多高层钢结构梁柱节点震害及抗震延性策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来随着我国高层和超高层钢结构建筑的应用越来越多,钢结构梁柱节点的抗震性能问题越来越突出,如果处理不当,具有良好抗震性能的钢结构建筑在地震中也可能遭受大的震害,美国北岭地震和日本阪神地震时钢结构节点的震害深刻地表明了节点延性设计的重要性。
     1994年美国北岭地震和1995年日本阪神地震中大量的梁柱节点发生了脆性破坏,造成这种现象的原因可以概括为以下几个方面:与地震地面运动有关的因素、与设计有关的因素、与焊接有关的因素、与钢材有关的因素和一些其它因素。防止梁柱节点脆性断裂的措施也应该从选材、设计、施工和检验方面考虑。
     地震后对节点进行的改进主要表现在:(1)减小应力集中。采用的方法有:改进焊接工艺孔、对梁翼缘焊接垫板进行处理、严格焊接工艺要求,减少焊接缺陷、清除含裂纹部分、构件部分替换。(2)将塑性铰外移。采用的方法有:局部加强措施和局部削弱措施。焊接盖板节点和焊接梁腋节点属于局部加强措施;狗骨型节点和带长槽型节点属于局部削弱措施。试验和有限元分析表明,这些节点具有良好的抗震延性。
     此外,钢结构节点抗震延性的影响因素还包括:柱腹板横向加劲肋、节点域屈服、强柱弱梁要求、弱轴柱的弯曲、侧向扭转和局部屈曲、深柱、箱型柱、组合楼板、温度效应、动力效应。本文以FEMA-SAC联合机构做过的试验为基础,探讨了这些因素会对节点的抗震延性产生怎样的影响,并给出了这些因素作用下,节点要产生良好的抗震延性所应满足的条件。
     所有节点的屈服机制和破坏模式对其抗震延性起决定性作用。屈服机制能够在节点承载力下降或破坏之前为大的塑性转动提供位置和塑性变形的来源,破坏模式导致承载力下降和节点破坏。本文给出了常见节点的屈服机制和破坏模式。
     文章还将中国规范与国外的一些研究成果进行比较,指出了尚未被考虑影响节点抗震延性的设计参数,同时对中国规范关于钢结构节点抗震延性的发展方向进行了展望。
As more and more multistoried and tall steel structures appeared in China recent years, seismic performance of beam-column connections for steel structures is becoming more and more predominant, if not handled properly, steel structures which are regarded as having good seismic performance may suffer greet demage, the seismic damage in Northridge and Hyogoken-Nanbu earthquakes of beam-column connections proved the importance of ductility design for connections deeply.
     Plenty of beam-column connections occurred brittle failure in American Northridge earthquake in 1994 and Japan Hyogoken-Nanbu earthquake in 1995, the causes of this phenomenon can be summarized as follows:issues related to the earthquake ground motion; issues related to design; issues related to welding; issues related to steel and other issues. The measures to prevent brittle failure of beam-column connections should take selection of materals, design, construction and inspection into account.
     The improvements of connections after the earthquakes are mainly on:(Ⅰ) Reduce the stress concentration. The methods that can be used are:improve the cope hole; deal with the backing strip used for beam flange; strict the requirements for welding; reduce welding defects; remove the cracked parts; partial substitution of components. (Ⅱ) Remove the plastic hinge away from the column face. The methods that can be used are:local reinforcement measures and local reducing measures. Haunched connections and coverplate connections are included in local reinforcement measures, reduced beam section connections and slotted web connections are included in local reducing measures. Results of experiments and finite-element analysis manifest that these connections have good anti-seismic ductility.
     In addition, the factors influencing anti-seismic ductility of steel connections also consist of column webs transverse stiffener, panel zone yielding, strong column weak beam requirements, weak axis column bending, lateral torsional and local buckling, deep columns, box columns, effect of composite slabs, thermal effects, dynamic effects. This article discuss how these factors influecne anti-seismic ductility of connections based on the experiments done by the joint establishment of FEMA-SAC, give the requirements in order to get good anti-seismic ductility of connections influencing by these factors too.
     The yield mechanisms and failure modes dominate the anti-seismic ductility of all connections.Yield mechanisms provide a location and source of yield deformation where large plastic rotations can occur before fracture or deterioration of connection resistance can develop. Failure modes result in fracture and loss of resistance. The yield mechanisms and failure modes of the common connections are given in this article.
