新型二茂铁基聚合物的合成、表征、交联反应及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二茂铁基聚合物是一类具有独特的光、电、磁等性能的新型功能聚合物,在改性电极、电化学传感器、非线性光学器件等方面具有很好的应用前景,关于二茂铁基聚合物的研究正越来越多地受到人们的重视。本文对各种二茂铁基聚合物的合成、性能及应用进行了综述;合成了系列新型二茂铁基聚合物并对其进行了表征;探讨了二茂铁基聚合物的电化学性能、掺杂导电和自组装机理;探索了所得二茂铁基聚合物在掺杂导电材料、自组装以及新型光刻胶等方面的应用;获得了如下主要结果:
     本文合成了2个系列聚二茂铁硅烷(PFS):聚二茂铁二甲基硅烷(PFDMS)和聚二茂铁甲基苯基硅烷(PFMPS);探讨了聚合条件(温度、时间和单体纯度等)对聚合物分子量及分子量分布的影响,发现延长聚合时间可以提高PFDMS的分子量,而延长聚合时间对PFMPS分子量的影响不明显;考察了PFS的溶解性、结晶性和成膜性,建立了调控薄膜厚度的方法;采用碘溶液扩散掺杂法制得了掺杂PFS薄膜,通过UV/Vis研究发现碘和二茂铁单元之间的电子转移可能是引起碘掺杂聚合物薄膜电子性能变化的主要原因;采用Van dePauw技术测量了聚二茂铁硅烷薄膜的电性能,考察了掺杂后薄膜的电导率、载流子浓度和载流子迁移率的变化,发现掺杂时间为5hr的PFDMS薄膜的电导率σ为2.08×10~(-3)/(cm·Ω),载流子浓度R_H+为2.55×10~(13)/cm~3,空穴迁移率μ为170cm~2/(V·s),并且发现掺杂时间对σ、R_H+和μ影响很大,探讨了可能的导电机理。
     本文合成5种二茂铁基聚合物:聚二茂铁甲基氯硅烷(PFMCS)、聚二茂铁硼烷(PBF)、聚二茂铁甲基丁基硅烷(PFMBS)、甲氧基丁基聚二茂铁硅烷(MeO-Bu-PFS)和萘乙氧基丁基聚二茂铁硅烷(Np-Bu-PFS),其中PFMBS、MeO-Bu-PFS和Np-Bu-PFS为首次报道;对所得二茂铁基聚合物的溶液电化学进行了研究发现:溶液电位降补偿iR在一定范围内的变化不影响CV谱;CH_2Cl_2具有适中的介电常数ε,较低的粘度η,较小的电位降补偿iR,是比较理想的二茂铁基聚合物溶液电化学研究选用介质;在电化学研究时,聚合物浓度以低于3.0mM比较合适;聚二茂铁硅烷发生电化学反应时,有分步氧化还原现象,也会发生在电极表面的沉积;不同的聚合物结构(如不同的桥和不同桥头取代基)对CV行为有很大的影响;根据电化学理论,计算得到了不同分子量聚二茂铁硅烷的表观扩散系数D_(app)的范围为10~(-7)~10~(-5)cm~2/s。
     本文合成了6种含丙烯酸酯基的聚二茂铁硅烷:丙烯酸酯基聚二茂铁硅烷(HEMA-PFS)、甲氧基丙烯酸酯基聚二茂铁硅烷(MeO-HEMA-PFS-a和MeO-HEMA-PFS-b)、萘乙氧基丙烯酸酯基聚二茂铁硅烷(Np-HEMA-PFS)、稳定自由基丙烯酸酯基聚二茂铁硅烷(TEMPOL-HEMA-PFS)和丁基丙烯酸酯基聚二茂铁硅烷
    (Bu-HEMA-PFS),其中Np-HEMA-PFS、TEMPOL-HEMA-PFS和Bu-HEMA-PFS为首次报道;对所得聚合物溶液的UV/Vis研究发现:聚合物硅原子上丙烯酸酯基的数量及基团种类对聚合物的UV/Vis吸收具有较大的影响,可以通过硅原子上取代基团的数量和种类的改变来调节PFS溶液UV/Vis吸收峰特性;对所得聚合物的溶液电化学研究发现:硅上丙烯酸酯基的数量及基团种类对聚合物的CV谱具有较大的影响,可以通过改变硅原子上丙烯酸酯基的数量及基团种类来调节PFS上相邻二茂铁之间相互作用的强弱;制得了1种基于丙烯酸酯基聚二茂铁硅烷的新型光刻胶,经紫外光照射,得到了精细的光刻图案;对HEMA-PFS、MeO-HEMA-PFS-a、MeO-HEMA-PFS-b和Np-HEMA-PFS的自组装行为进行了研究,发现聚合物浓度、混合溶剂组成、陈化时间等因素对自组装行为有重要影响;在混合溶剂中,聚合物HEMA-PFS、MeO-HEMA-PFS-a和Np-HEMA-PFS能自组装形成空心纳米粒子,MeO-HEMA-PFS-b能自组装成花状囊泡结构;向组装体溶液中加入光引发剂,经紫外照射并且陈化,可得到交联的稳定核壳复合囊泡组装体。
Ferrocene-based polymers have emerged as an important category of functional polymer with unique electrical, optical and magnetic properties. Considerable attention was paid to development of these polymer systems, which were useful materials for modification of electrodes, as electrochemical sensors and as nonlinear optical materials. In this paper the synthesis, property and application of ferrocene-based polymers were reviewed. A series of novel ferrocene-based polymers were synthesized and characterized, and used as doping conducting materials, self-assembly materials and photoresist. The electrochemistry properties and the mechanisms of doping conductivity and self-assembly were discussed. The main conclusions are listed as follows.
