TFPI-2基因在胰腺癌中的表达及其在体内外对肿瘤生长、侵袭及转移作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胰腺癌恶性程度最高的肿瘤之一,易侵犯神经、血管、淋巴管,加之解剖位置深在、隐蔽及早期缺乏特异性症状等特点,故现有检查很难早期发现。而且,胰腺癌对现有的放疗、化疗又极为不敏感,手术切除率低(仅为15-30%)、转移复发率高、预后差[1]。因此,常规治疗方法对胰腺癌的治疗效果很不理想,积极探索新的治疗方法,抑制胰腺癌的侵袭转移,改善其预后已成为目前亟待解决的关键问题。得益于DNA重组技术的发展,肿瘤是基因异常持续积累结果的认可,针对恶性肿瘤所采取的生物治疗技术日趋成为肿瘤治疗的重要手段之一。理论上通过细胞的基因治疗,纠正相应的基因异常,可以逆转肿瘤细胞的恶性属性。体外实验证明:将组织金属蛋白酶抑制物(tissue inhibitor of metalloproteinase, TIMP)转染胰腺癌细胞Panc-1后,可显著抑制胰腺癌细胞裸鼠接种的成功率、接种瘤的生长、血管生成和转移,并增加Panc-1细胞的凋亡率,并显著延长裸鼠负瘤生存期[2,3]。
     定位于人类染色体7q22的TFPI-2基因,其编码产物组织因子途径抑制物-2(tissue factor pathway inhibitor 2, TFPI-2)是广谱丝氨酸蛋白酶抑制物,广泛分布于人类肝、胰腺、肾、心、骨骼肌和前列腺等正常组织,体外可强烈抑制纤溶酶、胰蛋白酶,基质金属蛋白酶1(matrix metalloproteinases, MMP-1)和3(MMP-3)的活化[4,5],参与细胞外基质(extracellular matrix, ECM)的重塑过程,维持ECM的结构完整,调控肿瘤细胞的侵袭转移,在肿瘤细胞侵袭转移等一系列生理和病理过程中扮演重要角色。现已发现TFPI-2与多种肿瘤如神经胶质瘤、绒毛膜癌、黑色素瘤以及肺癌等的发生、发展有密切关系[6-9]。
     本研究构建TFPI-2基因的真核表达载体pEGFP-C1-TFPI-2,并将其转染胰腺癌细胞系Panc-1细胞,检测转染细胞、正常胰腺组织和不同时期及不同分化胰腺癌组织中TFPI-2基因的表达,探讨TFPI-2对胰腺癌细胞增殖、凋亡及体内和体外侵袭浸润能力影响及其可能的作用机制,为判断胰腺癌的预后及其基因治疗提供新的实验依据。
     目的:
     本研究应用分子生物学、免疫学技术,构建稳定表达TFPI-2的人TFPI-2基因真核表达载体pEGFP-C1-TFPI-2,将其转染胰腺癌细胞系Panc-1细胞,观察TFPI-2基因在胰腺癌细胞系Panc-1、正常胰腺组织和胰腺癌组织中的表达情况,测定并比较TFPI-2表达组与非表达组细胞的生长曲线,利用Boyden小室检测TFPI-2表达组与非表达组胰腺癌细胞的穿膜细胞数,比较TFPI-2表达组与非表达组胰腺癌细胞的裸鼠成瘤大小,以此作为评价胰腺癌细胞体外和体内侵袭浸润能力的指标。利用DNA片段化分析检测TFPI-2表达组与非表达组细胞凋亡率,研究TFPI-2的表达对胰腺癌细胞凋亡的影响。
     方法:
     RT-PCR实验:目的基因的扩增及转染后TFPI-2 mRNA检测;正常胰腺组织及胰腺癌组织中TFPI-2 mRNA检测;
     Western blot实验:转染前后TFPI-2蛋白表达的检测;正常胰腺组织及胰腺癌组织中TFPI-2蛋白表达的检测;
     细胞培养及转染:采用脂质体Lipofectamine2000介导;
     Boyden小室侵袭实验:观察TFPI-2对胰腺癌细胞体外迁徙和浸润能力的影响;
     裸鼠皮下种植瘤模型建立:观察TFPI-2对胰腺癌细胞裸鼠成瘤的影响及体内浸润能力的影响;
     细胞凋亡检测:采用DNA Ladder带凝胶电泳进行分析。
     结果:
     成功构建了人TFPI-2基因真核表达载体pEGFP-C1-TFPI-2;
     Panc-1细胞无TFPI-2基因表达,脂质体Lipofectamine2000能介导真核表达载体pEGFP-C1-TFPI-2转染Panc-1细胞,并使其稳定表达TFPI-2 mRNA及相应蛋白;
     TFPI-2能抑制胰腺癌细胞的体外侵袭能力;
     TFPI-2能抑制胰腺肿瘤的生长及体内浸润转移;
     TFPI-2能诱导胰腺癌细胞凋亡。
     结论:
     TFPI-2能显著抑制胰腺癌细胞的体外、体内侵袭转移能力,其作用可能通过维持ECM的完整性、诱导肿瘤细胞凋亡来实现,为胰腺癌的基因治疗提供了实验依据。
Pancreatic carcinoma remains one of the most malignant tumor, which is easy to metastasize to nerves, blood vessel, lymph vessel. Current screen modalities are unable to identify it for inaccessible location, proximity to other vital organs, inherently aggressive pattern of growth, and atypical symptom, which make most patients have local or metastasis spread at the time of presentation that precludes surgical resection. Less than 30% of cases are constitute candidates for resection. Furthermore, pancreatic carcinoma is highly resistant to current available chemotherapy and radiation protocols. Therefore, new modalities in the treatment of this disease to improve its prognosis are required urgently. For the development of DNA recombinant technology, and the consent