     By comparing Chinese codes with the results of exotic researchs, the design parameters which influence anti-earthquake ductility of connections not considered in Chinese codes are given, this thesis also outlooks the development direction of Chinese codes about anti-seismic ductility of steel structure connections.
引文
[1]高层民用建筑钢结构技术规程JGJ99-98.北京:中国建筑工业出版社,1998.
    [2]崔鸿超.日本兵库县南部地震震害综述[J].建筑结构学报,1996,17(1):2-13.
    [3]周炳章.日本阪神地震的震害及教训[J].工程抗震,1996(1):99-106.
    [4]裘民川.日本神户地震建筑震害的浅析与启示[J].建筑结构,1995(9):40-44.
    [5]李国强,孙飞飞,沈祖炎.强震下钢框架梁柱节点焊接连接的断裂行为[J].建筑结构学报,1998,19(4):19-28.
    [6]石永久,李兆凡,陈宏,等.高层钢框架新型梁柱节点杭震性能试验研究[J].建筑结构学报,2002,23(3):2-7.
    [7]李兆凡,石永久,陈宏,等.改进型钢结构梁柱节点非线性有限元分析[J].建筑结构,2002,32(9):15-18.
    [8]陈宏,石永久,王元清,等.钢框架梁柱节点受力性能的非线性分析[J].工业建筑,2001,31(5):56-58.
    [9]杨尉彪,高小旺,张维岳,等.高层建筑钢结构梁柱节点试验研究[J].建筑结构,2001,31(8):3-8.
    [10]刘其祥,蔡益燕,朱知信,等.多高层房屋钢结构梁柱刚性连接节点的抗震设计[J].建筑结构,2001,31(8):9-12.
    [11]王万祯,赵海宏,顾强.钢框架梁柱刚性节点破坏机理分析[J].工业建筑,2002,32(8):63-65.
    [12]宋振森,顾强,郭兵.刚性钢框架梁柱连接试验研究[J].建筑结构学报,2001,22(1):53-57.
    [13]荆洪阳,王东坡,霍立兴,等.加载速率对焊接接头断裂行为的影响[J].机械强度,2002,24(4):550-555.
    [14]姚国春.地震载荷下焊接钢结构梁柱节点断裂行为研究[D].天津:天津大学,2001.
    [15]李杰.地震循环载荷下钢结构梁柱焊接节点耗能和损伤行为的研究[D].大津:天津大学,2002.
    [16]Kishi N, W.F chen. Data base of steel beam-to-column connections [R]. Report No. CE-STR-86-26, School of Civil Engineering Purdue Univ. West Lafayette, Ind,1986.
    [17]J. A. Packer, L. J. Morris. A limit state design method for the tension region of bolted beam-column connections [J]. Strcut. Engrg,1997 (10):446-458.
    [18]G. Bollio, C. Poggi, P. Zannon. Elastic plastic bending of plate subject to concentrated loads [J]. Joints in Structural Steelwork,1981 (1):110-125.
    [19]H. Agerskov. Analysis of bolted connection subject to prying [J]. J. Struct,1997, 103(11):2145-2163.
    [20]W. F. Chen, D. E. Newlin. Column web strength in beam-column connections [J]. J. Strcuct,1973,99(9):1978-1984.
    [21]P. Sholz. Approximate p-delta method for sway frames with semi-rigid connections [J]. Construct Steel Res,1990,15:215-231.
    [22]Marwan N. Nader, Abolhassan Astaneh-Asl. Shaking table tests of rigid, semi-rigid and flexible steel frames [J]. Journal of Structural Engineering ASCE,1996,122(6): 589-596.
    [23]Miodrag Sekulovic, Ratko Salatic. Nonlinear analysis of frames with flexible connections [J]. Computers and Structures,2001,79(5):1097-1107.
    [24]J. E. Christopher, R.B.jorhovde. Response characteristics of frames with semi-rigid connections [J]. Journal of Constructional Steel Research,1998,46(3):253-254.
    [25]Lei Xu. The Buckling loads of unbraced PR frames under non-proportional loading [J]. Journal of Constructional Steel Research,2002,58:443-465.
    [26]L. Ahmed, P.A.Kirdy. Maximum connection rotations in non-sway semi-rigid frames [J]. Journal of Constructional Steel Research,1996,40(1):1-15.