    In this paper, two series of poly(ferrocenylsilanes) (PFS) including polyferocenyldimethylsilane (PFDMS) and polyferrocenylmethylphenylsilane (PFMPS) were prepared. The influences of polymerization time, polymerization temperature, and monomer purity on polymer molecular weight and polydispersity were discussed. It was found that molecular weight of PFDMS could be increased by prolonging the polymerization time, but this method had no effect on molecular weight of PFMPS. Solubility, crystallizability and filming properties of PFS were investigated, and the process to obtain controllable PFS films was built up. PFS films were doped by saturated iodine solution in hexane. By the UV/Vis investigation, it was found that the electronic structure change of PFS was attributed to electron transfer between iodine and ferrocenic units at PFS. The charge transport properties of PFS films were tested by Van de Pauw techniques, and it was found that the conductivity σ, carrier density R_H+ and mobility μ. of films were 2.08×10~(-3) /(cm·Ω), 2.55×10~(13) /cm~3 and 170 cm~2/(V'S) respectively after the films were doped for 5 hr. The possible conducting mechanisms were discussed.
    In this paper, five kinds of ferrocene-based polymers including poly(ferrocenylmethylchloro-silane) (PFMCS), poly(boraferrocene) (PBF), poly(ferrocenylmethylbutylsilane) (PFBMS), methoxyl- and butyl-substituted PFS (MeO-Bu-PFS) and naphthylethoxyl- and butyl-substituted PFS (Np-Bu-PFS) were synthesized, and PFBMS, MeO-Bu-PFS and Np-Bu-PFS were reported first. By investigation into electrochemistry in polymer solution, it was found that the fluctuation of solution ohmic potential iR did not affect the compensated cyclic voltammograms (CV), and CH_2Cl_2 was the optimal solvent during PFS electrochemistry investigation due to its moderate dielectric constants (ε), low viscosity factors (η) and small iR. In electrochemistry the proper
    ferrocene-based polymer concentration was lower than 3.0 mM. In solution, PFS were oxidized gradually and electrodeposited on the electrode surface. The electrochemical behaviors of ferrocene-based polymer solution were affected by variable, substitution group and atom bridge. The apparent diffusion coefficients of PFS with the different molecular weight were 10~(-7)~10~(-5) cm~2/s according to calculation.
    In this paper, six kinds of methacrylate-based PFSs including methacrylate-substituted PFS (HEMA-PFS), methoxyl- and methacrylate-substituted PFS (MeO-HEMA-PFS-a and MeO-HEMA-PFS-b), naphthylethoxyl- and methacrylate-substituted PFS (Np-HEMA-PFS), 2,2,6,6-tetramethyl-1-piperidinyloxy- (TEMPOL) and methacrylate-substituted PFS (TEMPOL-HEMA-PFS) and butyl- and methacrylate-substituted PFS (Bu-HEMA-PFS) were prepared, and Np-HEMA-PFS, TEMPOL-HEMA-PFS and Bu-HEMA-PFS were reported first. By investigation into UV/Vis spectra of methacrylate-based PFS solution, the characteristic peaks could be modulated by different quantitative methacrylate groups and different substitution groups on Si. The CV of methacrylate-based PFS were affected by different quantitative methacrylate groups and different substitution groups on Si, and it was found that the Fe-Fe interaction in PFS could be modulated by different quantitative methacrylate groups and different substitution groups on Si too. A novel photoresist based on methacrylate-substituted PFS was prepared, and polymer films were photopatterned by photolithography process. The self-assembly behaviors of methacrylate-based PFSs (HEMA-PFS, MeO-HEMA-PFS-a, MeO-HEMA-PFS-b and Np-HEMA-PFS) in mixture solvents were investigated. It was found that the self-assembly behaviors were affected by PFS concentration, composition of solvents, aging time and so on. In mixture solvents HEMA-PFS, MeO-HEMA-PFS-a and Np-HEMA-PFS could self-assembl into nanoparticles with hollow cores, and MeO-HEMA-PFS-b could self-assembl into flower-like large-compond-capsules. Photo-cross-linking of self-assembled particles from PFS with various methacryiate side group numbers afforded core-shell nanoparticles by adding photoinitiator, irradiating and aging, and these particles proved to be stable.
