Ca及Ca、Nd对镁铝基合金显微组织和力学性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在金属资源日益匮乏的今天,加速镁合金材料相关的科学技术研究是实现可持续性发展的重要措施之一。然而由于镁铝基合金的主要强化相相Mg17Al12的熔点比较低,在高温条件下易软化,不能有效钉扎晶界和抑制高温晶界移动。因此,提高镁合金的高温性能成为国内外材料研究的热点。本文针对Mg-Al基镁合金,通过碱土元素Ca以及Ca、Nd复合变质的方法,研究了Ca及Ca、Nd元素对合金组织及力学性能的影响。
     本文采用金属型普通铸造法制备出Mg-(3%~9%)Al-xCa及Mg-6%Al-1Ca-xNd实验合金。利用了光学金相显微镜、SEM扫描电镜、EDS能量散射光谱、x射线衍射分析仪、布氏硬度计、电子万能试验机等手段,对添加Ca及Ca、Nd复合变质的镁铝基合金铸态显微组织及力学性能进行研究和分析。结果表明:
     (1)合金元素Ca的加入,对Mg-(3%~9%)Al合金的组织形貌和相组成都产生了较大的影响。当Al/Ca之比不大于6时,Ca的加入明显细化了基体组织,粗大的β-Mg17Al12相的枝晶尺寸和二次枝晶间距明显变小,数量也减少,并有部分β-Mg17Al12相成短条状与颗粒状。当Ca含量进一步增多时,合金中产生Al2Ca相,Al2Ca相的形貌从细骨骼状逐渐转变成网格状,β-Mg17Al12相的数量继续下降,当Al/Ca比超过3时,Al2Ca相以连续网状沿晶界分布,此时β-Mg17Al12相已经完全消失。
     (2)不同含量Ca的加入对实验合金硬度主要体现在:实验合金的硬度都是随着Ca含量的增加而上升的,三种合金的最高硬度分别是54.7HB、56.4HB、61.8HB。在Al2Ca相成为合金中主要第二相时,硬度上升最明显,造成这一现象的主要原因是由于合金组织的细化和高硬度第二相的析出。而随着Al含量的提高,Ca对合金硬度的提升程度较小
     (3)适量Ca的加入可以提高合金的高温性能。实验合金的高温拉伸性能随着Ca含量的提升呈先上升后下降的趋势,试验表明添加适量的Ca对合金高温性能有益,由于耐热脆硬相Al2Ca的析出,A、B组试验合金的高温性能都在Ca含量1 wt%时达到最高值,而随着Ca含量的进一步增加,高温抗拉强度开始下降,但均高于基体合金。合金的高温屈服强度随着Ca的含量的增加而上升,说明Ca能够提升合金的高温抗变形能力。无论是室温拉伸还是高温拉伸,Ca的加入都使合金的塑性下降,Ca的加入提高了合金的脆性。
     (4)Mg-6Al-1Ca合金中加入合金元素Nd后,组织得到明显细化,第二相形貌也发生很大变化。当Nd含量为0.3%wt时,组织中未能发现含有Nd的化合物,与基体合金相比,半连续的网状Al2Ca相已经消失,组织形貌得到一定细化。当Nd含量达到0.6wt%时,组织中生成了细针状的Al11Nd3相,Al2Ca以细骨骼状存在,β-Mg17Al12相的形貌更加细化,基本以颗粒状存在,并有微量的Ca固溶。此时合金中第二相主要由Al11Nd3、Al2Ca和β-Mg17Al12相组成。当Nd含量为0.9wt%时,组织中Al11Nd3相从细针状转变成短棒状,而β-Mg17Al12相和Al2Ca相的形貌粗化。
     (5)添加适量的Nd能够提高合金的室温和高温拉伸性能,随合金元素Nd含量的增加,试验合金的抗拉强度和伸长率都呈先增加后降低趋势。当Nd含量为0.6wt%时,合金的室温和高温抗拉强达到最高值,分别为191MPa和173MPa,比基体分别提高了17.1%和19.3%,随后抗拉强度开始下降,但均高于基体合金。合金的塑性也得到有效改善,室温和高温的伸长率分别为6.6%和9.6%,相比于基体合金提高了34.6%和23.0%。Nd的添加抑制了Al2Ca的连续析出,降低了Ca对镁合金脆性的影响。
Today, With Increasing scarcity of the metal resources, accelerating the scientific and technological research related to the magnesium alloy material is one of the important measures to achieve sustainable development. However, the main phase Mg17Al12 which has a relatively low melting point and is easy to soften under high temperature conditions can not effectively pin the grain boundaries and inhibit the high-temperature grain boundaries rotation in magnesium alloy.Therefore, improving the high temperature properties of magnesium alloy has become a critical issue at home and abroad.