of accumulated abnormal gene resulting tumorigenesis, biotherapy is becoming one of the most means in oncotherapy. In theory, it can reconvert the malignant attribute of tumor cells by gene therapy. It has been improved in vitro that tumor growth, angiogenesis, and metastasis was inhibited, tumor cell apoptosis was increased, life span was significant prolongation of athymic mice bear to tumor by transfecting tissue inhibitor of metalloproteinase to Panc-1 cell.
     Human tissue factor pathway inhibitor 2 (TFPI-2) gene, localizated to chromosome 7q22, is a broad-spectrum serine protease inhibitor that inhibits plasmin, trypsin, metrix metalloproteinase 1 and 3 in vitro, which is important to maintain the integrity of extracellular matrix and regulate the migration and invasion of tumor. TFPI-2 transcripts are abundant in various adult human tissue, such as liver, pancreas, kidney, heart, skeletal muscle and prostate gland. It has been discovered that TFPI-2 is related to tumorigenesis and development of multitude tumors such as neuroglioma, chorionic carcinoma, melanoma, and lung cancer.
     In this research, we construct the eukaryotic expression vector pEGFP-C1-TFPI-2 of TFPI-2 gene, and then transfect it to pancreatic carcinoma cell line Panc-1 cell. TFPI-2 expression in 50 tumor samples, 8 pancreatic tissue samples and Panc-1 cells are detected. Afterwards, we study the influence of TFPI-2 expression on growth curve, invasion and migration in vivo and in vitro, and apoptosis of Panc-1 cell and its potential mechanism. All these studies will provide new experimental basis for prognosis and recidivation of pancreatic carcinoma.
     Objective:
     We observe the expression of TFPI-2 in pancreatic carcinoma cell line Panc-1 cell, tumor samples and pancreatic tissue samples, construct the eukaryotic expression vector pEGFP-C1-TFPI-2 of TFPI-2 gene and then transfect it to pancreatic carcinoma cell line Panc-1 cell. Afterwards, we detect and compare the growth curve, invasion and migration and apoptosis in TFPI-2 expression and non-expression group by Boyden chamber, model of subcutaneous explantation tumor in athymic mice and DNA fragmentation assay, study the influence of TFPI-2 expression on growth, invasion and migration in vivo and in vitro, and apoptosis of Panc-1 cell.
     Methods:
     Reverse transcriptase polymerase chain reaction (RT-PCR): Amplification of TFPI-2 gene and detection of TFPI-2 mRNA after transfection. Detection of TFPI-2 mRNA of pancreatic normal and tumor tissue.
     Western blot: Detection of TFPI-2 protein before and after transfection. Detection of TFPI-2 protein of pancreatic normal and tumor tissue.
     Cell culture and transfection: Lipofectamine2000 was used as a media.