引文
[1] Allcock H R. [J]. Inorganic-organic polymers. Adv Mater, 1994, 6(2): 106~114.
    [2] MacLachlan M J, Manners I, Ozin G A. [J]. New (inter)faces: Polymers and inorganic materials. Adv Mater, 2000, 12(9): 675~681.
    [3] Horikoshi R, Ueda M, Mochida T. [J]. Side-chai,n coordination polymers containing redox-active pendants: complexation of ferrocene-based bidentate ligands with M(hfac)_2 (hfac=1, 1,1,5,5,5-hexafluoroacetylacetonate, M= Mn, Ni, Cu, Zn) and CuX (X=I, Br). New J Chem, 2003, 27: 933~937.
    [4] Manners I. [J]. Polymers and the periodic table: recent developments in the inorganic polymer science. Angew Chem Int Ed Engl, 1996, 35: 1602~1621.
    [5] Manners I. [J]. Ring-opening polymerization of metallocenophanes: a new route to transition metal-based polymers, Adv Organomet Chem, 1995, 37:131~168.
    [6] 王建军,王立,王学杰.[J].高度支化状二茂铁基聚合物研究进展.化学进展,2003,15(5):409~419.
    [7] Kealy T J, Pauson P L. [J], A new type oforgano-iron compound. Nature, 1951, 1039~1040.
    [8] Manners I. [J]. Synthesis and properties of poly(ferrocenylsilane) high polymers. J Inorg Organomet Polym, 1993, 3(3): 185~196.
    [9] Heo R W, Park J-S, Lee T R. [J]. Synthesis and ring-opening metathesis polymerization of aryl-substituted 1,1 '-(1,3-butadienylene)ferrocenes. Macromolecules, 2005, 38(7): 2564~2573.
    [10] Sun Q-H, Lam J W Y, Xu K-T, Xu H-Y, Cha J A K, Wong P C L, Wen G-H, Zhang X-X, Jing X-B, Wang F-S, Tang B-Z. [J]. Nanocluster-containing mesoporous magnetoceramics from hyperbranched organometallic polymer. Chem Mater, 2000, 12(9): 2617~2624.
    [11] Sun Q-H, Xu K-T, Peng H, Zheng R-H, Hausser M, Tang B-Z. [J]. Hyperbranched organometallic polymer: synthesis and properties of poly(ferrocenylsilyne)s. Macromolecules, 2003, 36(7): 2309~2320.
    [12] Sun Q-H, Xu K-T, Lain J W Y, Cha J A K, Zhang X-X, Tang B-Z. [J]. Nanostructured magnetoceramics from hyperbranched polymer precursors. Mater Sci Eng, 2001, C16: 107~112.
    [13] Manners I. [J]. Poly(ferrocenylsilanes): novel organometallic plastics. Chem Commun, 1999, 857~865.
    [14] Nguyen P, Gómez-Elipe P, Manners I. [J]. Organometallic polymers with transition metals in the main chain. Chem Rev, 1999, 99(6): 1515~1548.
    [15] Kulbaba K, Manners I. [J]. Polyferrocenylsilanes: metal-containing polymers for materials science, self-assembly and nanostructure application. Macromol Rapid Commun, 2001, 22(10): 711~724.
    [16] Manners I. [J]. Putting metals into polymers. Science, 2001, 294(23): 1664~1666.
    [17] Foucher D A, Tang B-Z, Manners I. [J]. Ring-opening polymerization of strained, ring-tilted ferrocenophanes: a route to high molecular weight poly(ferrocenylsilanes). J Am Chem Soc 1992, 114(15): 6246~6248.
    [18] Manner I. [J]. Ring-opening polymerization of metallocenophanes. Adv Mater, 1994, 6(1): 68~71.
    [19] Vogel U, Lough A J, Manners I. [J]. Isolation of [l]ruthenocenophanes: synthesis of polyruthenocenylstannanes by ring-opening polymerization. Angew Chem Int Ed, 2004, 43:3321~3325.
    [20] J(?)kle F, Vejzovic E, Power-Billard K N, MacLachlan M J, Lough A J, Manners I. [J].Synthesis and structure of a hypercoodinate silicon-bridged [1]ferrocenophane.Organometallics, 2000, 19(15): 2826~2828.
    [21] Pudelski J K, Manners I. [J]. A heterolytic cyclopentadienyl carbon-silicon bond cleavage mechanism for the thermal ring-opening polymerization of silicon-bridged [l]ferrocenophanes. J Am Chem Soc, 1995, 117(27): 7265~7266.
    [22] Pudelski J K, Rulkens R, Foucher D A, Lough A J, MacDonald P M, Manners I. [J].Synthesis and properties of poly(ferrocenyldihydrosilane) homopolymer and random copolymers. Macromolecules, 1995, 28(22): 7301~7308.