     In this paper, the efforts of Ca and Ca、Nd addition on the as-cast microstructure and mechanical properties of Mg-Al alloys were investigated by the method of Ca and Ca、Nd compound modification.
     Experimental alloy were prepared by using as-cast forming technique.The efforts of Ca and Ca, Nd addition on the as-cast microstructure and mechanical properties of Mg-Al alloys were investigated and analyzed by scanning electron microscope(SEM),energy dispersive spectroscopy (EDS),X-ray diffraction (XRD),Brinell testing machines, electronic universal testing machine, et cetera.Results show that:
     The great effects of Ca addition on the microstructure and mechanical properties of Mg-Al alloy are produced. The experiments in this group, when the Al/Ca ratio is only less than 6, The addition of Ca result in refined matrix microstructure greatly. It was significantly smaller of the dendrite size of thickβ-Mg17Al12 phase and secondary dendrite spacing.The amount of them significantly reduced. Furthermore, a small amount ofβ-Mg17Al12 was refined to short strip or granules. The new phase Al2Ca appears when the Ca has been added. The morphology of Al2Ca phase is changed from bone-shaped into grid-like. Meanwhile,β-Mg17Al12 phase continued to decline. Al2Ca phase have continuous net-like along the grain boundaries when the Al/Ca ratio is more than 3.β-Mg17Al12 phase have disappeared completely at the time.
     (2) Effects of Ca addition on the hardness of the test alloys have been investigated. Results show that:with the increase of calcium content, the hardness of the alloy increased accordingly. The highest hardness values of the alloys are 54.7HB,56.4HB,61.8HB. When Al2Ca phase is changed to the main second phase, brinell hardness of the alloy obvious increases. Due to structure of alloy refined and the second phase which is high hardness separated. When the Al has been added, the effect of Ca is less to hardness of the alloy
     (3) Amount of Ca can improve the tensile properties of alloys in high temperature.With the increase of Ca content the tensile properties of alloys in high temperature of the test alloy first increases and then decreases. Results show that:the addition of Ca is useful to the tensile properties of alloys in high temperature. Due to heat separation of brittle phases Al2Ca, the properties of alloys in high temperature of both A and B group alloys reaches the maximum value when Ca addition up to 1 wt%.With the further increase of Ca content, high tensile strength began to decline, but still higher than the matrix alloy.With the increase of Ca content the yield strength of alloys in high temperature of the test alloy increases, which indicated that Ca can improve the deformation resistance of alloys in high temperature. The plastic of the alloy increased and the brittleness of the alloy increases with the addition of Ca increased both in room temperature and high temperature.