     Invasion experiment of Boyden chamber: To observe the influence of TFPI-2 on invasion and migration in vitro.
     Modeling of subcutaneous explantation tumor in athymic mice: To observe the influence of TFPI-2 on invasion and migration in vivo.
     Detection of cell apoptosis: DNA Ladder electrophoresis and flow cytometry was used.
     Results:
     The eukaryotic expression vector pEGFP-C1-TFPI-2 of human TFPI-2 gene was constructed successfully.
     There was non-expression of TFPI-2 in Panc-1 cell, after transfection, it can express TFPI-2 mRNA and protein stably.
     TFPI-2 can inhibit invasion of pancreatic carcinoma cell in vitro.
     TFPI-2 can inhibit growth and invasion of pancreatic carcinoma.
     TFPI-2 can induce apoptosis of pancreatic carcinoma cell.
     Conclusion:
     TFPI-2 expression may obviously inhibit the invasion ability of pancreatic cancer cells in vitro and in vivo by maintaining the integrity of ECM or inducing cell apoptosis, which provides an experimental basis for curing human pancreatic cancer with gene-therapy.
引文
1. Lowenfels AB, Maisonneuve P. Epidemiology and prevention of pancreatic cancer [J]. Jpn J Clin Oncol, 2004, 34:238-244.
    2. Bloomston M, Shafii A, Zervos EE, et al. TIMP-1 overexpression in pancreatic cancer attenuates tumor growth, decress implanation and matastasis, and inhibits angiogenesis [J]. J Surg Res, 2002, 102:39-44.
    3. Rigg AS, Lemoine NR. Adenoviral delivery of TIMP 1or TIMP 2 can modify the invasive behavior of pancreatic cancer and can have asignificant antitumor effect in vivo [J]. Cancer Gene Ther, 2001, 8: 869-878.
    4. Kong D, Ma D, Bai H, et al. Expression and characterization of the first kunitz domain of human tissue factor pathway inhibitor-2 [J]. Biochem Biophys Res Commun, 2004, 324:1179-1185.
    5. Rao CN, Reddy P, Reeder DJ, et al. Prokaryotic expression, purification, and reconstitution of biological activities (antiprotease, antitumor, and heparin-binding) for tissue factor pathway inhibitor-2 [J]. Biochem Biophys Res Communi, 2000, 276: 1286-1294.
    6. Yanamandra N, Kondraganti S, Gondi CS, et al. Recombinant adeno-associated virus (rAAV) expressing TFPI-2 inhibits invasion,angiogenesis and tumor growth in a human glioblastoma cell line [J]. Int J Cancer, 2005, 115: 998-1005.
    7. HubéF, Reverdiau P, Lochmann S, et al. Characterization and function analysis of TFPI-2 gene promoter in a human choriocarcinoma cell line [J]. Thromb Res, 2003, 109:207-215.
    8. Ruf W, Seftor EA, Petrovan RJ, et al. Differential role of tissue factor pathway inhibitor 1 and 2 in melanoma vasculogenic mimicry [J]. Cancer Res, 2003, 63: 5381-5389.
    9. Rollin J, Iochmann S, Bléchet C, et al. Expression and methylation status of tissuefactor pathway inhibitor-2 gene in non-small-cell lung cancer [J]. Br J Cancer, 2005, 92:775-783.
    10. Fazal S, Saif MW. Supportive and palliative care of pancreatic cancer [J]. JOP, 2007, 8:240-253.
    11. Westermarck J, Kahari VM. Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J, 1999, 13:781-792.
    12. Lynch CC, Matrisian LM. Matrix metalloproteinases in tumor-host cell communication [J]. Differentiation, 2002, 70:561-573.
    13. Ellenrieder V, Adler G, Gress TM. Invasion and metastasis in pancreatic cancer [J]. Ann Oncol, 1999, 10:46-50.
    14. Hirata M, Sato T, Tsumagari M, et al. Discoordinate regulation of expression of matrix metalloproteinases and tissue inhibitor of metalloproteinases-3 in bovine endometrial stromal cells on type-I collagen gel [J]. Biol Pharm Bull, 2003, 26:1013-1017.
    15. Miyagi Y, Yasumitsu H, Eki T, et al. Assignment of the human PP5/TFPI-2 gene to 7q22 by FISH and PCR-based human/rodent cell hybrid mapping panel analysis [J]. Genomics, 1996, 35:267-268.
