钛合金齿轮表面等离子Mo合金化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛合金具有比强度高、中低温稳定性好、耐腐蚀性能优异、生物相容性好等一系列优异的特性而广泛的应用于航空航天、生物医学、化工、交通运输、文体及电子等行业;但现有钛合金由于表面承载能力低、耐磨性能差以及特定环境中耐蚀性低等原因,严重影响了钛合金结构的安全性和可靠性。材料的磨损及腐蚀很大程度上由表面性能决定,目前国内外提高钛合金耐磨性能的处理技术主要有电镀、化学热处理、PVD、CVD、激光强化以及等离子表面合金化等。但这些工艺方法存在着膜层薄、提高耐磨性能有限、耐磨层脆、耐冲击载荷性能差或耐磨层耐蚀性能差等问题。为此,针对钛合金的表面耐磨处理要求,研究采用等离子表面合金化在钛合金齿轮表面制备渗Mo镀层(外部镀层可以使合金表面完全改性;梯度中间扩散层可改善改性层-软基材之间的协调变形能力),通过在钛合金齿轮表面制备Mo改性层(Mo和其他合金元素粘着倾向最弱)以克服软基体表面耐磨涂层易剥落的缺点以及提高其抗烧损性能。在不影响钛合金基材性能的情况下,有效提高钛合金表面的耐磨性能,这将大步提高钛合金在工业应用中的使用寿命以及扩展其应用领域。
     本论文是源于863计划项目“表面高性能钛合金的制备与性能研究”(2007AA03Z521)。选择Ti6Al4V合金作为研究对象,通过在Ti6Al4V合金齿轮表面制备Mo渗镀改性层的工艺及其对提高齿轮耐磨性能作用的研究,为制备表面高性能钛合金的应用探索一条可行的途径。论文的主要工作是采用等离子表面合金化技术在Ti6Al4V合金齿轮表面制备Mo渗镀改性层,通过提高工件表面的硬度和优化承载能力来有效提高钛合金齿轮表面的耐磨性能;通过XRD, GDOES和SEM对改性层的组织结构进行分析,利用磨损试验机进行滑动摩擦和滚动摩擦试验,检验表面改性后的Ti6A14V合金的耐磨性能,分析其滑动摩擦和滚动摩擦特性;通过滚动接触疲劳试验来检测其抗滚动接触疲劳性能;通过模拟实际工况条件来进行耐磨性研究,通过齿轮跑合试验和实际运转试验来检测表面改性后的Ti6Al4V合金齿轮的实际运行情况,探讨改性层对钛齿轮性能的影响。
     本文经过一系列的实验和检测分析,得出以下结果:
     (1)采用等离子表面合金化技术在Ti6A14V合金表面进行渗Mo,通过工艺控制可获得厚度达18μm的由Mo扩散层和Mo沉积层构成的改性层;
     (2)改性层的表面硬度达1050HK,比Ti6Al4V合金提高了近三倍,且从改性层表面到Ti6A14V合金基体硬度梯度分布;
     (3)渗Mo的Ti6A14V合金试样与调质40Cr配副对磨做滑动和滚动摩擦时,摩擦状态明显改善,耐擦性能与承载能力都得到显著提高;
     (4) Ti6Al4V合金的滚动接触疲劳失效特征是粘着麻点和蚀坑,渗Mo处理能显著改善Ti6Al4V合金的滚动接触疲劳性能;
     (5)经过渗Mo处理的钛齿轮在跑合和运转试验中取得了成功应用。
     本论文的研究工作,进一步丰富了制备表面高性能钛合金的方法及理论,为表面合金化技术在Ti6Al4V合金齿轮表面的应用提供了有益的研究成果。
Titanium alloy has been applied in aerospace, biomedical, chemical, transportation, sports and electronics industries due to its excellent properties, such as high specific strength, low temperature stability, excellent corrosion resistance and good biocompatibility. However, its disadvantages of low carrying capacity of the surface, poor wear resistance, high temperature oxidation embrittlement and low corrosion resistance at specific environment significantly influence the structure safety. Because the performance of wear and corrosion are mainly determined by the surface, so many processing technologies to improve wear resistance of titanium alloy have developed, including electroplating, chemical heat treatment, PVD, CVD, laser strengthening and plasma surface alloying and so on at home and abroad. But these processes have some poor performance, like exist thin films, partly improve the wear resistance, brittle wear-resistant layer, and so on. To satisfy the request of surface wear-resistant of titanium alloys, Mo surface modified layer was prepared on titanium gear using plasma surface alloying technique, consisted of a external coating, which can completely modify the surface content, and a gradient diffusion layer, which can improve the coordination deformation capacity between the modified layer and the substrate. For overcoming the disvantage of hard coatings on soft substrate, like titanium, that was easily peeled off under high loadings condition, Mo-base surface modified layers were prepared on Titanium Gear, which can obviously improve its wear resistance and simultaneously increase anti-burning properties due to weak adhesion tendency of molybdenum element with other elements. Without severe loss of the performance of substrate, the wear resistance of titanium alloy can be effectively improved, which will largely improve the life of titanium alloy parts in industrial applications and expansion of its applications.
