高氮奥氏体不锈钢显微组织及力学性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不锈钢自从问世以来就受到人们的青睐,然而不锈钢的生产中需要大量的镍,而世界镍资源储藏量不足以满足人们对不锈钢的需求量。高氮奥氏体不锈钢(以下简称高氮钢)的问世解决了这一问题,它是一种资源节约型不锈钢,利用氮、锰等元素部分取代或完全取代镍来节约镍元素。氮是一种强烈奥氏体稳定化元素,少量的氮即可以达到稳定奥氏体的作用。碳、氮共同作用可以大幅度提高高氮钢强度,对室温的韧性影响不大,并且材料的耐局部腐蚀性有所提高。
     国内近几年已经开始生产高氮钢,目前生产应用最多的是发电机护环钢Cr18Mn18N。但是高氮钢在生产和应用中发现很多问题,例如氮的加入非常困难,氮对材料韧性的影响,高氮奥氏体不锈钢中温敏化,高温析出第二相,以及低温出现的韧脆转变现象等。本文将针对高氮钢铸锭组织性能、高温热塑性、第二相析出规律做系统的研究,另外探索了高氮钢低温韧脆转变现象。研究结果表明:
     1.Cr-Mn-N系高氮钢铸锭晶粒粗大,认为是Mn含量过高,C、N原子扩散速度快导致高温下晶粒长大迅速。感应炉熔炼铸锭中枝晶偏析严重,晶间偏聚较多的Cr、Mn、C、Si原子,但未见N原子的偏聚。电渣重熔虽然可以改善该钢种的成分偏析和组织不均匀性,但是对晶粒细化无作用。高氮奥氏体不锈钢铸锭中出现浑圆球状Fe3C,析出物颗粒相连结成网状。
     2.Cr18Mn18N高氮钢热模拟实验中发现,在1000-1100℃呈现低塑性区,面缩率仅为30%左右,断口呈现沿晶非解理断裂;而在1150-1200℃呈现较高面缩率和较低变形抗力,面收缩率达60%以上、断口为韧窝型韧性断裂。试样强度均随着温度升高而不断降低,且在同一温度条件下,变形速率越大,抗拉强度越大。
     3.锻造处理的试样固溶后进行常温拉伸试验发现随着固溶温度的增加高氮钢由脆性断裂转变为韧性断裂,碳化物消融,颗粒逐渐变小。
     4.断口显微组织观察发现,该钢种晶粒异常粗大,并且随温度升高,晶界逐渐模糊、晶粒逐渐长大。在1100℃开始,金相视野内观察不到晶界。1200℃时开始析出铁素体,1300℃时存在大量的铁素体,并且铁素体已经长大。
     5.在Cr18Mnl8N不同温度的析出规律研究中,只观察到Cr3C2、铁素体和极少数TiN的沉淀析出,未发现Cr2N℃析出规律与相图不符合,因为实验的状态不同。相图为平衡状态的热力学计算结果,即表征了以缓慢升温或冷却速度条件下的相变、相组成。而实验升温、冷却速度均较快。
     6.“V”字型热塑性规律源于内部组织变化,即800~950℃时,Fe3C已溶入基体而Cr3C2尚未大量析出,因此塑性较好,而在1000~1100℃之间,Cr3C2不仅从晶界、并且从晶内沿着树枝晶的晶间方向大量析出,同时此温度区间晶粒严重粗大化,因此使得热塑性急剧下降。当温度继续升高至1150℃,Cr3C2发生溶解,高氮钢进入纯奥氏体相区,热塑性提高。1200℃开始奥氏体基体内析出岛状铁素体,随温度升高,铁素体晶粒长大。
     7.高氮奥氏体不锈钢存在着韧脆转变现象,不同成分的高氮钢韧脆转变温度不一样。Cr18Mn18N不锈钢的韧脆转变温度为-110℃至-196℃之间,Cr22Mn16N的韧脆转变温度在-80℃到-110℃之间。
     8.高氮钢低温下韧脆转变过程为韧窝→拉长的韧窝→混合型断裂→沿晶断裂,镍的加入会增加奥氏体稳定化程度,一定程度上减少碳化物的析出,对高氮钢的韧性是有利的。高氮钢固溶时间不足时碳化物未充分溶解,在晶界析出的碳化物、硫化物低温环境下产生裂纹源,最终会引起材料的失效。
Stainless steel is very popular since its inception, but the production of stainless steel needs a large number of nickel, and the world nickel resources reserves is insufficient to meet the demand of stainless steel. High nitrogen austenitic stainless steel (hereinafter referred to as the advent of high nitrogen steel) solved this problem, it is a kind of resource conservation stainless steel which use nitrogen, Mn partly displaced or completely replaced the nickel to save nickel element. Nitrogen is a strong austenitic stabilization element, and a small amount of nitrogen can achieve stability austenitic phase. Carbon, nitrogen joint action to make high nitrogen steel strength greatly raised, to room temperature difference, and the toughness of local corrosion resistant materials were improved.