     (4) The addition of Nd results in refined matrix micro structure greatly and the second phase morphology changing greatly. When Nd addition up to 0.3 wt%, The compounds with Nd do not appears. However, compared to the matrix alloy, semi-continuous net-like Al2Ca phase has disappeared and the microstructure of alloy is refined. When Nd addition up to 0.6 wt%, a fine needle Al11Nd3 phase appears, and Al2Ca exists in form of bone-like.β-Mg17Al12 phase morphology is refined more than before, Which exists mainly in the form of particles and a small amount of Ca have been dissolve in the alloy. At this point the second phases are mainly Al11Nd3, Al2Ca andβ-Mg17Al12 phase. When Nd addition is up to 0.9 wt%, Al11Nd3 phase of matrix alloy is changed from a fine needle into a short stick. However, the morphology ofβ-Mg17Al12 phase and Al2Ca phase is coarsed.
     (5) The tensile strength of matrix alloy increases at room temperature and high temperature when Ca addition up is appropriate. The tensile strength and elongation of the test alloy first increases and then decreases. When Nd addition up to 0.6 wt%, tensile strength of alloy were both at the optimal at room temperature and high temperature and the valves are 191Mpa 173Mpa,respectively.They are increased by 17.1% and 19.3% more than the matrix alloy, respectively. Following that the tensile strength started to decline, but still higher than the matrix Alloy. The ductility of alloys have been improved at room temperature and high temperature.The elongation rates were 6.6% and 9.6%, respectively.They increased by 34.6% and 23.0% compared to the matrix alloy, respectively. With the addition of Ca, Al2Ca phase continuous precipitation has been inhibited and the brittle effect of Ca to magnesium alloy is reduced.
引文
[1]陈振华,严红革,陈吉华等.镁合金[M].北京:化学工业出版社,2004:10.
    [2]Yuan G Y, Liu Z L, Wang Q D, Ding W J. Microstructure Refinement of Mg-Al-Zn-Si Alloys [J]. Materials Letters,2002,56:53~58.
    [3]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用[M].北京:机械工业出版社,2002,16~17.
    [4]陆树荪,顾开道,郑来苏.有色铸造合金及熔炼[M].北京:国防工业出版社,1983.
    [5](澳)波尔米尔(Polmear I).轻合金[M].北京:国防工业出版社,1985.
    [6]Robert. S. Buck, Magnesium Products Design [J]. New York:Marcel Dekker, INC.1987.
    [7]B. L. Mordik. Magnesium Properties-Applications-Potential[J]. Materials Science and Engineering,2001 (A302):37~45.
    [8]白晶,孙扬善,强立峰等.锶和钙在镁-铝系合金中的应用及研究进展[J].铸造,2006,1-5.
    [9]Ruden T J,Albright D L. High Ductility Magnesium Alloy in Automotive Application [J]. Advanced Materials & Process,1998,146(6),28~32.
    [10]祁庆琚,刘勇兵,杨晓红等.镁合金的研究及其在汽车工业中的应用与展望[J].汽车工程,2002,24(2):94~100,125.
    [11]刘正,王越.镁基轻质材料的研究与应用[J].材料研究学报,2000,14(5):449~456.
    [12]张永忠,张奎,樊建中等.压铸镁合金及其在汽车工业中的应用[J].特种铸造及有色合金,1999,(3):54~56.
    [13]Claudio Mus. Magnesium Die Casting, History, Principles and State of the Art [J]. Magnesium Industry,2002(2):21~25.
    [14]刘英,李元元,张卫文等.镁合金的研究进展和应用前景[J].轻合金,2002,(8):56~61.
    [15]耿浩然,崔红卫,赵鹏.镁合金的应用与发展动态[J].铸造技术,2002,(4):200~202.
    [16]何良菊,李培杰.中国镁合金工业现状与镁合金开发技术[J].铸造技术,2003,(3):161~162.
    [17]Kaoner K V, Magnesium Alloys and Their Applications[J]. Munich:DGM,2000:14~22.
    [18]Kaplan H, Hryn J, Clow B. Magnesium Technology 2000[J]. Nashvile:TMS,2000: 279~284.
    [19]Mordike B L. Magnesium and Magnesium Alloys[J]. Journal of Japan Institute of Light Metals,2001,51(1),2-13.