     This article originates from the 863 projects "The preparation and properties of high-performance surface titanium alloy" (2007AA03Z521). By taking Ti6Al4V alloy as research target, this paper discusses process of Mo surface modified layer prepared on Titanium Gear and its effect on wear resistance at the field of theoretically and experimentally, so as to provide beneficial experiences for researches on the preparation of high-performance surface titanium alloy. Major work accomplished in this paper is as follows:Mo surface modified layer was prepared on titanium gear using plasma surface alloying technique to increase the surface hardness and adhesion strength which can effectively improve the wear resistance of titanium alloy gear. The micro structure of the modified layer was investigated by XRD, GDOES and SEM. The sliding friction and rolling friction test were performed to evaluate wear resistance of Mo modified layer by the wear test machine, the sliding friction and rolling friction characteristics were also investigated, and the rolling contact fatigue was performed to investigate the rolling contact fatigue performance of Mo modified layer. By simulating the actual working conditions, through the gear running-in tests and actual running test to evaluate the actual operation of the Ti6Al4V alloy gear and explore the performance of modified titanium gear.
     Based on the theoretical and experimental analysis, the results as follows:
     (1) Mo surface modified layer was prepared on titanium gear using plasma surface alloying technique, Mo surface modified layer is consisted of a pure Mo surface layer and a diffusion layer and its depth is no less than 18μm.;
     (2) The micro-hardness changes gradually from surface to Ti6Al4V matrix, and Mo modified layer reach up to 1050HK, which is nearly three times higher than that of Ti6A14V matrix.
     (3) The samples of Ti6A14V alloy with Mo modified layer and tempered 40Cr carried on ground sliding and rolling friction, the friction condition was significantly improved, the wear resistance and load carrying capacity had been significantly strengthened.
     (4) The failure characterizes of Ti6A14V alloy by rolling contact fatigue were adhesion pitting and corrosion pits, Mo surface modified layer can significantly improve performance of rolling contact fatigue of the Ti6A14V alloy;
     (5) The gear running-in tests and actual running tests were carried on. The performances of the molybdnized Ti6Al4V alloy gears gears were successful applied.
     Researches done in this paper enrich methods of the preparation of high-performance surface titanium alloy, and provide beneficial research fruits for surface alloying technology in the application of the surface of Ti6A14V alloy gears.
引文
[]] Yen Yu. Yen Tiemei et al. Titanium source in the world[J]. Progress of Non ferrous Metal in china, 1984, (2):2.
    [2]王向东,逯福生,贾弘等.钛发展战略[J].稀有金属快报,2004,23(7):1-7.
    [3]李哲.Ti6Al4V表面等离子Mo基合金化扩散动力学及磨损性能研究[D].太原:太原理工大学,20]0.
    [4]刘凤岭,李金桂,冯自修.钛合金表面技术的进展[J].腐蚀与防护,2001,22(2):54-57.
    [5]Lebedeva I. L., Presnyakova G. N. Adhesion wear mechanisms under dry fiction of titanium alloys in vacuum[J]. Wear,1991,148(2):203-210.
    16]李文平.钛合金的应用现状及发展前景[J].轻金属,2002,(5):53-55.
    [7]韩明臣,黄淑梅.钛在美国军工中的应用[J].钛工业进展,2001,(2):28-31.
    [8]金红.钛在民用领域中的开发应用现状及发展前景[J].稀有金属,1998,22(6):434-438.
    [9]Niinomi, Mitsuo. Recent titanium R & D for biomedical applications in Japan[J]. JOM, 1999,51 (6):32-34.
    [10]刘润泽,罗国珍,赖新锦.国产钛材在民用工业中的应用和发展前景[J].有色金属,2000,(]):42-45.
    [11]Vander mark, Robert. opportunities for the titanium industry in bicycles and wheelchairs[J].JOM,1997,49(6):24-27.
    [12]李建.钛金属在眼镜行业的应用[J].中国眼镜科技杂志,2004,(5):82-82.
    [13]Yamamoto. Yoshitaka. Development of titanium products for consumer, sports and leisure goods[J]. Research and Development Kobe steel Engineering Reports,1999,49(3): 68-70.
    [14]何利舰,张小农.钛及钛合金表面处理技术新进展[J].上海金属,2005,27(3):39-45.
    [15]胡树兵,李志章,梅志.物理气相沉积TiN复合涂层研究进展[J].材料科学与工程,2000,18(2):110-115.
    [16]刘彦章.反应堆用钛合金表面的离子注入及其耐蚀性和抗磨损机理研究[D].成都: 电子科技大学,2007.
    [17]王东生,田宗军,沈理达,刘志东,黄因慧.钛合金激光表面改性技术研究现状[J].激光与光电子学进展,2008,45(6):24-32.
    [18]张淑兰,陈怀宁,林泉洪,刘刚.工业纯钛的表面纳米化及其机制[J].有色金属,2003,55(4):5-8.