     Domestic production in recent years has started to product high nitrogen steel, the current largest production is the generator protect ring steel Cr18Mn18N. But there are many problems with the production and application of high nitrogen steel, such as the joining of nitrogen, toughness of steel will reduce, sensitization will take place in intermediate temperature, second-phase separates out in high temperature, plastic brittle transition in low temperature and so on. This paper will focus on the organization performance of high nitrogen steel casting ingot, high temperature resistant thermoplastic, the rules of second phase separating, in addition to explore the rules of high nitrogen steel in low temperature ductile to brittle transition. The results of the study indicate that:
     1.Cr-Mn-N high nitrogen steel casting ingot has coarse grains, it is due to the high atomic diffusion speed of high content of Mn, C and N in high temperature. In the induction furnace there are serious gathering of more Cr, Mn, C, Si atoms in the crystal casting ingot branch intergranular slant segregation, except N atoms. Electricity slag remelting although can improve this kind of composition segregation and organizational inhomogeneity, but no effect to the grain refinement. Fe3C shaped perfectly round ball appeared in casting ingot of high nitrogen austenitic stainless steel, and connected to reticular shape.
     2. It is found that in the thermal simulation experiment Of Cr18Mn18N high nitrogen steel:In 1000-1100℃, it present low shrinkage and surface plastic zone is only 30%, the fracture is intergranular fracture And in 1150-1200℃, it present higher shrinkage and low surface deformation resistance, surface shrinkage rate is over 60% and present dimple fracture. The strength of the sample reduced as temperature increasing. And at the same temperature conditions, more the deformation rate is, the greater the tensile strength is.
     3. After the normal temperature tensile testing of the quenched forging sample, it is found that the brittle fracture of high nitrogen steel changed into ductile fracture as quenching temperature increased, carbide became smaller.
     4. After the observation of the fracture surface microstructure, it is found that the grain are abnormal bulky, and grain boundaries are fuzzy with the increase of temperature, the grain grow to coarse gradually. In 1100℃the metallographic vision of grain boundaries cannot be observed. Ferrite start to precipitate in 1200℃, there are a lot of ferrite and ferrite had grown up when it is 1300℃.
     5.During the studying of the law of Cr18Mn18N precipitation in different temperature, only Cr3C2, ferrite and a handful of TiN was observed, Cr2N has not been found. Separation material law and phase diagram does not conform to the state, from different condition obtained. In the thermodynamic equilibrium calculation results that represent phase change and phase composition with the condition of cooling or heating gradually But the heating and cooling speed in the experiment is faster.
     6. The "V" thermosplasitic rule stems from the underlying tisssues. During the temperature 800℃to 950℃, Fe3C has dissolve in substrate, but Cr3C2 was not yet massively separate out. So, it has well plasticity. While the plastic will reduce during 1000℃to 1100℃for Cr3C2 not only separates from crystal boundary but from transgranular massively, and also the crystal grain seriously thick. When the temperature continues to elevate to 1150℃, Cr3C2 has dissolved, high nitrogen steel will be in well thermosplastic for it has been pure austenite area. The austenite substrate will separate out ferrite since 1200℃which will grow up along with temperature increment.