    [23] Manners I. [J]. Ring-opening polymerization (ROP) of strained, ring-tilted silicon-bridged [ljferrocenophanes: synthesis methods and mechanisms. Polyhedron, 1996, 15(24):4311~4329.
    [24] Ni Y, Rulkens R, Manners 1. [J]. Transition metal-based polymers with controlled architectures: well-defined poly(ferrocenylsilane) homopolymers and multiblock copolymers via the living anionic ring-opening polymerization of silicon-bridged [1]ferrocenophanes. J Am Chem Soc, 1996, 118(17): 4102-4114.
    [25] Rulkens R, Ni Y, Manners I. [J]. Living anionic ring-opening polymerization of silicon-bridged [1]ferrocenophanes: synthesis and characterization of poly(ferrocenylsilane)-polysiloxane block copolymers. J Am Chem Soc, 1994, 116(26): 12121~12122.
    [26] Power-Billard N K, Wieland P, Sch(?)fer M, Nuyken O, Manners I. [J]. Moderating the reactivity of living anionic poly(ferrocenyldimethylsilane) with a diphenylethylene chain end:synthesis and characterization of polystyrene-polyferrocenylsilane graft copolymers.Macromolecules, 2004,37(6): 2090~2095.
    [27] Ni Y, Rulkens R, Pudelski J K, Manners I. [J]. Transition metal catalyzed ring-opening polymerization of silicon-bridge [1]ferrocenophanes at ambient temperature. Makrom Chem Rapid Commun, 1995, 16: 637~642.
    [28] Reddy N P, Yamashita H, Tanaka M. [J]. Platinum-catalyzed or palladium-catalyzed ring-opening homo-polymerization and co-polymerization of silicon-bridged and germanium-bridge [1]ferrocenophanes. J Chem Soc, Chem Commun, 1995, 2263~2264.
    [29] Jaska C A, Bartole-Scott A, Manners I. [J]. Metal-catalyzed routes to rings, chains and macromolecules based on inorganic elements. J Chem Soc, Dalton Trans, 2003, 4015~4021.
    [30] Yamashita H, Tanaka M, Honda K. [J]. Oxidative addition of the Si-C bonds of silacyclobutanes to Pt(PEt_3)_3 and highly selective platinum(O)-catalyzed Di- or polymerization of 1,1-dimethyl-1-silacyclobutane. J Am Chem Soc, 1995, 117(34):8873~8874.
    
    [31] Gates D P. [J]. Inorganic and organometallic polymers. Annu Rep Prog Chem, Sect A, 2002,98: 479~492.
    
    [32] Temple K, J(?)kle F, Lough A J, Sheridan J B, Manners I. [J]. Transition metal-mediated polymerization as a route to transition metal-based polymers: mechanistic insights into the ring-opening polymerization of [l]-silaferrocenophanes. Polym Prep, 2000, 41(1): 429~430.
    
    [33] Bartole-Scott A, Resendes R, Jakle F, Lough A J, Manners 1. [J]. Synthesis and reactivity of[2]ferrocenophanes with C-Ge and C-Sn bridges. Organometallics, 2004, 23(26): 6116~6126.
    
    [34] Temple K, Jakle F, Sheridan J B, Manners I. [J]. The nature of the active catalyst in late transition metal-mediated ring-opening polymerization (ROP) reactions: mechanistic studies of the platinum-catalyzed ROP of silicon-bridged [l]ferrocenophanes. J Am Chem Soc, 2001,123(7): 1355~1364.
    
    [35] G(?)mez-Elipe P, Resendes R, Macdonald P M, Manners I. [J]. Transition metal catalyzed ring-opening polymerization (ROP) of silicon-bridged [l]ferrocenophanes: facial molecular weight control and the remarkably convenient synthesis of poly(ferrocenes) with regioregular,comb, star, and block architectures. J Am Chem Soc, 1998, 120(33): 8348~8356.
    
    [36] Jakle F, Rulkens R, Zech G, Massey J A, Manners I. [J]. Nucleophilically-assisted ring-opening polymerization of group 14 element-bridge [l]ferrocenophanes. J Am Chem Soc, 2000, 122(17): 4231~4232.
    
    [37] Resendes R, Nguyen P, Lough A J, Manners I. [J]. Synthesis, structure and cationic ring-opening polymerization (ROP) of a strained [2]carbathioferrocenophane. Chem Commun, 1998, 1001~1002.
    
    [38] Temple k, Lough A J, Sheridan J B, Manners I. [J]. Insertion of a platinum(O) fragment into the strained silicon-carbon bond of a silicon-bridged [l]ferrocenophane: synthesis, alkyne insertion chemistry, and catalytic reactivity of the [2]platinasilaferrocenophane Fe(η~5-C_5H_4)_2 Pt (PEt_3)_2SiMe_2. J Chem Soc, Dalton Trans, 1998, 2799~2805.