    16. Bützow R, Huhtala ML, Bohn H, et al. Purification and characterization of placental protein 5 [J]. Biochem Biophys Res Commun, 1988, 150:483-490.
    17. Sprecher CA, Kisiel W, Mathewes S, et al. Molecular cloning, expression, and partial characterization of a second human tissue-factor-pathway inhibitor [J]. Proc Natl Acad Sci USA, 1994, 91:3353-3357.
    18. Rao CN, Reddy P, Liu YY, et al. Extracellular matrix-associated serine protease inhibitors (M 33,000, 31,000 and 27,000) are single-gene products with differential glycosylation: cDNA cloning of the 33-kDa inhibitor reveals its identity to tissue factor pathway inhibitor-2 [J]. Arch Biochem Biophys, 1996, 335:82-92.
    19. Rao CN, Cook B, Liu Y, et al. HT-1080 fibrosarcoma cell matrix degradation andinvasion are inhibited by the matrix-associated serine protease inhibitor TFPI-2/33 kDa MSPI [J]. Int J Cancer, 1998, 76:749-756.
    20. Izumi H, Takahashi C, Oh J, Noda M. Tissue factor pathway inhibitor-2 suppresses the production of active matrix metalloproteinase-2 and is down-regulated in cells harboring activated ras oncogenes [J]. FEBS Lett, 2000, 481:31-36.
    21. Jin M, Udagawa K, Miyagi E, et al. Expression of serine proteinase inhibitor PP5/TFPI-2/MSPI decreases the invasive potential of human choriocarcinoma cells in vitro and in vivo [J]. Gynecol Oncol, 2001, 83:325-333.
    22. Konduri SD, Rao CN, Chandrasekar N, et al. A novel function of tissue factor pathway inhibitor-2 (TFPI-2) in human glioma invasion [J]. Oncogene, 2001, 20:6938-6945.
    23. Wong CM, Ng YL, Lee JM, et al. Tissue factor pathway inhibitor-2 as a frequently silenced tumor suppressor gene in hepatocellular carcinoma [J]. Hepatology, 2007, 45:1129-1138.
    24. Jiang P, Watanabe H, Okada G, et al. Diagnostic utility of aberrant methylation of tissue factor pathway inhibitor 2 in pure pancreatic juice for pancreatic carcinoma [J]. Cancer Sci, 2006, 97:1267-1273.
    25. Du X, Chand HS, Kisiel W. Human tissue factor pathway inhibitor-2 does not bind or inhibit activated matrix metalloproteinase-1 [J]. Biochim Biophys Acta, 2003, 1621:242-245.
    26. Wojtukiewicz MZ, Sierko E, Zimnoch L, et al. Immunohistochemical localization of tissue factor pathway inhibitor-2 in human tumor tissue [J]. Thromb Haemost, 2003, 90:140-146.
    27. Chand HS, Du X, Ma D, et al. The effect of human tissue factor pathway inhibitor-2 on the growth and metastasis of fibrosarcoma tumors in athymic mice [J]. Blood, 2004, 103:1069-1077.
    28. Kondraganti S, Gondi CS, Gujrati M, et al. Restoration of tissue factor pathwayinhibitor inhibits invasion and tumor growth in vitro and in vivo in a malignant meningioma cell line [J]. Int J Oncol, 2006, 29: 25-32.
    29. Sun Y, Xie M, Liu M, et al. Growth suppression of human laryngeal squamous cell carcinoma by adenovirus-mediated tissue factor pathway inhibitor gene 2 [J]. Laryngoscope, 2006, 116: 596-601.
    30. Crowe DL, Shuler CF. Regulation of tumor cell invasion by extracellular matrix [J]. Histol Histopathol, 1999, 14:665-671.
    31. McCawley LJ, Matrisian LM. Matrix metalloproteinases: multifunctional contributors to tumor progression [J]. Mol Med Today, 2000, 6:149-156.
    32. Nabeshima K, Inoue T, Shimao Y, et al. Matrix metalloproteinases in tumor invasion: role for cell migration [J]. Pathol Int, 2002, 52:255-264.
    33. HubéF, Reverdiau P, Iochmann S, et al. Computer model of the interaction of human TFPI-2 kunitz-type serine protease inhibitor with human plasmin [J]. Thromb Res, 2003, 111:197-198.
