
    40. Holt BF III, Belkhadir Y, Dangl JL. 2005. Antagonistic Control of Disease Resistance Protein Stability in the Plant Immune System. Science 309: 929-932.
    41. Houterman PM, Cornelissen BJ, Rep M. 2008. Suppression of plant resistance gene-based immunity by a fungal effector. PLoS Pathog 4(5): e1000061..
    42. Huang X,Huang XL,Xiao W, et al. 2007. Highly efficient Agrobacterium-mediated transformation of embryogenic cell suspensions of Musa acuminate cv. Mas (AA) via a liquid co-cultivation system,. Plant Cell Rep26 (10) : 1755-1762
    43. Huckelhoven R, Fodor J, Preis C, et al. 1999. Hypersensitive Cell Death and Papilla Formation in Barley Attacked by the Powdery Mildew Fungus Are Associated with Hydrogen Peroxide but Not with Salicylic Acid Accumulation. Plant Physiol. 119: 1251-1260.
    44. Jane Vishnevetsky, Thomas L, White Jr. 2010. Improved tolerance toward fungal diseases in transgenic Cavendish banana (Musa spp. AAA group) cv. Grand Nain. Transgenic Research Original Paper.
    45. Jarosch B, Collins NC, Zellerhoff N, et al. 2005. RAR1, ROR1, and the Actin Cytoskeleton Contribute to Basal Resistance to Magnaporthe grisea in Barley. Molecular Plant-Microbe Interactions 18: 397-404.
    46. Jorgensen JH .1996. Effect of three suppressors on the expression of powdery mildew resistance genes in barley. GENOME 39(3): 492-498.
    47. Jirage D, Tootle TL, Reuber TL , et al. 1999. Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signaling. Proceedings of the National Academy of Sciences of the United States of America 96(23): 13583-13588.
    48. Johal GS, Briggs SP. 1992. Reductase activity encoded by the HM1 disease resistance gene in maize. Science 258: 985-987.
    49. Johansson A, Staal J, Dixelius C, et al. 2006. Early Responses in the Arabidopsis-Verticillium longisporum Pathosystem Are Dependent on NDR1, JA- and ET-Associated Signals via Cytosolic NPR-1 and RFO1. Molecular Plant-Microbe Interactions 19(9): 958-969.
    50. Joosten M, de Wit P. 1999. The tomato-cladosporium fulvum interaction: A Versatile Experimental System to Study Plant-Pathogen Interactions. Annual Review of Phytopathology 37: 335-367.
    51. Jorda L, Conejero V, Vera P. 2000. Characterization of P69E and P69F, Two Differentially Regulated Genes Encoding New Members of the Subtilisin-Like Proteinase Family from Tomato Plants. Plant Physiol. 122: 67-74.
    52. Kaku H, Nishizawa Y, Ishii-Minami N, et al.2006. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proceedings of the National Academy of Sciences 103: 11086-11091.
    53. Kamoun S. 2006. A Catalogue of the Effector Secretome of Plant Pathogenic Oomycetes. Annual Review of Phytopathology 44: 41-60.
    54. Kitagawa K, Skowyra D, Elledge SJ, et al.1999. SGT1 Encodes an Essential Component of the Yeast Kinetochore Assembly Pathway and a Novel Subunit of the SCF Ubiquitin Ligase Complex. Molecular Cell 4: 21-33.
    55. Koornneef A, Pieterse CMJ. 2008. Cross Talk in Defense Signaling. Plant Physiol. 146: 839-844.
    56. Le Henanff G, Heitz T, Mestre P, et al.2009. Characterization of Vitis vinifera NPR-1 homologs involved in the regulation of Pathogenesis-Related gene expression. BMC Plant Biology 9: 54.
    57. Lee YT, Jacob J, Michowski W,et al.2004.Human Sgt1 binds HSP9 through the CHORD-Sgt1 domain and not the tetratricopeptide repeat domain. J Biol Chem. 279(16):16511-7.