    
    [39] Berenbaum A, Lough A J, Manners I. [J]. Synthesis, characterization, and the platinum-catalyzed ring-opening polymerization and stereoselective dimerization of silicon-bridged [l]ferrocenophanes with acetylenic substituents. Organometallics, 2002,21(21): 4415~4424.
    
    [40] Resendes R, Nelson J M,Fisher A,J(?)kle F, Bartole, A, Lough A J, Manners I. [J]. Tuning the strain and polymerizability of organometallic rings: the synthesis, strucyure, and ring-opening polymerization behavior of [2]ferrocenophanes with C-Si, C-P, and C-S bridges.J Am Chem Soc.2001, 123(10): 2116~2126.
    [41] Temple K, Dziadek S, Manners I. [J], Highly active cationic rhodium( I ) precatalysts for the ambient temperayure ring-opening polymerization of [1]silaferrocenophanes and tetramethyldisilacyclobutane. Organometallics, 2002, 21(21): 4377~4384.
    [42] Baumgartner T, Jakle F, Rulkens R, Zech G, Lough A J, Manners I. [J]. Nucleophilically assisted and cationic ring-opening polymerization of tin-bridged [l]ferrocenephanes. J Am Chem Soc, 2002, 124(34): 10062~10070.
    [43] Mizuta T, Onishi M, Miyoshi K. [J]. photolytic ring-opening polymerization of phosphorus-bridged [1]ferrocenophane coordinating to an organometallic fragment.Organometallics, 2000, 19(24): 5005~5009.
    [44] Tanabe M, Manners Ⅰ. [J]. Photolytic living anionic ring-opening polymerization (ROP) of silicon-bridged [ 1 ]ferrocenophanes via iron-cyclopentadienyl bond cleavage mechanism. J Am Chem Soc, 2004, 126(37): 11434~11435.
    [45] Tanabe M, Vandermeulen G W M, Chan W Y, Cyr P W, Vanderark L, Rider R A, Manners I.[J]. Photocontrolled living polymerizations. Nature Materials, 2006, 5: 467~470.
    [46] Rasburn J, Foucher D A, Reynolds W F, Manners I, Vancso G J. [J]. Solid state polymerization of the unsymmetrical [l]ferrocenophane Fe(η-C_5H_4)_2SiMePh; synthesis of the first stereogular organometallic polymer. Chem Commun, 1998, 843~844.
    [47] Stanton C E, Lee T R, Grubbs R H, Lewis N S, Pudelski J K, Callstrom M R, Erickson M S,McLaughlin M L. [J]. Route to conjugated polymers with ferrocenes in their backbones:synthesis and characterization of poly(ferrocenylenedivinylene) and poly(ferrocenyl-enebutenylene). Macromolecules, 1995, 28(26): 8713~8721.
    [48] Zechel D L, Hultzsch K C, Rulkens R, Balaishis D, Ni Y, Pudelski J K, Lough A J, Manners I.[J]. Thermal and transition-metal-catalyzed ring-opening polymerization (ROP) of [1] silaferrocenophanes with chlorine substituents at silicon: a route to tunable poly(ferrocenylsilanes). Organometallics, 1996, 15(8): 1972~1978.
    [49] Berenbaum, A.; Jakle, F.; Lough, A. J.; Manners, I. [J]. Reactions of the Si-H functionalized silicon-bridged [l]ferrocenophane Fe(η-C5H4)2SiMeH with dicobalt octacarbonyl:ring-opening metalization and the synthesis of a novel sila[l]ferrocenophane with a Co(CO)_4 substituent. Organometallics, 2001, 20(5): 834~843.
    [50] Compton D L, Brandt P F, Rauchfuss T B, Rosenbaum D F, Zukoski C F. [J]. Organometallic polymers based on S-S and Se-Se linked n-butylferrocenes. Chem Mater, 1995, 7(12): 2342~2349.
    [51] Jakle F, Wang Z, Manners I. [J]. Versatile and convenient routes to functionaiized poly(ferrocenylsilanes). Macromol Rapid Commun, 2000, 21: 1291~1296.
    [52] Hilf S, Cyr P W, Rider D A, Manners I, Ishida T, Chujo Y. [J]. A versatile efficient hydrosilylation route to functionaiized polyferrocenylsilanes. Macromol Rapid Commun.2005, 26: 950~954.
    [53] Clendenning S B, Aouba S, Rayat M S, Grozea D, Sorge J B, Brodersen P M, Sodhi R N S,Lu Z-H, Yip C M, Freeman M R, Ruda H E, Manners I. [J]. Direct writing of patterned cermics using electron-beam lithography and metallopolymer resists. Adv Mater, 2004, 16(3):215~219.
    [54] Southard G E, Curtis M D. [J]. Synthesis and characterization of soluble poly(ferrocenylenearylene)s from condensation of dilithio bis(alkylcyclopentadienide)arenas with iron(II) halides: a general route to conjugated poly(metallocene)s. Organometallics,2001,20(3): 508~522.