    [20]Luo A A, Pekguleryuz M O. Reviews Cast Magnesium alloys for elevated Temperature Applications[J]. Journal if Materials Science,1994129:5259~5271.
    [21]Leonits T E. The Properties if Sand Cast Magnesium-rare-earth Alloys[J]. Trans. AIME 1949,191:257~269.
    [22]Foerster G. Proc.7eh SDCE International Die Cast Congress, SDCE,1972:9372
    [23]Drits M E. Sviderkaya Z A. Nikitina N I. Effect of Alloying on the Properties of Mg-Gd Alloys[J]. Metal Science and Heat Treatment,1979,21:887~889
    [24]Beer S, Frommeyer G, Schmid E. In:Magnesium Alloys and Their Applications[J]. DGM infirmationsgesellschaft,1992:317~324.
    [25]Pettersen K, Westengen H, Skar I, et al. In:Magnesium Alloys and Their Applications. 2000:29~34.
    [26]Fuchs H J. Magnesium alloy having a high resistance o permanent creep deformation at elevated temperatures[J]. UK patent847992,1960.
    [27]Pekguleryuz M O, Baril E. in:Magnesium technology 2001.2001,119~125.
    [28]刘子利,丁文江,袁广银等.镁铝基耐热铸造镁合金的进展[J].机械工程材料,2001,25(11):1-4.
    [29]Henry Hu, Alfred Naiyili, John E Allison. Potential Magnesium Alloys For High Temperature Die Cast Automotive Application:A Review[J]. Materials and Manufacturing Processes,2003,18(5):687~717.
    [30]袁广银,刘满平,王渠东等.Mg2A12Zn2Si合金的显微组织细化[J].金属学报,2002,38(10):1105~1108.
    [31]Jae Joong Kim, Do Hyang Kim, K S Shin, et al. Modification of Mg2Si Morphology in Squeeze Cast Mg-Al-Zn-Si Alloy by Ca or P Addition[J]. Scripta Materialia,1999,41 (3):333~340.
    [32]袁广银,孙扬善,张为民.Bi对铸造镁合金组织和力学性能的影响[J].铸造,1998,5:5-7.
    [33]Polmear I J, Mordike B L, Hehman F, Editors Magnesium Alloys and Their Applications[J]. DGM Informations Gesellschaft, Verleg,1992,201~212.
    [34]刘英,李元元,张卫文等.镁合金的研究进展和应用前景[J].轻金属,2002(8):56~61.
    [35]Mordike B L. Development of Highly Creep Resistant Magnesium Alloys[J]. Journal of Materials Porcessing Technology,2001,117(3):391~394.
    [36]刘子利,沈以赴,李子全等.铸造镁合金的晶粒细化技术[J].材料科学与工程学报,2004,22(1):146~149.
    [37]陈增,张密林,吕艳卓等.锆在镁及镁合金中的作用[J].铸造技术,2007,12:820~822,846.
    [38]董闯.准晶材料[M].北京:国防工业出版社,1998.
    [39]王渠东,丁文江.镁合金及其成形技术的国内外动态与发展[J].世界科技研究与进展,2004,126(3):39.
    [40]Luo A A. Recent magnesium alloy development for elevated temperature applications[J]. International Materals Reviews,2004,49(1):13.
    [41]程素玲,杨根仓,樊建峰,周尧和.Ca对Mg-9% A1合金阻燃特性的影响[J].铸造,2005,4(2):141.
    [42]曾昭昭.特种铸造[M].杭州:浙江大学出版社,1990.
    [43]张洪杰,孟健,唐定骧.高性能镁-稀土结构材料的研制、开发与应用[J].中国稀土学报,2004,22(1):40~47.
    [44]Ninomiya R, Ojiro T. and Kubota K. Improved heat resistance of Mg-AI alloys by the Ca addition, Acta metal. Mater.1995,43(2):669~674.