     7. High nitrogen austenitic stainless steel has the ductile to brittle transition phenomenon. The temperature of ductile to brittle transition is distinct for the different ingredient. And the temperature will raise along with the increase of nitrogen content. The ductile to brittle transition of Cr18Mn18 stainless steel in-110℃to-196℃, and Cr22Mn16N is-80℃to-110℃
     8. The ductile to brittle transition process of high nitrogen steel is dimple fracture→dreich dimple fracture→mixed type break→intergranular fracture. The element of nickel will increase austenite stabilizing degree. Nickle is good for the toughness of high nitrogen for it will reduce carbon separate out. Carbon and sulfide will separate out from grain boundary when it is not solution heat treatment sufficiently which will lead to material failure finally.
引文
[1]Makoto Ogawa, Kazuo Hiraoka,Yasuyuki Katad. Chromium Nitride precipitation Behavior in Weld Heat-affeeted Zone of High Nitrogen Stainless Steel. ISIJ International,2002,42(12):1392-1398.
    [2]U.R.Lenel, B.R.Kllott. Mierostrueture-composition Relationships and Ms temperatures in Fe-Cr-Mn-N Alloys. Metallurgieal and Materials Transaetions A.1987,18(6):767-775.
    [3]Y.tomota etal. Strength and Toughness Relationship at Cryogenic Temperature in High Managanese Steel. Inernational Congress On 5th. Heat Treatment of materials. Budapest,1986.
    [4]J.H. Andrew, Nitrogen in Iron, Carnegie Scholarship Memoirs,1912,11:236.
    [5]F.I. Adcock, The Effect of Nitrogen on some Chromium and some Iron-Chromium Alloys, J of the Iron and Steel Institute,1926,114:117.
    [6]R.Franks, W.O.Binnder, J. Thompson, Austenitic Chromium-Manganese-Nickel Steels Containing Nitrogen. Trans. ASM,1995,47:231.
    [7]严旺生.200系列(锰系)不锈钢发展前景.中国锰业,2004,22:8.
    [8]徐效谦.开发和推广200系列不锈钢.金属制品2003,29:26.
    [9]J. Magee, Development of Type 204Cu stainless steel, a low-cost alternate to Type 304. Wire J. Int., 2002,35:8
    [10]G. Stein, I. Huchlenbroich, Manufacturing and application of high nitrogen steels. Mater. and Manufacturing Processes,2004,19:7.
    [11]王松涛.高氮奥氏体不锈钢的力学行为及氮的作用机理[D].沈阳:中国科学院研究生院,2008.
    [12]Their.H,Bbaumel.E.Influence of N on the Dispersiveness of Austenitic Stainless Steel. Arch. Eisenhuttenwesen,1969,40:333-339.
    [13]马玉喜.高氮奥氏体不锈钢组织结构及韧脆转变机制的研究[D].昆明:昆明理工大学,2008.
    [14]PickeringF.B.Physical Metallurgical Development of Stainless Steels.Stainless Steel 84.London:The Institute of Metals,1985.
    [15]Dsmpel.P.G, Ladwein.T.Effeet of Nitrogen on Mechanical-technological and Corrosion ProPerties of Stainless Steels.HNS-88.London:The Institute of Metals,1989.
    [16]Iruine.K.J, Llewellyn.D.T.Nitrogen in austenitic stainless steel. JISl,1961,199:153.
    [17]Hoke.J.H.Handbook of Stainless Steels.NewYork:Me.Graw-Hill Book ComPany,1977.
    [18]张文华.不锈钢及热处理[M].沈阳:辽宁科学技术出版社,2009:80-84
    [19]H.Speidel,M.O.Speidel,In:M.U.Kamachi,B.Raj(Eds.), High Nitrogen Steels and tainless Steels, Narosa Publishing House, New Delhi,2004,234-236.