    58. Leister RT, Dahlbeck D, Day B, et al. 2005. Molecular Genetic Evidence for the Role of SGT1 in the Intramolecular Complementation of Bs2 Protein Activity in Nicotiana benthamiana. Plant Cell 17: 1268-1278.
    59. Leon-Reyes A, Spoel SH, De Lange ES, et al.2009. Ethylene Modulates the Role of nonexpressor of pathogenesis-related genes1 in Cross Talk between Salicylate and Jasmonate Signaling. Plant Physiol. 149: 1797-1809.
    60. Lin WC, Ching F, Wu JW, et al.2004. Transgenic tomato plants expressing the Arabidopsis NPR-1 gene display enhanced resistance to a spectrum of fungal and bacterial diseases Transgenic Research 13(6):567-81.
    61. Liu J, Liu X, Dai L, Wang G. 2007. Recent Progress in Elucidating the Structure, Function and Evolution of Disease Resistance Genes in Plants. Journal of Genetics and Genomics 34: 765-776.
    62. Liu Y, Burch-Smith T, Schiff M, et al. 2004 . Molecular Chaperone Hsp90 Associates with Resistance Protein N and Its Signaling Proteins SGT1 and Rar1 to Modulate an Innate Immune Response in Plants. Journal of Biological Chemistry 279(3): 2101-2108.
    63. Liu Y, Schiff M, Czymmek K, et al. 2005. Autophagy Regulates Programmed Cell Death during the Plant Innate Immune Response. Cell 121(4): 567-577.
    64. Liu Y, Schiff M, Marathe R, et al.2002a. Tobacco Rar1, EDS1 and NPR-1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. The Plant Journal 30: 415-429.
    65. Liu Y, Schiff M, Serino G, et al.2002b. Role of SCF Ubiquitin-Ligase and the COP9 Signalosome in the N Gene-Mediated Resistance Response to Tobacco mosaic virus. Plant Cell 14: 1483-1496.
    66. Ludwig AA, Saitoh H, Felix G, et al.2005. Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants. Proceedings of the National Academy of Sciences of the United States of America 102: 10736-10741.
    67. Lyapina S,Cope G, Shevchenko A, et al. 2001. Promotion of NEDD8-CUL1 Conjugate Cleavage by COP9 Signalosome. Science 292(5520): 1382-1385.
    68. Makandar R, Essig JS, Schapaugh MA, et al. 2006. Genetically Engineered Resistance to Fusarium Head Blight in Wheat by Expression of Arabidopsis NPR-1. Molecular Plant-Microbe Interactions 19: 123-129.
    69. Malnoy M, Jin Q, Borejsza-Wysocka EE, et al. 2007. Overexpression of the apple MpNPR-1 gene confers increased disease resistance in Malus x domestica. Mol Plant-Microbe Interact 20: 1568~1580.
    70. Martin GB, Bogdanove AJ, Sessa G. 2003. Understanding the functions of plant disease resistance proteins. Annual Review of Plant Biology 54: 23-61.
    71. Marta B, Béatrice A, Jack P,et al. 2007. Structural and Functional Analysis of SGT1 Reveals That Its Interaction with HSP90 Is Required for the Accumulation of Rx, an R Protein Involved in Plant Immunity. Plant Cell 19: 3791-3804.
    72. Mestre P, Baulcombe DC .2006. Elicitor-Mediated Oligomerization of the Tobacco N Disease Resistance Protein. Plant Cell 18(2): 491-501.
    73. Meur G, Budatha M, Dutta Gupta A, et al.2006. Differential induction of NPR-1 during defense responses in Brassica juncea. Physiological and Molecular Plant Pathology 68: 128-137.
    74. Meur G, Budatha M, Srinivasan T, et al.2008. Constitutive expression of Arabidopsis NPR-1 confers enhanced resistance to the early instars of Spodoptera litura in transgenic tobacco. Physiologia Plantarum 133: 765-775.
    75. Mitsuhara I, Iwai T, Seo S, et al. 2008. Characteristic expression of twelve rice PR-1 family genes in response to pathogen infection, wounding, and defense-related signal compounds (121/180). Mol Genet Genomics 279(4): 415-27.