    [27]L. M. C. Simoes. Optimization of frames with semi-rigid connections [J]. Computers and Structures,1996,60(4):531-539.
    [28]A. M. Citipidoglu, R. M. Haj-Ali, D. W. White. Refined 3D finite element modeling of partially restrained connections including slip [J]. Journal of Constructional Steel Research,2002,58:995-1013.
    [29]Douty, R.T. and Mc Guire. High strength bolted moment connection [J]. Struct. Div, ASCE,1965,91(2):1017-1024.
    [30]Grundy, P. et al. Beam-to-column moment [J]. Struct. Div, ASCE,1980,122(3): 1861-1868.
    [31]Atotod Azlznamini, James B Radziminskl. Static and cyclic performance of semi-rigid steel beam-to-column connections [J]. Journal of Structural Engineering, ASCE,1989, 115(12):1103-1115.
    [32]A. S. Elnashai, A. Y. Elghazouli, F. A. Denesh-Ashtiani. Response of semi-rigid steel frame to cyclic and earthquake loads [J]. Journal of Structural Engineering, ASCE, 1994,124(8):781-792.
    [33]Anant R.Kukreit, Ali S. Abolmaali. Moment-rotation hysteresis is behavior of top and seat angle steel frame connections [J]. Journal of Structural Engineering, ASCE,1999, 125(8):796-806.
    [34]Mohammed R.Bahaari, Archibald N. Sherbourne. Behavior of eight-bolt large capacity endplate connections [J]. Computers and Structures,2000,77:315-325.
    [35]Sang-Sup Lee, Tae-Sup Moon. Moment-rotation model of semi-rigid connections with angles [J]. Engineering Structures,2002,24:227-237.
    [36]F. D. Markazi, R. G. Beak, M. H. R. Godley. Numerical modelling of semi-rigid boltless connectors [J]. Computers and Structures,2001,79:2391-2402.
    [37]L. R. O. de Lima, S. A. L. de Andrade, P. C. G. da S. Vellasco, L.S,. da Silva. Experimental and mechanical model for predicting the behaviour of minor axis beam-to-column semi-rigid joints [J]. International Journal of Mechanical Sciences, 2002,44:1047-1065.
    [38]Minoru Shugyo. Elastoplastic. Large deflection analysis of three-dimensional steel frames [J]. Journal of Structural Engineering, ASCE,2003(9):1259-1267.
    [39]徐伟良,吴惠弼.半刚性连接对框架结构性能的影响[J].重庆建筑工程学院学报,1992,14(3):75-77.
    [40]陈绍蕃.门式刚架端板螺栓连接的强度和刚度[J].钢结构,2000,15(1):6-11.
    [41]荆军,石永久.节点刚度对轻型门式刚架结构设计的影响[J].工业建筑,2000,30(5):58-61.
    [42]施刚,石永久,王元清,等.门式刚架轻型房屋钢结构端板连接的有限元与试验分析[J].土木工程学报,2004,37(7):6-12.
    [43]许建勋,赵滇生.钢框架螺栓端板节点连接受力性能的分析[J].浙江建筑,2003 (1):19-20.
    [44]顾正维,孙炳楠,童根树,等.螺栓角钢刚节点的三维非线性有限元分析[J].钢结构,2003,2(18):48-52.
    [45]郭成喜.半刚性钢框架的内力性态分析[J].建筑结构,2002,32(5):3-7.
    [46]郭兵,顾强.粱柱端板连接节点滞回性能的试验研究[J].建筑结构学报,2002,23(3):8-11.
    [47]陈爱国,顾强,苏明周,等.腹板双角钢梁柱连接循环荷载试验研究[J].建筑结构学报,2003,24(6):67-71.
    [48]李少甫.钢结构的螺栓端板连接[J].建筑结构,1998,28(8):21-24.
    [49]胡习兵.T型钢半刚性连接节点的性能研究[D].长沙:湖南大学,2004.
    [50]段祺成.梁柱外伸端板、T型连接节点的试验研究[D].武汉:武汉理工大学,2003.
    [51]王燕,李华军,厉见芬.半刚性梁柱节点连接的初始刚度和结构内力分析[J].工程力学,2003,20(6):65-69.
    [52]王新武,孙犁.钢框架半刚性连接性能研究[J].武汉理工大学学报,2002,24(11):33-35.