    [45]曾小勤,王渠东,吕宜振等.Mg-9Al-0.15Zn-0.1 Be-XCa合金的组织和力学性能研究[J].机械工程材料,2001,5:15~18.
    [46]樊昱.Ca对镁合金显微组织、力学性能和腐蚀性能的影响[J].中国有色金属学报,2005,15(2):210~218.
    [47]Li Peijie et al. Microstructure and properties of AZ91D alloy with Ca additions[J]. Mater Lett,2004,12:1.
    [48]闵学刚,杜温文,薛烽等.Ca提高β-Mg17Al12相熔点的现象及EET理论分析科学通 报,2002,47(2):109~112.
    [49]虞觉奇,易文质,陈邦迪等.二元合金状态图集[M], Shanghai:Shanghai scientific & Technical Press.1987:705.
    [50]Itkin V P, Alcock C B, Van P J. The Al-Ca system[J]. Bulletin of Alloy Phase Diagrams,1987,8(1):58
    [51]#12(镁合金手册)
    [52]Sohn K Y, Jones J W and Allison J E, The effect of calcium on creep and bolt load retention behavior of die-cast AM50 alloy, In:Kaplan H I, Hryn J N, and Clow BB, Magnesium Technology 2000, TMS, Warrendale, PA,2000,285-290.
    [53]ASM Handbook Committee, Alloy Phase Diagrams, ASM International, Ohio, USA, 1992,248.
    [54]Kevorkov D, Schmid-Fetzer R, The Al-Ca system. Z Metallkd.2001,92,946~958.
    [55]Nayeb. Hashemi A A and Clark J B, The Ca-Mg system, Bull. Alloy Phase Diagrams, 1987,8(1),58~65.
    [56]Sakkinen D J. Attributes of magnesium for automobile design [A]. Proceedings of SAE [C]. Detro it:SAE,1994.71~82.
    [57]刘满平.Mg-Al-Ca合金微观组织、力学性能和蠕变行为研究[D].上海:上海交通大学材料科学与工程学院,2003.
    [58]李克杰,李全安,谢建昌等.稀土在耐热镁合金中的研究应用[J].稀土.2009,30:79~83.
    [59]Wang X Q, Li Q A, Zhang X Y. Effects of Yttrium and Neodymium on Micro structure and Mechanical Properties of AZ81 Magnesium Alloy [J]. Rare Metal Materials and Engineering, (in Chin.),2008,37(1):62.
    [60]吴玉锋.Mg-Al-Nd/Sr耐热镁合金的组织结构与力学性能研究[D].北京:北京工业大学材料学院,2008.
    [61]http://www.crct.polymtl.ca/FACT/documentation/BINARU/NINARY Figs.htm
    [62]Huang X F, Fu P H, Lu C, Ding W J. Influence of Nd on the Mechanical Properties and High Temperature Creep Properties of AM50 Magnesium Alloy[J]. Chinese Journal of Materials Research, (in Chin.),2004,18(6):593
    [63]Heat Resistant Magnesium Alloys [M]. Edited by Chen Z H. Beijing:Chemical Industry Press,2007.
    [64]王小强,李全安,张兴渊.Y-Nd复合稀土对AZ81镁合金组织和力学性能的影响[J].稀有金属材料与工程,2008,37(1):62~65.
    [65]Jianli Wang, JieYang, Yaoming Wu. Microstructures and Mechanical Properties of as-cast Mg-5Al-0.4Zn-xNd(x=0,1,2 and 4) Alloys[J]. Materials Science and Engineering A.2008, (472):332~337.
    [66]Zhang J W, Wang S B, Zhang J Y, Zhang J L, Xu B S. Effects of Nd on Microstructures and Mechanical Properties of AM60 Magnesium Alloy in Vacuum Melting [J]. Transactions of Nonferrous Metals Society of China, (in Chin.),2009,38(7):1141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700