    76. Miya A, Albert P, Shinya T, et al. 2007. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proceedings of the National Academy of Sciences 104: 19613-19618.
    77. Moffett P, Farnham G, Peart J R, 2002. Interaction between domains of a plant NBS-LRR protein in disease resistance-related cell death. EMBO J 21(17): 4511-4519.
    78. Mou Z, Fan W, Dong X. 2003. Inducers of Plant Systemic Acquired Resistance Regulate NPR-1 Function through Redox Changes. Cell 113: 935-944.
    79. Mucyn TS, Clemente A, Andriotis VM, et al. 2006. The Tomato NBARC-LRR Protein Prf Interacts with Pto Kinase in Vivo to Regulate Specific Plant Immunity. Plant Cell 18: 2792-2806.
    80. Mur L.AJ, Kenton P, Lloyd AJ, et al. 2008. The hypersensitive response, the centenary is upon us but how much do we know? J. Exp. Bot. 59: 501-520.
    81. Muskett PR, Kahn K, Austin MJ, et al. 2002. Arabidopsis RAR1 Exerts Rate-Limiting Control of R Gene-Mediated Defenses against Multiple Pathogens. Plant Cell 14: 979-992.
    82. Niderman T,Genetet I,Bruyère T,et al. 1995. Pathogenesis-related PR-1 proteins are antifungal. Isolation and characterization of three 14-kilodalton proteins of tomato and of a basic PR-1 of tobacco with inhibitory activity against Phytophthora infestans. Plant Physiol 108(1): 17-27.
    83. Noel LD, Cagna G, Stuttmann J, et al. 2007. Interaction between SGT1 and Cytosolic/Nuclear HSC70 Chaperones Regulates Arabidopsis Immune Responses. Plant Cell 19: 4061-4076.
    84. Nyarko A, Mosbahi K, Rowe AJ, et al. 2007. TPR-Mediated self-association of plant SGT1. Biochemistry 46(40): 11331-11341.
    85. Parkhi V KV, Campbell LM, Bell AA, et al. 2010. Resistance against various fungal pathogens and reniform nematode in transgenic cotton plants expressing Arabidopsis NPR-1. Transgenic Research.
    86. Peart J R, Rui L, Ari S, et al. 2002. Ubiquitin ligase-associated protein SGT1 is required for host and nonhost disease resistance in plants. Proceedings of the National Academy of Sciences of the United States of America 99: 10865-10869.
    87. Pei X, Li S, Jiang Y, et al. 2007. Isolation, characterization and phylogenetic analysis of the resistance gene analogues (RGAs) in banana (Musa spp.). Plant Science 172: 1166-1174.
    88. Pei XW, Chen SK,Wen RM, et al. 2005. Creation of Transgenic Banana Expressing Human Lysozyme Gene for Resistance to Panama Wilt. . Journal of Integrative Plant Biology 8971 - 997.
    89. Peraza-Echeverria Santy J.DL, Harding RM, Smith MK, et al. 2008. Characterization of disease resistance gene candidates of the nucleotide binding site (NBS) type from banana and correlation of a transcriptional polymorphism with resistance to Fusarium oxysporum f.sp. cubense race 4. Molecular breeding 22: 565-579
    90. Peumans WJ, Proost P, Swennen RL,et al. 2002. The Abundant Class III Chitinase Homolog in Young Developing Banana Fruits Behaves as a Transient Vegetative Storage Protein and MostProbably Serves as an Important Supply of Amino Acids for the Synthesis of Ripening-Associated Proteins. Plant Physiol. 130(2): 1063-1072.
    91. Pickart CM. 2001. Ubiquitin Enters the New Millennium. Molecular Cell 8: 499-504.
    92. Popescu SC, Popescu GV, Bachan S, et al. 2009. MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes & Development 23: 80-92.
    93. Rasmussen JB, Hammerschmidt R, Zook MN. 1991. Systemic Induction of Salicylic Acid Accumulation in Cucumber after Inoculation with Pseudomonas syringae pv syringae. Plant Physiol. 97: 1342-1347.