    [53]王新堂.半刚性连接平面钢结构弹性分析的普遍模型[J].建筑结构,2002,32(12):42-44.
    [54]陈国栋,房贞政.半刚性连接钢框架的二阶弹性分析[J].福州大学学报,2000,28(6):66-71.
    [55]崔晓强,童根树.柔性连接的弱支撑框架结构的稳定性[J].建筑结构学报,2001,22(1):58-61.
    [56]实用建筑抗震设计手册编委会编.实用建筑抗震设计手册[M].北京:中国建筑工业出版社,1997.
    [57]Duane K. Miller. Lessons learned from the Northridge earthquake [J]. Engineering Structures,1998,20(4-6):249-260.
    [58]John L. Gross. A connection model for the seismic analysis of welded steel moment frames [J]. Engineering Structures.1998,20(4-6):390-397.
    [59]黄南翼,张锡云.日本阪神地震中的钢结构震害[J].钢结构,1995,10(28):112-127.
    [60]刘汉龙,陆绍俊.1995年日本阪神大地震及其震害,中国振动工程学会第五届全国土动力学学术会议[C].大连:大连理工大学出版社,1998:550-555.
    [61]Koji Azuma, Yoshiaki Kurobane, Yuji Makino. Cyclic testing of beam-to-column connections with weld defects and assessment of safety of numerically modeled connections from brittle fracture [J], Engineering Structures,2000,22(12):1596-1608.
    [62]Seismological and Engineering Aspects of the 1995 Hyogoken-Nanbu(Kobe) Earthquake [R], Report No. UCB/EERC-95/10 Nov.1995, Earthquake Engineering Research Center, Univ. Of California, Berkely.
    [63]Willam E. Gates, Manuel, Morden. Professional structural engineering experience related to welded steel moment frames following the Northridge earthquake [J]. The Structural Design of Tall Buildings,1996,5:29-44.
    [64]Kazuhiko Kasai, Ian Hodgson, David Bleiman. Rigid-bolted repair method for damaged moment connections [J]. Engineering Structures,1998,20 (4-6):521-532.
    [65]刘其祥.多高层房屋钢结构梁柱刚性连接节点的设计建议[J].建筑结构,2003,33(9):3-7.
    [66]Nakashima M, Inoue K, Tada M. Classification of damage to steel buildings observed in the 1995 Hyogoken-Nanbu earthquake [J]. Engineering Structures,1998,20(4-6): 271-281.
    [67]陈绍蕃.钢结构设计原理(第三版)[M].北京:科学技术出版社,2005.
    [68]M. D. Engclhardt and T A. Sablt. Seismic-resistant steel moment connections: development since the 1994 Northridge earthquake [R]. Construction Research Communications Limited,1997 ISSN,1365-1556.
    [69]E. P. Popov, T. S. Yang, S. P. Chang. Design of steel MRF Connections before and after 1994 Northridge earthquake [J]. Engineering Structure,1998,20(12):1030-1038.
    [70]T. Hashida, S. Fujihira, M. Toyoda. Fracture toughness and mechanical properties of beam-to-column connections of steel framed structures damaged in Hyogoken-Nanbu earthquake [C]. Proc. of Int. Conf. On welded constructions in seismic areas, Maui Hawaii,1998:215-225.
    [71]APD Committee. Strength and fracture toughness of weld connections in steel framed structures [C], Proc. Of Seminar on seismic damage to steel framed structures and steel properties, Tokyo, The Japan Welding Engineering Sociey,1997:47-192.
    [72]霍立兴.焊接结构工程强度[M].北京:机械工业出版社,1995.
    [73]M. D. Engelhardt, Thomas A. Sabol. Reinforcing of steel moment connections with cover plates:benefits and limitations [J]. Engineering Structures,1998,20 (4-6): 510-520.
    [74]E. P. Popov, V. V. Bertero. Cyclic Loading of Steel Beams and Connections [J]. ASCE, 1973,99(6):1189-1204.
    [75]S. J. Chen, C. H. Yeh, J. M. Chu. Ductile steel beam-to-column connections for seismic resistance [J]. J. Struc Engng,1996,122(11):1212-1229.
    [76]Malley J.O. SAC steel project summary of phase I testing investigation results [J]. Engineering Structures,1998,20 (4-6):300-309.
    [77]Popov E. P. Panel zone flexibility in seismic moment joints [J]. Journal of Construct Steel Research,1987:91-188.