    34. Siegling S, Thyzel E, Brinkmann T, et al. Genetic variation in the human TFPI-2 gene and its promoter region by denaturing high performance liquid chromatography [J]. Thromb Res, 2004, 113:341-343.
    35. Chand HS, Schmidt AE, Bajaj SP, et al. Structure-function analysis of the reactive site in the first kunitz-type domain of human tissue factor pathway inhibitor-2 [J]. J Biol Chem, 2004, 279:17500-17507.
    36. Rao CN, Peavey CL, Liu YY, et al. Partial characterization of matrix-associated serine protease inhibitors from human skin cells [J]. J Invest Dermatol, 1995, 104:379-383.
    37. Liu Y, Stack SM, Lakka SS, et al. Matrix localization of tissue factor pathway inhibitor-2/matrix-associated serine protease inhibitor (TFPI-2/MSPI) involves arginine-mediated ionic interactions with heparin and dermatan sulfate: heparin accelerates the activity of TFPI-2/MSPI toward plasmin [J]. Arch Biochem Biophys,1999, 370:112-118.
    38. Rao CN, Mohanam S, Puppala A, et al. Regulation of ProMMP-1 and ProMMP-3 activation by tissue factor pathway inhibitor-2/matrix-associated serine protease inhibitor [J]. Biochem Biophys Res Commun, 1999, 255:94-98.
    39. Kondraganti S, Gondi CS, Gujrati M, et al. Restoration of tissue factor pathway inhibitor inhibits invasion and tumor growth in vitro and in vivo in a malignant meningioma cell line [J]. Int J Oncol, 2006, 29:25-32.
    40. Konduri SD, Tasiou A, Chandrasekar N, Nicolson GL, Rao JS. Role of tissue factor pathway inhibitor-2 (TFPI-2) in amelanotic melanoma (C-32) invasion [J]. Clin Exp Metastasis, 2000, 18:303-308.
    41. Jemal A, Tiwari RC, Murray T, et al. Cancer statistics, 2006 [J]. CA Cancer, 2006, 56:106-130.
    42. Garcea G, Neal CP, Pattenden CJ, et al. Molecular prognostic markers in pancreatic cancer: a systematic review [J]. Eur J Cancer, 2005, 41:2213-2236.
    43. Kojima K, Vickers SM, Adsay NV, et al. Inactivation of Smad4 accelerates Kras(G12D)-mediated pancreatic neoplasia [J]. Cancer Res, 2007, 67:8121-8130.
    44. Zhang J, Piro O, Lu L, et al. Glycosyl phosphatidylinositol anchorage of tissue factor pathway inhibitor [J]. Circulation, 2003, 108:623-627.
    45. Hansen CB, Pyke C, Petersen LC, et al. Tissue factor-mediated endocytosis, recycling, and degradation of factor VIIa by a clathrin-independent mechanism not requiring the cytoplasmic domain of tissue factor [J]. Blood, 2001, 97:1712-1720.
    46. Petersen JG, Meyn G, Rasmussen JS, et al. Characterization of human tissue factor pathway inhibitor variants expressed in Saccharomyces cerevisiae. J Biol Chem, 1993, 268:13344-13351.
    47. Diaz-Collier JA, Palmier MO, Kretzmer KK, et al. Refold and characterization of recombinant tissue factor pathway inhibitor expressed in Escherichia coli [J]. Thromb Haemost, 1994, 71:339-346.
    48. Yamada T, Makimura K, Hisajima T, et al. Genetic transformation of the dermatophyte, Trichophyton mentagrophytes, based on the use of G418 resistance as a dominant selectable marker [J]. J Dermatol Sci, 2008, 49: 53-61.
    49. Lee MJ, Cho SS, You JR, et al. Intraper itoneal gene delivery mediated by a novel cationic liposome in a peritoneal disseminated ovarian cancer model [J]. Gene Ther, 2002, 9:859-866.
    50. Ivanciu L, Gerard RD, Tang H, et al. Adenovirus-mediated expression of tissue factor pathway inhibitor-2 inhibits endothelial cell migration and angiogenesis [J]. Arterioscler Thromb Vasc Biol, 2007, 27:310-316.