    94. Rep M, Meijer M, Houterman PM, et al. 2005. Fusarium oxysporum Evades I-3-Mediated Resistance Without Altering the Matching Avirulence Gene. Molecular Plant-Microbe Interactions 18: 15-23.
    95. Rep M, Does HC, Meijer M, et al. 2004a. A small, cysteine-rich protein secreted by Fusarium oxysporum during colonization of xylem vessels is required for I-3-mediated resistance in tomato. Molecular Microbiology 53: 1373-1383.
    96. Riviere MP, Marais A, Ponchet M, et al. 2008. Silencing of acidic pathogenesis-related PR-1 genes increases extracellular ?-1,3-glucanase activity at the onset of tobacco defence reactions. J. Exp. Bot. 59: 1225-1239.
    97. Russell LC, Whitt S R , Chen MS,et al. 1999. Identification of Conserved Residues Required for the Binding of a Tetratricopeptide Repeat Domain to Heat Shock Protein 90. Journal of Biological Chemistry 274(29): 20060-20063.
    98. Sági L, Panis B, Remy S, et al.1995. Genetic transformation of banana and plantain (Musa spp.) via particle bombardment. Bio-Technology 13: 481~485.
    99. Sarowar S, Kim YJ, Kim EN,et al. 2005. Overexpression of a pepper basic pathogenesis-related protein 1 gene in tobacco plants enhances resistance to heavy metal and pathogen stresses. Plant Cell Rep 24(4): 216-24.
    100. Schadick K, Fourcade HM, Boumenot P, et al. 2002. Schizosaccharomyces pombe Git7p, a Member of the Saccharomyces cerevisiae Sgt1p Family, Is Required for Glucose and Cyclic AMP Signaling, Cell Wall Integrity, and Septation. Eukaryotic Cell 1: 558-567.
    101. Schornack S, Ballvora A, Peart J, et al. 2004. The tomato resistance protein Bs4 is a predicted non-nuclear TIR-NB-LRR protein that mediates defense responses to severely truncated derivatives of AvrBs4 and overexpressed AvrBs3. The Plant Journal 37: 46-60.
    102. Schwechheimer C, Serino G, Callis J, et al. 2001. Interactions of the COP9 Signalosome with the E3 Ubiquitin Ligase SCFTIR1 in Mediating Auxin Response. Science 292(5520): 1379-1382.
    103. Scofield S, Huang L, Brandt A, et al. 2005a. Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. Plant Physiol 138: 2165 - 2173.
    104. Seo PJ, Lee AK, Xiang F, et al. 2008. Molecular and Functional Profiling of Arabidopsis Pathogenesis-Related Genes: Insights into Their Roles in Salt Response of Seed Germination. Plant Cell Physiol. 49: 334-344.
    105. Shirasu K. 2009. The HSP90-SGT1 Chaperone Complex for NLR Immune Sensors. Annual Review of Plant Biology 60: 139-164.
    106. Shirasu K, Lahaye T, Tan MW, et al. 1999. A Novel Class of Eukaryotic Zinc-Binding Proteins Is Required for Disease Resistance Signaling in Barley and Development in C. elegans. Cell 99: 355-366.
    107. Staskawicz BJ, Dahlbeck D, Keen NT. 1984. Cloned avirulence gene of Pseudomonas syringae pv. glycinea determines race-specific incompatibility on Glycine max (L.) Merr. Proceedings of the National Academy of Sciences of the United States of America 81: 6024-6028.
    108. Stergiopoulos I, de Wit PJ. 2009. Fungal Effector Proteins. Annual Review of Phytopathology 47: 233-263.
    109. Sujon S, Young JK, Kim EN, et al. 2006. Constitutive expression of two pathogenesis-related genes in tomato plants enhanced resistance to oomycete pathogen Phytophthora capsici. Plant Cell, Tissue and Organ Culture 86 (1): 7-14
    110. Tada Y, Spoel SH, Pajerowska-Mukhtar K, et al. 2008. Plant Immunity Requires Conformational Charges of NPR-1 via S-Nitrosylation and Thioredoxins. Science 321: 952-956.