    [78]Popov E. P., Balan T. A., Yang T. S. Post-Northridge earthquake seismic steel moment connections [J]. Earthquake Spectra,1998,14 (4):659-677.
    [79]M. D. Engelhardt, A. S. Husain. Cyclic loading performance of welded flange-bolted web connections [J]. ASCE,1993,119(12):3537-3550.
    [80]K. C. Tsai, S. Wu, E. P. Popov. Experimental performance of seismic steel beam-column moment joints [J]. Journal of Structural Engineering,1995,121(6): 925-931.
    [81]Roeder C. W., Knechtel B., Thomas E. Seismic behavior of older steel structure [J]. Journal of Structural Engineering.1996,122(4):365-373.
    [82]Lee C. H., Uang C. M. Analytical modeling of dual panel zone in haunch repaired steel MRFs [J]. Journal of Structural Engineering,1997,123(1):20-29.
    [83]Watanabe E., Sugiura K., Nagata K. Performances and damage to steel structures during the 1995 Hyogoken-Nanbu earthquake [J]. Engineering Structures,1998, 20(4-6):282-290.
    [84]Kuwamura H. Fracture of steel during an earthquake state-of-art in Japan [J]. Engineering Structures,1998,20 (4-6):310-322.
    [85]Sakai Junichi, Matsui Chiaki, Yoshizumi Makoto. Effect of collapse modes on earthquake resistant properties for steel frames [C]. Eleventh World Conference on Earthquake Engineering, Acapulco, Mexico,1996, paper 779.
    [86]Masayoshi Nakashima, Takeshi Minami, Isao Mitani. Moment redistribution caused by beam fracture in steel moment frames [J]. Journal of Structural Engineering,2000, 126(1):137-144.
    [87]Masayoshi Nakashima, C. W. Roeder, Yoshiomi Maruoka. Steel moment frames for earthquake in United States and Japan [J]. Journal of Structural Engineering,2000, 126(1):861-868.
    [88]Stephen A. Mabin, Ronald O. Hambruger, James O. Malley. An integrated program to improve the performance of welded steel frame buildings [C]. Eleventh World Conference on Earthquake Engineering, Acapulco, Mexico,1996, paper 1114.
    [89]Hardy H. Campbell. The Northridge fractures:Are we learning the right lessons? [J]. Civil Engineering,1995,65 (3):62-65.
    [90]Nakashina Massyoahi. Test of welded beam-column connections [J]. Journal of Structural Engineering,1998,124 (11):235-268.
    [91]FEMA-350,2000, Recommended seismic design criteria for new steel moment-frame Buildings 3-17-3-18 [R]. prepared by the SAC Joint Venture for the Federal Emergency Management Agency, Washington, DC.
    [92]Qi Wu-bo, Hiroaki Mimura. Streamline geometry optimization in beam-column connection [J]. Journal of Structural Engineering, June,2002:829-831.
    [93]B. S. Taranath. Steel Concrete composite Design of tall Buildings [M]. second edition, McGraw-Hill,965-975.
    [94]胡庆昌.1995年1月17日日本阪神大地震中神户市房屋结构震害简介[J].建筑结构学报,1995,16(3):10-12.
    [95]Stephen A. Mahin. Lessons from damage to steel buildings during the Northridge earthquake. Engineering Structures [J],1998,20 (4-6):261-270.
    [96]Lee G. C., Liang Z. On cross efects of seismic responses of structures [J]. Engineering Structures,1998,20 (4-6):503-509.
    [97]T. A. Savol, M. D. Engelhardt, R.S.Aboutaha, et.al. Overview of the Northridge moment connection test program [C]. Eleventh World Conference on Earthquake Engineering, Acapulco, Mexico,1996, paper 857.
    [98]FEMA-350, Recommended seismic design criteria for new steel moment-frame buildings,3-24 [R]. prepared by the SAC Joint Venture for the Federal Emergency Management Agency, Washington, DC.
    [99]Tsai K. C., S. Wu, Popov E. P. Experimental performance of seismic steel beam-column moment joints [J]. Journal of Structural Engineering,1995,121(6): 925-931.
    [100]Ralph M. Richard, C. Jay Ailen, James E.Partridge. Proprietary slotted beam connection design [J]. Modern steel construction,1997, (3):28-33.