    [19]Knotek O., Loffler F., Kramer G. Process and advantage of multicomponent and multilayer PVD coatings[J]. Surf. Coat Technol,1993,59(1):14-20.
    [20]范本惠,潘俊德,郑维能等.双层辉光离子渗金属多元共渗的研究[J].机械工程材料,1991,(4):10-]2.
    [21]唐宾,王从曾,苏永安等.表面冶金高速钢组织的研究[J].热加工工艺,1993,(5):32-34.
    [22]胡红娟.钛合金(Ti-6Al-4V)深层离子氮化及其性能研究[D].太原:太原理工大学,2006.
    [23]徐重,张艳梅,张平则,贺志勇,高原.双层辉光等离子表面冶金技术[J].热处理,2009,24(1):1-11.
    [24]Tang Bin, Wu Pei-Qiang, Li Xiu-Yan et al. Tribological behavior of plasma Mo-N surface modified Ti-6Al-4V alloy[J]. Surface and Coatings Technology.2004,179:333-339.
    [25]贺志勇,高原,古凤英,徐重.双层辉光离子渗金属技术中离子轰击行为[J].1995,2(1):29-35.
    [26]李争显,徐重,周廉,张树林,刘道新.双层辉光离子渗金属电极结构的研究[J].2003,11(6):31-33.
    [27]徐重,王振民,古凤英.双层辉光离子渗金属技术[J].金属热处理学报,1982,1(6):71-83.
    [28]Xu Z, Gu F Y, Pang J D et al.Plasma Surface Alloying[J]. Surface Enigeering,1986.2(2): 103-106.
    [29]Xu Zhong. U. S. Patent:4,520,268.
    [30]Xu Zhong. U. S. Patent:4,731,539.
    [31]Xu Zhong. UK Patent:2,150,602.
    [32]Xu Zhong. Canada Patent:1,212,486.
    [33]Xu Zhong. Australia Patent:580,734.
    [34]徐重.等离子表面冶金技术的现状与发展[J].中国工程科学,2002,4(2):36-40.
    [35]古凤英,王振民,范本惠,潘俊德.双层辉光离子渗钨及其后热处理工艺的研究[J].太原工业大学学报,1990,21(3):5-8.
    [36]范本惠,徐重,潘俊德等.双层辉光离子镍铬共渗的研究[J].太原工业大学学报,1988,19(3):]0-15.
    [37]李晖.氮化钛涂层的齿面制备工艺及其对齿轮承载能力的影响[D].重庆:重庆大学,2007.
    [38]J.W.Blake,H.S.Cheng.A Surface Pitting Life Model for Spur Gears[J]. Tribology.1991,113: 712-718.
    [39]T.E.Tallian. Simplified Contact Fatigue Life Prediction Model[J].Journal of Tribology. 1992. 2:207-220.
    [40]日本机械学会技术资料《齿轮强度设计资料》出版分科会编.齿轮强度设计资料.机械工业出版社,1984年.
    [41]赵琪,秦林,王帅等.钛合金圆环工件表面合金化及其滚动摩擦性能研究[J].热加工工艺,2011,40(4):92-94.
    [42]唐宾,范爱兰,秦林,等.钛合金表面合金化组织及其微动摩擦学性能研究[J].核技术,2007,30(12):979-982.
    [43]张高会.钛及钛合金Ti6Al4V双层辉光离子无氢渗碳及无氢碳氮共渗的研究[D].太原理工大学博士研究生学位论文,2004.
    [44]范爱兰Ti6Al4V合金双辉离子Mo-N共渗组织结构及腐蚀-磨损性能的研究[D].太原:太原理工大学,2003.
    [45]秦林.采用等离子表面合金化技术提高Ti6Al4V合金摩擦学性能研究[D].太原:太原理工大学,2006.
    [46]李秀燕,范爱兰,唐宾,等Ti6Al4V表面双层辉光离子渗Mo及其摩擦学性能的研究[J].摩擦学学报,2003,23(3):108-111.
    [47]秦林,唐宾,范爱兰,等.钛合金Ti6Al4V表面渗钼层的摩擦磨损性能[J].中国有色金属学报,2003,3(3):570-573.
    [48]秦林,李哲,马连军等Ti6Al4V合金渗镀Cr-Mo表面改性层组织结构及其耐磨特 性研究[J].稀有金属材料与工程,2009,38(12).
    [49]Xu Z, Gu F Y, Pang J D et al. Plasma Surface Alloying[J]. Surface Enigeering.1986,2(2): 103-106.
    [50]徐重.等离子表面冶金技术的现状与发展[J].中国工程科学,2002,4(2):36-40.
    [51]GB12444。1-90金属磨损试验方法-MM型磨损试验[S]
    [52]JOHNSON K L接触力学[M].徐秉业,译.北京:高等教育出版社,]992:57-63.
    [53]YBT 5345-2006金属材料滚动接触疲劳试验方法[S]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700