    [20]杨艳.高氮奥氏体不锈钢腐蚀性能的研究[D].沈阳:东北大学研究生院.2008.
    [1]贾元伟Gleeble-3800热/力学模拟试验机介绍[J].太钢科技,2005,5:31-33.
    [2]郑芳,宋红梅Gleeble-3800热模拟试验机在宝钢的典型应用和开发[J].宝钢科技2003,5.
    [3]赵宝纯,李桂艳,杨静G leeble-3800热模拟试验机的应用研究[J].鞍钢技术,2010,5.
    [4]刘春月.汽车用TWIP钢压缩变形行为研究[D].太原:太原理工大学,2010.
    [5]GB/T228-2002,金属夏比缺口冲击试验方法[S].北京:中国标准出版社,2002.
    [1]王松涛.高氮奥氏体不锈钢的力学行为及氮的作用机理[D].沈阳:中国科学院研究生院,2008.
    [2]Toro A, Alonso-falleiros N, Rodrigues D, Ambrosio filho F,Tschiptschin AP. P/M processing routes of martensitic stainless steels. Trans Indian Inst Met 2002;55(5):481-7.
    [3]Berns H, Siebert S. Effect of temperature and nitrogen partial pressure on the case hardening with nitrogen. Proceedings of international conference on high nitrogen steels-HNS,1993. Kiev: Institute of Metal Physics,1993,566-71.
    [4]陈慧琴,刘建生,郭会光.氮对Mnl8Crl8N护环钢高温力学性能的影响[J].特殊钢,2005,26(6):12-14.
    [5]H. Ha'nninen, J. Romu, R. Ilola, J. Tervo, A. Laitinen, J. Mater.Proc. Technol. 2001(117):424-430.
    [6]M.P. Fewell, P. Garlick, J.M. Priest, P.T. Burke, N. Dytlewski, K.E. Prince, K.T. Short, R.G. Elliman, H. Timmers, T.D.M. Weijers, B.Gong, Proc. Int. Current Status Seminar on Thermochemical Surf.Eng. Osaka,2001,177.
    [7]马玉喜.高氮奥氏体不锈钢组织结构及韧脆转变机制的研究[D].昆明:昆明理工大学,2008.
    [8]D. Kuroda, T. Hanawa, T. Hibaru, S. Kuroda, M. Kobayashi, T.Kobayashi, Mater. Trans.44 (2003) 414-420.
    [1]袁志钟,戴起勋,程晓农,陈康敏,潘励.高氮奥氏体不锈钢动态拉伸的SEM原位观察[J].江苏大学学报,2003,24(3):33-35.
    [2]I. Salvatori, T. Hayashy, K. Nagai, Proc. of the Int. Workshop on Innovative Structural Materials, Tsukuba,2000,24.
    [3]A. Di Schino, J.M. Kenny, I. Salvatori, Proc. of the 4th European Stainless Steel Conference, Paris, vol.2,2002,22.
    [4]逯允海,付瑞东,邱亮,张静.氮强化高锰奥氏体钢热变形行为研究[J].材料热处理学报2007,28(2):33-37.
    [5]武建国,郭会光,刘建生Mn18Cr18N护环钢热变形特性的试验研究[J].大型锻件,2004,3:25-27.
    [6]付瑞东,任一宾,郑炀曾32Mn_7Cr_0_6Mo_0_3N奥氏体低温钢的组织和拉伸性能[J].特殊钢,2001,22(2):13-15.
    [7]张进,李静媛,王一德,任学平,王辉棉,李志斌2Mn18Cr18高氮钢热加工工艺的研究[J].锻压技术,2009,34(1):23-26.
    [1]陆世英,张廷凯,康喜范,杨长强,王熙.不锈钢[M].北京:原子能出版社,1995:195-205.