    [101]易方民.高层建筑偏心支撑框架结构抗震性能和设计参数研究[D].北京:中国建筑科学研究院,2000.
    [102]高小旺,张维岳,易方民,等.高层建筑钢结构梁柱节点试验研究报告[R],北京:中国建筑科学院,2000.
    [103]FEMA-355A,2000, State of the Art Report on Base Metals and Fracture [R], prepared by the SAC Joint Venture for the Federal Emergency Management Agency, Washington, DC.
    [104]FEMA-355B,2000, State of the Art Report on Welding and Inspection [R], prepared by the SAC Joint Venture for the Federal Emergency Management Agency, Washington, DC.
    [105]FEMA-355C,2000, State of the Art Report on Systems Performance of Steel Moment Frames Subject to Earthquake Ground Shaking [R], prepared by the SAC Joint Venture for the Federal Emergency Management Agency, Washington, DC.
    [106]FEMA-355D,2000, State of the Art Report on Connection Performance [R], prepared by the SAC Joint Venture for the Federal Emergency Management Agency, Washington, DC.
    [107]FEMA-355E,2000, State of the Art Report on Past Performance of Steel Moment-Frame Buildings in Earthquakes [R], prepared by the SAC Joint Venture for the Federal Emergency Management Agency, Washington, DC.
    [108]FEMA-355F,2000, State of the Art Report on Performance Prediction and Evaluation of Steel Moment-Frame Buildings [R], prepared by the SAC Joint Venture for the Federal Emergency Management Agency, Washington, DC.
    [109]Ricles, J. M., Mao. C., Lu, L. W., and J. Fisher, J. W.,2000, Development and Evaluation of Improved Details for Ductile Welded Unreinforced Flange Connections [R], SAC BD 00-24, SAC Joint Venture.
    [110]Lee, K. H., Stojadinovic, B., Goel, S. C., Margarian, A. G, Choi, J., Wongkaew, A., Rayher, B. P., Lee, D. Y.,2000, Parametric Tests on Unreinforced Connections [R], Report SAC/BD-00/01, SAC Joint Venture.
    [111]Choi, J., Stojadinovic, B., and Goel, S.C.,2000, Parametric Tests on the Free Flange Connection [R], Report SAC/BD-00/02, SAC Joint Venture.
    [112]Gilton, C.S., Chi, B., and Uang, C.M.,2000a, Cyclic Testing of a Free Flange Moment Connection [R], SAC Report 00/19, SAC Joint Venture.
    [113]Englehardt, M.D.,2000, Brief Report of Steel Moment Connection Test Specimen UTA-FF [R], Dept. of Civil Engineering, U. of Texas, Austin, Texas.
    [114]Chi, W. M., Deierlein, G. G., and Ingraffea, A. R.,1997, Finite Element Fracture Mechanics Investigation of Welded Beam-Column Connections [R], Report No. SAC/BD-97/05, SAC Joint Venture.
    [115]Schneider, S. P., Roeder, C. W., and Carpenter, J. E.,1993, "Seismic Behavior of Moment-Resisting Steel Frames,"Analytical Study and Experimental Investigation [J]," ASCE, Journal of Structural Engineering, Vol.119, No.6.
    [116]Nakashima, M, and Sawaizumi, S.,1999, "Effect of Column-to-Beam Strength Ratio on Earthquake Responses of Steel Moment Frames, Parts 1 and 2" [J], Journal of Steel Construction Engineering, Vol.6, No 4.
    [117]Popov, E.P., and Pinkney, R.B., "Cyclic Yield Reversals in Steel Building Connections [J]", ASCE, Journal of Structural Engineering,1969,95(3):327-353.
    [118]Tsai, K.C., and Popov, E.P.,1988, Steel Beam-Column Joints in Seismic Moment Resisting Frames [R], EERC Report 88/19, University of California, Berkeley, CA.
    [119]Gilton, C.S., Chi, B., and Uang, C.M.,2000b, Cyclic Testing of RBS Moment Connections:Weak Axis Configuration and Deep Column Effects [R], SAC Report 00/23, SAC Joint Venture.
    [120]AISC,1997, Seismic Provisions for Structural Steel Buildings [S], American Institute of Steel Construction, Chicago, Illinois.
    [121]Yu, Q.S., Gilton, C., and Uang, C.M.,2000, Cyclic Response of RBS Moment Connections:Loading Sequence and Lateral Bracing Effects [R], SAC Report 00/22, SAC Joint Venture.