    51. Xu Z, Maiti D, Kisiel W, et al. Tissue factor pathway inhibitor-2 is upregulated by vascular endothelial growth factor and suppresses growth factor-induced proliferation of endothelial cells [J]. Arterioscler Thromb Vasc Biol, 2006, 26:2819-2825.
    52. Baker AH, Edwards DR, Murphy G, et al. Metalloproteinase inhibitors: biological actions and therapeutic opportunities [J]. Cell Sci, 2002, 115: 3719-3727.
    53. George J, Gondi CS, Dinh DH, et al. Restoration of tissue factor pathway inhibitor-2 in a human glioblastoma cell line triggers caspase-mediated pathway and apoptosis [J]. Clin Cancer Res, 2007, 13:3507-3517.
    54. Peng B, Chang Q, Wang L, et al. Suppression of human ovarian SKOV-3 cancer cell growth by Duchesnea phenolic fraction is associated with cell cycle arrest and apoptosis [J]. Gynecol Oncol, 2008, 108:173-181.
    55. Aouida M, Mekid H, Belhadj O, et al. Mitochondria-independent morphological and biochemical apoptotic alterations promoted by the anti-tumor agent bleomycin in Saccharomyces cerevisiae. Biochem Cell Bio [J], 2007, 85:49-55.
    56. Duffy MJ, McGowan PM, Gallagher WM. Cancer invasion and metastasis: changing views [J]. J Pathol, 2008, 214:283-293.
    57. Shi YB, Fu L, Hasebe T, et al. Regulation of extracellular matrix remodeling andcell fate determination by matrix metalloproteinase stromelysin-3 during thyroid hormone-dependent post-embryonic development [J]. Pharmacol Ther, 2007, 116:391-400.
    58. LinksHigashikata T, Yamagishi M, Higashi T, et al. Altered expression balance of matrix metalloproteinases and their inhibitors in human carotid plaque disruption: results of quantitative tissue analysis using real-time RT-PCR method [J]. Atherosclerosis, 2006, 185:165-172.
    59. Lin TH, Kuo HC, Chou FP, et al. Berberine enhances inhibition of glioma tumor cell migration and invasiveness mediated by arsenic trioxide [J]. BMC Cancer, 2008, 8:58.
    60. Woo MM, Salamanca CM, Minor A, et al. An improved assay to quantitate the invasiveness of cells in modified Boyden chambers [J]. In Vitro Cell Dev Biol Anim, 2007, 43:7-9.
    61. Furukawa T, Kubota T, Watanabe M, et al. A novel“patient-like”treatment model of human pancreatic cancer constructed using orthotopic transplantation of histologically intact human tumor tissue in nude mice [J]. Cancer Res, 1993, 53:3070-3072.
    1. Rao CN, Reddy P, Liu Y, et al. Extracellular matrix-associated serin protease inhibitors (Mr 33,000, 31,000, and 27,000) are single-gene products with differential glycosylation: cDNA cloning of the 33 kDa inhibitor reveals its identity to tissue factor pathway inhibitor-2 [J]. Arch Biochem Biophys, 1996, 335(1): 82-92.
    2. Siegling S, Thyzel E, Brinkmann T, et al. Genetic variation in the human TFPI-2 gene and its promoter region by denaturing high performance liquid chromatography [J]. J Thromb Res, 2004, 113(5): 341-343.
    3. Konduri SD, Osman FA, Rao CN, et al. Minimal and inducible regulation of tissue factor pathway inhibitor-2 in human gliomas [J]. Oncogene, 2002, 21(6): 921-928.
    4. Kast C, Wang M, Whiteway M. The ERK/MAPK pathway regulates the activity of the human tissue factor pathway inhibitor-2 promotor [J]. J Biol Chem, 2003, 278(9): 6787-6794.
    5. von Kriegsheim A, Pitt A, Grindlay GJ, et al. Regulation of the Raf-MEK-ERK pathway by protein phosphatase 5 [J]. Nat Cell Biol, 2006, 8(9): 1011-1016.
    6. Steiner FA, Hong JA, Fischette MR, et al. Sequential 5-Aza 2’-de-oxycytidine/depsipeptide FK228 treatment induces tissue factor pathway inhibitor 2 (TFPI-2) expression in cancer cells [J]. Oncogene,2005, 24(14): 2386-2397.
    7. Hisaka T, Lardeux B, Lamireau T, et al. Expression of tissue factor pathway inhibitor-2 in murine and human liver regulation during inflammation [J]. Thromb Haemost, 2004, 91(3): 569-575.