    [2]张文华.不锈钢及热处理[M].沈阳:辽宁科学技术出版社,2009:65-77.
    [3]王松涛.高氮奥氏体不锈钢的力学行为及氮的作用机理[D].沈阳:中国科学院研究生院,2008.
    [4]Takuda H, Kikuchi S, Hatta N, Kokado J. Mechanical properties of type 304 stainless steel sheet produced by twin roll strip casting process. Steel Res 1993;64:132-5.
    [5]Girgensohn A, Buchner AR, Tacke KH. Twin roll strip casting of low carbon steels. Ironmak Steelmak 2000;27:317-23.
    [6]马玉喜.高氮奥氏体不锈钢组织结构及韧脆转变机制的研究[D].昆明:昆明理工大学,2008.
    [7]袁志钟,陈康敏,戴起勋,程晓农.高氮奥氏体钢的Cr_2N晶间析出研究[J].金属热处理,2004,29(3):52-54.
    [8]易邦旺,胡燕,郎文运,杨志勇.氮含量对Cr18Mn18N无磁不锈钢力学性能磁导率和组织的影响[J].钢铁,1998,33(3):22-24.
    [9]JIANG Zhou-hua, LI Hua-bing, CHEN Zhao-ping, et al. The Nitrogen Solubility in Molten Stainless Steel [J]. Steel Research International,2005,76(10):730-735.
    [10]袁志钟,戴起勋,程晓农,张成华.氮在奥氏体不锈钢中的作用[J].江苏大学学报,2002,23(3):72-74.
    [11]陈玉明,周维志,宋维军,高洪路.汽轮发电机组无磁性护环锻件材料的演变过程和研究概况[J].大型锻件,2002,3(2):43-46.
    [1]陈汝淑,刘德义,刘世程,刘世勇.高但奥氏体钢低温断面的晶体学分析[J].金属学报,2007,43(12):1233-1238.
    [2]刘世程,刘德义,陈汝淑,戴雅康.高氮奥氏体钢中退火孪晶界及其断裂刻面的特征[J].材料热处理学报,2005,26(4).
    [3]刘世程.时效对JNI奥氏体钢超导低温断裂韧度的影响[J].金属学报,1999,20(3):1-6.
    [4]马玉喜,荣凡,周荣,郎宇平,蒋业华1Cr22Mn15N不锈钢的韧脆转变机理[J].机械工程材料,2007,31(10)131-134.
    [5]Simmons J W. Strain hardening and plastic flow properties of nitrogen-alloyed Fe-1 7Cr-(8-10)-Mn-5Ni austenitic stainless steels[J]. Acta Mater,1997,45(6):2467-2475.
    [6]郑炀曾,刘文昌,张静武22Mn-13Cr-SNi-0.25N氮强化高锰奥氏体钢的低温变形与断裂[J].钢铁,1996,31(8):4144.
    [7]陈康敏.高锰奥氏体钢低温断裂机理的研究[D].江苏:江苏理工大学,1994
    [8]Harminen H, Romu J, Ilola R, et al. Effects of processing and manufacturing of high mitrogen containing stainless steels on their mechanicsl, conosion and wear pmperties[J]. Journal of Materials Processing Technology,2001,117:424-430.
    [9]戴起勋,火树鹏.含氮奥氏体钢的穿晶脆断[J].机械工程学报.1994,30(3):14-18.
    [10]王松涛,杨柯,单以银,李来凤.高氮奥氏体不锈钢与316L不锈钢的冷变形行为研究[J].金属学报.2007,43(5):171.
    [11]Tomota.Y, Endo.S.Cleaveage-like Fracture at low temperature in an 18Mn-18Cr-0.5N Austenitic Steels. ISIJ International.1990,30 (8):656-662.
    [12]侯彦芬,冯万里,刘瑞堂.护环钢50Mn18Cr4沿晶断裂分析及其对晶界损伤本质的探讨[J].哈尔滨工业大学学报.2006,27(5)23-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700