    [122]Kwasniewski, L, Stojadinovic, B., and Goel, S. C.,1999, Local and Lateral-Torsion Buckling of Wide Flange Beams [R], Report SAC/BD-99/20, SAC Joint Venture.
    [123]Uang, C. M., and Fan, C. C.,1999, Cyclic Instability of Steel Moment Connections with Reduced Beam Section [R], Report SAC BD-99/19, SAC Joint Venture.
    [124]Whittaker, A.S., and Gilani, A.,1996, Washington High School Reconstruction Cyclic Testing of Steel Beam-Column Connections [R], Report No. EERCL-STI/96-04, Earthquake Engineering Research Center, University of California, Berkeley, CA.
    [125]Noel, S., and Uang, C.M.,1996, Cyclic Testing of Steel Moment Connections for the San Francisco Civic Center Complex [R], Report TR-96/07, Division of Structural Engineering, U. of California, San Diego, CA.
    [126]Chen, S.J.,1999, "Design of Ductile Steel Beam-to-Column Connections for Seismic Resistance," Workshop on Design Technologies of Earthquake-Resistant Moment Resisting Connections, Taipei, Taiwan.
    [127]Chen, S.J.,1996, "A Simple and Effective Retrofit Method for Steel Beam-to-Column Connections," Seventh US-Japan Workshop on the Improvement of Structural Design andConstruction Practices, Applied Technology Council, Redwood City, California.
    [128]AIJ,1997, Full-Scale Test on Plastic Rotation Capacity of Steel Wide-Flange Beams Connected With Square Tube Steel Columns, Kinki Branch of the Architectural Institute of Japan, Steel Committee, Osaka (in Japanese with attached abridged English version).
    [129]Leon, R. T., Hajjar, J., Gustafson, M. A., and Shield, C. M.,1998, "Seismic Response of Composite Moment-Resisting Connections, I:Performance, II: Behavior" [J], ASCE, Journal of Structural Engineering, Vol.124, No.8.
    [130]NIST,1998, Modification of existing Welded Steel Moment Frame Connections for Seismic Resistance [R], Draft Report, National Institute for Standards and Testing, Gaithersburg, MD.
    [131]Leon, R.T., Hajjar, J., Gustafson, M.A., and Shield, C.M.,1998, "Seismic Response of Composite Moment-Resisting Connections, Ⅰ:Performance, Ⅱ:Behavior [J]" ASCE, Journal of Structural Engineering, Vol.124, No.8.
    [132]Ricles, J.M., Mao. C., Lu, L.W., and J. Fisher, J.W.,2000, Development and Evaluation of Improved Details for Ductile Welded Unreinforced Flange Connections [R], SAC BD 00-24, SAC Joint Venture.
    [133]Venti, M., and Engelhardt, M.D.,2000, Test of a Free Flange Connection with a Composite Floor Slab [R], SAC Report 00/18, SAC Joint Venture.
    [134]Harrigan, P.,1996, Possible Cause of Cracking in Steel Moment Resistant Frames During the 1994 Northridge Earthquake, a thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Civil Engineering, University of Washington, Seattle, Washington.
    [135]Deierlein, G. G., and Chi, W. M.,1999, SAC TASK 5.3.3-Integrative Analytical Investigations on the Fracture Behavior of Welded Moment Resisting Connections, Final Report, John A. Blume Earthquake Engineering Center, Dept. of Civil and Environmental Engineering, Stanford University, Palo Alto, California.
    [136]Uang, C. M., Qi-Song, Y, and Bondad, D.,1998, "Dynamic Testing of Pre-Northridge and Haunch-Repaired Steel Moment Connections," Proceedings of the NEHRP Conference and Workshopon Research on the Northridge, California Earthquake of January 17,1994, Vol Ⅲ, CUREe, Richmond, California, pgs 730-37.
    [137]Clark, P., Frank, K., Krawinkler, H., and Shaw, R.,1997, Protocol for Fabrication, Inspection, Testing, and Documentation of Beam-Column Connection Tests and Other Experimental Specimens [R], SAC Report SAC/BD-97/02, SAC Joint Venture.
    [138]建筑抗震设计规范[S],GB50011-2010.北京:中国建筑工业出版社,2010.
    [139]钢结构设计规范[S],GB50017-2003.北京:中国建筑工业出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700