    [55] Jakle F, Rulkens R, Zech G, Foucher D A, Lough A J, Manners I. [J]. Synthesis, reactivity,and ring-opening polymerization (ROP) of tin-bridged [1]ferrocenophanes. Chem Eur J, 1998,4(11): 2117~2128.
    [56] Knapp R, Velten U, Rehahn M. [J]. Synthesis and material properties of soluble poly(l,l'-ferrocenylene-alt-p-oligophenylenes). Polymer, 1998, 39(23): 5827~5838.
    [57] Yamamoto T, Morikita T, Maruyama T, Kubota K, Katada M. [J]. Poly(aryleneethynylene) type polymers containing a ferrocene unit in the π-conjugated main chain. Preparation, optical properties, redox behavior, and m(?)ssbauer spectroscopic analysis. Macromolecules,1997, 30(18): 5390~5396.
    [58] Bochmann M, lu J, Cannon R D. [J]. Synthesis of ferrocene-based redox-active polymers via palladium-catalysed coupling reactions. J Organomet Chem, 1996, 518: 97~103.
    [59] Morikita T, Maruyama T, Yamamoto T, Kubota K, Katada . [J]. New type of polymer containing 1,1 '-ferrocenediyl unit in π-conjugated main chain. Preparation and redox behavior. Inorg Chim Acta, 1998, 269: 310~312.
    [60] Xue W-M, K(?)hn F E. [J]. Tetranuclear complexes containing bimetallic tetracarboxylates and ferrocene-models for subunits of one-dimensional organometallic polymers. Eur J Inorg Chem, 2001, 2041~2047.
    [61] Xue W-M, K(?)hn F E, Herdtweck E, Li Q. [J]. Organometallic polymers with the backbone consisting of ferrocene and bimetallic tetracarboxylates. Eur J Inorg Chem, 2001, 213~221.
    [62] Joachim C, Gimzewski J K, Aviram A. [J]. Electronics using hybrid-molecular and mono-molecular devices. Nature, 2000, 408: 543~548.
    [63] Cyr P W, Tzolov M, Hines M A, Manners I, Sargent E H, Scholes G D. [J]. Quantum dots in ametallopolymer host: studies of composites of polyferrocenes and CdSe nanocrystals. J Mater Chem, 2003, 13: 2213~2219.
    [64] Shadaram M, Martinez J, Garcia F, Tavares D. [J]. Sensing ammonia with ferrocene-based polymer coated tapered optical fibers. Fiber and Integrated optics, 1997, 16: 115~122.
    [65] Wang J-J, Wang L, Wang W-Q, Chen T. [J]. Progress on the study of structure and property of highly branched ferrocene-based polymer. J Polym Mater, 2005, 21:169~180.
    [66] Liu X-H, Bruce D W, Manners I. [J]. Functionalization of poly(metallocenes) via hydrosilylation: synthesis and properties of thermotropic liquid crystalline poly(ferrocenylsilanes). J Organomet Chem, 1997, 548: 49~56.
    [67] Sengupta S, Sadhukhan S K. [J]. Convergent synthesis of ferrocene dendrimers: the use of multitopic dendrons with disrupted conjugation. Organometallics, 2001, 20(9): 1889~1891.
    [68] Rulkens R, Gates D P, Balaishis D, Pudelski J K, McIntosh, D F, Lough A J, Manners I. [J].Highly strained, ring-tilted [l]ferrocenophanes containing group 16 elements in the bridge:synthesis, structures, and ring-opening oligomerization and polymerization of [l]thia- and [l]selenaferrocenophanes. J Am Chem Soc, 1997, 119(45): 10976~10986.
    [69] Yang Y, Xie Z, Wu C. [J]. Novel synthesis and characterization of side-chain ferrocene-containing polymers. Macromolecules, 2002, 35(9): 3426~3432.
    [70] Manner I. [J]. Polymer science with transition metals and main group elements; towards functional, supramolecular inorganic polymeric materials. J Polym Sci: part A: Polym Chem,2002,40(2): 179-191.
    [71] Wang X-J, Wang L, Wang J-J, Chen T. [J]. Study on the Electrochemical Behavior of Poly(ferrocenylsilane) Films. J Phys Chem: Part B, 2004, 108(18): 5627~5633.
    [72] Nguyen M T, Diaz A F, Dement'ev V V, Pannell K H. [J]. Electrochemical and electrochromic properties of poly(dialkylsilyleneferrocenylene) films. Chem Mater, 1994,6(7): 952~954.
    [73] Rulkens R, Lough A J, Manners I, Lovelace S R, Grant C, Geiger W E. [J]. Linear oligo(ferrocenyldimethylsilanes) with between two and nine ferrocene units: electrochemical and strictural models for poly(ferrocenylsilane) high polymers. J Am Chem Soc, 1996,118(50): 12683~12695.