    111. Takahashi A, Casais C, Ichimura K, et al. 2003. HSP90 interacts with RAR1 and SGT1 and is essential for RPS2-mediated disease resistance in Arabidopsis. Proc Natl Acad Sci USA 100: 11777 - 11782.
    112. Thao NP, Chen L, Nakashima A, et al. 2007. RAR1 and HSP90 Form a Complex with Rac/Rop GTPase and Function in Innate-Immune Responses in Rice. Plant Cell 19: 4035-4045.
    113. Tian M, Huitema E, da Cunha L, et al. 2004. A Kazal-like Extracellular Serine Protease Inhibitor from Phytophthora infestans Targets the Tomato Pathogenesis-related Protease P69B. Journal of Biological Chemistry 279: 26370-26377.
    114. Tornero P, Merritt P, Sadanandom A, et al. 2002. RAR1 and NDR1 Contribute Quantitatively to Disease Resistance in Arabidopsis, and Their Relative Contributions Are Dependent on the R Gene Assayed. Plant Cell 14: 1005-1015.
    115. Tyler BM, Tripathy S, Zhang XM, et al. 2006. Phytophthora Genome Sequences Uncover Evolutionary Origins and Mechanisms of Pathogenesis. Science 313: 1261-1266.
    116. Van Bentem S, Vossen JH, de Vries KJ, et al. 2005. Heat shock protein 90 and its co-chaperone protein phosphatase 5 interact with distinct regions of the tomato I-2 disease resistance protein. The Plant Journal 43: 284-298.
    117. Van der Does HC, Lievens B, Claes L, et al. 2008. The presence of a virulence locus discriminates Fusarium oxysporum isolates causing tomato wilt from other isolates. Environmental Microbiology 10: 1475-1485.
    118. Van Hemelrijck W, Wouters PF, Brouwer M, et al. 2006. The Arabidopsis defense response mutant esa1 as a model to discover novel resistance traits against Fusarium diseases. Plant Science 171: 585-595.
    119. Van Loon LC, Rep M, Pieterse CMJ. 2006. Significance of Inducible Defense-related Proteins in Infected Plants. Annual Review of Phytopathology 44: 135-162.
    120. Van Kan JA, van den Ackerveken GF, de Wit PJ. 1991. Cloning and characterization of cDNA of avirulence gene avr9 of the fungal pathogen Cladosporium fulvum, causal agent of tomato leaf mold. Mol Plant Microbe Interact 4: 52-59.
    121. Vlot AC, Klessig DF, Park SW. 2008. Systemic acquired resistance: the elusive signal(s). Current Opinion in Plant Biology 11: 436-442.
    122. Von Dahl CC, Baldwin IT. 2007. Deciphering the Role of Ethylene in Plant–Herbivore Interactions Journal of Plant Growth Regulation 26: 201-209.
    123. Wally O, Jayaraj J, Punja ZK. 2009. Broad-spectrum disease resistance to necrotrophic and biotrophic pathogens in transgenic carrots (Daucus carota L.) expressing an Arabidopsis NPR-1 gene Planta 231: 131-141.
    124. Warren RF, Merritt PM, Holub E, et al. 1999. Identification of three putative signal transduction genes involved in R gene-specified disease resistance in Arabidopsis. Genetics 152(1): 401-12.
    125. Xu XL, Lee RT, Fang HM, et al. 2008. Bacterial Peptidoglycan Triggers Candida albicans Hyphal Growth by Directly Activating the Adenylyl Cyclase Cyr1p. Cell Host & Microbe 4: 28-39.
    126. Yuan Y, Zhong S, Li Q, et al. 2007. Functional analysis of rice NPR-1-like genes reveals that OsNPR-1/NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility. Plant Biotechnology Journal 5: 313-324.
    127. Zhang Y, Dorey S, Swiderski M, et al. (2004). Expression of RPS4 in tobacco induces an AvrRps4-independent HR that requires EDS1, SGT1 and HSP90. The Plant Journal 40(2): 213-224.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700