    8. Neaud V, Duplantier JG, Mazzocco C, et al. Thrombin up-regulates tissue factor pathway inhibitor-2 synthesis through a cyclooxygenase-2-dependent , epidermal growth factor receptor-independent mechanism [J]. J Biol Chem, 2004, 279(7): 5200-5206.
    9. Konduri SD, Srivenugopal KS, Yanamandra N, et al. Promoter methylation and silencing of the tissue factor pathway inhibitor-2 (TFPI-2), a gene encoding an inhibitor of matrix metalloproteinases in human glioma cells [J]. Oncogene, 2003, 22(29): 4509-4516.
    10. Jiang P, Watanabe H, Okada G, et al. Diagnostic utility of aberrant methylation of tissue factor pathway inhibitor 2 in pure pancreatic juice for pancreatic carcinoma [J]. Cancer Sci, 2006, 97(11): 1267-1273.
    11. Rollin J, Jochrnann S, Blechet C, et al. Expression and methylation status of tissue factor pathway inhibitor-2 gene in non-small-cell lung cancer [J]. Br J Cancer, 2005, 92(4): 775-783.
    12. Wong CM, Ng YL, Lee JM, et al. Tissue factor pathway inhibitor-2 as a frequently silenced tumor suppressor gene in hepatocellular carcinoma [J]. Hepatology, 2007, 45(5): 1129-1138.
    13. Hube F, Reverdiau P, lochmann S, et al. Transcriptional silencing of the TFPI-2 gene by promoter hypermethylation in choriocarcinoma cells [J]. Biol Chem, 2003, 384(7): 1029-1034.
    14. Kondraganti S, Gondi CS, Gujrati M, et al. Restoration of tissue factor pathway inhibitor inhibits invasion and tumor growth in vitro and in vivo in a malignant meningioma cell line [J]. Int J Oncol, 2006, 29(1): 25-32.
    15. Xu Z, Maiti D, Kisiel W, et al. Tissue factor pathway inhibitor-2 is upregulated by vascular endothelial growth factor and suppresses growth factor-induced proliferation of endothelial cells [J]. Arterioscler Thromb Vasc Biol, 2006, 26(12): 2819-2825.
    16. Baker AH, Edwards DR, Murphy G, et al. Metalloproteinase inhibitors: biological actions and therapeutic opportunities [J]. Cell Sci, 2002, 115(19): 3719-3727.
    17. Chand HS, Du X, Ma D, et al. The effect of human tissue factor pathway inhibitor-2 on the growth and metastasis of fibrosarcoma tumors in athymic mice[J]. Blood, 2004, 103(3): 1067-1077.
    18. Yanamandra N, Kondraganti S, Gondi CS, et al. Recombinant adeno-associated virus (rAAV) expressing TFPI-2 inhibits invasion, angiogenesis and tumor growth in a human glioblastoma cell line [J]. Int J Cancer, 2005, 115(6): 998-1005.
    19. Ruf W, Seftor EA, Petrovan RJ, et al. Differential role of tissue factor pathway inhibitor 1 and 2 in melanoma vasculogenic mimicry [J]. Cancer Res, 2003, 63(17): 5381-5389.
    20. Ivanciu L, Gerard RD, Tang H, et al. Adenovirus-mediated expression of tissue factor pathway inhibitor-2 inhibits endothelial cell migration and angiogenesis [J]. Arterioscler Thromb Vasc Biol, 2007, 27(2): 310-316.
    21. Neaud V, Hisaka T, Monvoisin A, et al. Paradoxical proinvasive effect of the serine proteinase inhibitor tissue factor pathway inhibitor-2 on human hepatocellular cells [J]. J Biol Chem, 2000, 275(45): 35565-35569.
    22. Wojtukiewicz MZ, Sierko E, Zimnoch L, et al. Immunohistochemical localization of tissue factor pathway inhibitor-2 in human tumor tissue [J]. Thromb Haemost, 2003, 90(1): 140-146.
    23. Sato N, Parker AR, Fukushima N, et al. Epigenetic inactivation of TFPI-2 as a common mechanism associated with growth and invasion of pancreatic ductal adenocarcinoma [J]. Oncogene, 2005, 24(5): 850-858.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700