    [74] Foucher D A, Honeyman C H, Nelson J M, Tang B Z, Manners I. [J]. Organometallic ferrocenyl polymers displaying tunable cooperative interactions between transition metal centers. Angew Chem Int Ed Engl, 1993,32(12): 1709~1711.
    [75] Pannell K H, Imshennik V I, Maksimov V, ll'ina M N, Sharma H K, Papkov V S, Suzdalev I P. [J]. Mixed-valence bahavior in an iodine complex of a ferrocenylenesilylene polymer. Chem Mater. 2005, 17(7): 1844~1850.
    [76] Hempenius M A, Lammertink R G H, Péter M, Vancso G J. [J]. Poly(ferrocenylsilanes) as etch barriers in nano and mocrolithographic applications. Macromol Syrup, 2003, 196: 45~56.
    [77] Rulkens R, Resendes R, Verma A, Manners I. [J]. Ring-opening copolymerization of cyclotetrasilanes and silicon-bridged [1]ferrocenophanes: synthesis and properties of po lysilane-poly(ferrocenophanes: synthesis and properties of polysilanepoly(ferrocenylsilane) random copolymers. Macromolecules, 1997, 30(26): 8165~8171.
    [78] Cyr P W, Tzolov M, Manners I, Sargent E H. [J]. Photooxidation and photoconductivity of polyferrocenylsilane thin films. Macromol Chem Phys, 2003, 204:915~921.
    [79] Zhu Y-B, Wolf M O. [J]. Electropolymerization of oligothienylferrocene complexes; spectroscopic and electrochemical characterization. Chem Mater, 1999, 11(10): 2995~3001.
    [80] Resendes R, Berenbaum A, Stojevic G, Jakle F, Bartole A, Zamanian F, Dubois G, Hersom C, Balmain K, Manners I. [J]. Application of ring-opened, poly(ferrocene)s as protective charge dissipation coatings for dielectrics. Adv Mater, 2000,12(5): 327~330.
    [81] Quirk M, SerdaJ. [M]. 半导体制造技术,电子工业出版社,2004.
    [82] 孙忠贤.[M].电子化学品,化学工业出版社,2002.
    [83] Lammertink R G H, Hempenius M A, van den Enk J E, Chan V Z-H, Thomas E L, Vancso G J. Nanostructured thin films of organic-organometallic block copolymers: one-step lithography with poly(ferrocenylsilanes) by reactive ion etching. Adv Mater, 2000, 12(2): 98~103.
    [84] Sclendenning S B, Aouba S, Rayat M S, Grozea D, Sorge J B, Brodersen P M, Sorge J B, Brodersen P M, Sodhi R N S, Lu Z-H, Yip C M, Freeman M R, Ruda H E, Manners I. [J]. Direct writing of patterned ceramics using electron-beam lithography and metallopolymer resists. Adv Mater, 2004, 16(3): 215~219.
    [85] Liu K, Clendenning S B, Friebe L, Chan W Y, Zhu X-B, Freeman M R, Yang G C, Yip C M, Grozea D, Lu Z-H, Manners I. Pyrolysis of highly metallized polymers: ceramic thin fil ms containing magnetic CoFe alloy nanoparticles from a polyferrocenylsilane with pendant cobalt clusters. Chem Mater, 2006, 18(10): 2591~2601.
    [86] Cyr P W, Rider D A, Kulbaba K, Manners I. [J]. Photopatternable metallopolymers: photo-cross-linking and photolithography of polyferrocenylsilane methacrylates. Macromolecules, 2004, 37(11): 3959~3961.
    [87] Wright M E, Toplikar E G, Kubin R F, Seltzar M D. [J]. Organometallic nonlinear optical (NLO) polymers. 1. pendant ferrocene NLO-phores in a poly(methyl methacrylate) copolymer. The first x~((2)) organometallic NLO polymer. Macromolecules, 1992, 25(6):1838~1839.
    [88] Long N J. [J]. Organometallic compounds for nonlinear optics-the search for en-light-enment.Angew Chem Int Ed Engl, 1995, 34: 21~38.
    [89] Sharma H K, Pannell K H, Ledoux I, Zyss J, Ceccanti A, Zanello P. [J]. Synthesis,spectroscopy, electrochemical characterization, and nonlinear optical properties of ferrocenyloligosilanes: FcSi_nMe_(2n)(C_6H_5) (n=l-6) and .FcSi_2Me_4(C_6H_4-X) (X=m-CF_3, p-Br,p-Ome, p-NMe_2,p-CH=C(CN)_2). Organometallics, 2000, 19(5): 770~774.
    [90] Paquet C, Cyr P W, Kumacheva E, Manners I. [J]. Rationalized approach to molecular tailoring of polymetallocenes with predictable optical properties. Chem. Mater. 2004, 16(24):5205~5211.
    [91] Paquet C, Cyr P W, Kumacheva E, Manners I. [J]. Polyferrocenes:metallopolymers with tunable and high refractive indices. Chem Commun, 2004, 234~235.
    [92] Kulbaba K, Resendes R, Cheng A, Safa-Sefat A, Coombs N, Stover H D H, Greedan J E,Ozin G A, Manners I. [J]. Polyferrocenylsilane and magnetic cermic microspheres. Adv Mater, 2001, 13(10): 732~736.
    [93] MacLachlan, M. J.; Ginzburg, M.; Coombs, N.; Coyle, T. W.; Raju, M. P.; Greedan, J. E.;Ozin, G. A.; Manners, I. [J]. Shaped ceramics with tunable magnetic properties from metal-containing polymers. Science, 2000, 287: 1460~1463.
    [94] Sohn B H, Cohen R E. [J]. Processible optically transparent block copolymer films containing superparamagnetic iron oxide nanocluster. Chem Mater, 1997, 9(1): 264-269.
    [95] Wang X S, Arsenault A, Ozin G A, Winnik M A, Manners I. [J]. Shell cross-linked cylinders of polyisoprene-b-ferrocenyldimethylsilane: formation of magnetic ceramic replicas and microfluidic channel alignment and patterning. J Am Chem Soc, 2003, 125(42):12686~12687.
    [96] Kulbaba K, Cheng A, Bartole A, Greenberg S, Resendes R, Coombs N, Safa-Sefat A,Greedan J E, Stover H D H, Ozin G A, Manners I. [J]. Polyferrocenylsilane microspheres:synthesis, mechanism of formation, size and charge tenability, electrostatic self-assembly,and pyrolysis to spherical magnetic ceramic particles. J Am Chem Soc, 2002, 124(42):12522~12534.
    [97] Ginzburg M, MacLachlan M J, Yang S M, Coombs N, Coyle T W, Raju N P, Greedan J E,Herber R H, Ozin G A, Manners I. [J]. Genesis of nanostructured, magnetically tunable ceramics from the pyrolysis of cross-linked polyferrocenylsilane networks and formation of shaped macroscopic objects and micron scale patterns by micromolding inside silicon wafers.J Am Chem Soc, 2002, 124(11): 2625~2639.
    [98] MacLachlan M J, Coombs N, Raju N P, Ozin G A, Manners I. [J]. Superparamagnetic ceramic nanocomposites: synthesis and pyrolysis of ring-opened poly(ferrocenylsilanes) inside periodic mesoporous silica. J Am Chem Soc, 2000, 122(15): 1805-1809.
    [99] Petersen R, Foucher D A, Tang B-Z, Lough A, Raju N P, Greedan J E, Manners I. [J].Pyrolysis of poly(ferrocenylsilanes): synthesis and characterization of ferromagnetic transition-metal-containing ceramics and molecular depolymerization products. Chem Mater,1995, 7(11): 2045~2053.
    [100] Han s, Coombs n, Paquet C, Rayat M S, Grozea D, Brodersen P M, Sodhi R N S, Yip C M,Lu Z-H, Manners I. [J]. Magnetic ceramic films from a metallopolymer resist using reactive ion etching in a secondary magnetic field. Adv Mater, 2003, 15(4): 192~196.
    [101] Berenbaum A, Ginzburg-Margau M, Coombs N, Lough A J, Safa-Sefat A, Greedan J E,Ozin G A, Manners I. [J]. Ceramics containing magnetic Co-Fe alloy nanoparticles from the pyrolysis of a highly metallized organometallic polymer precursor. Adv Mater, 2003, 15(1):51~55.
    [102] MacLachlan M J, Aroca P, Coombs N, Manners I, Ozin G A. [J]. Ring-opening polymerization of a [l]silaferrocenophane within the channels of mesoporous silica:poly(ferrocenylsilane)-MCM-41 precursors to magnetic iron nanoctructures. Adv Mater,1998, 10(2): 144~149.
    [103] Galloro J, Ginzburg M, M(?)guez H, Yang S M, Coombs N, Safa-Sefat A, Greedan J E,Manners I, Ozin G A. [J]. Replicating the structure of a crosslinked polyferrocenylsilane inverse opal in the form of a magnetic ceramic. Adv Mater, 2002, 12(5): 382~388.
    [104] Seyferth D, Czubarow P. [J]. Application of preceramic polymers in powder metallurgy:their use as low-loss binders and for the in situ formation of dispersed ceramic phases in the metal matrix. Chem Mater, 1994, 6(1): 10~12.
    [105] Pomer-Billard K N, Spontak R J, Manners I. [J]. Redox-active organometallic vesicles:aqueous self-assembly of a diblock copolymer with a hydrophilic polyferrocenylsilane polyelectrolyte block. Angew Chem Int Ed, 2004, 43: 1260~1264.
    [106] Zhang L, Eisenberg A. [J]. Formation of crew-cut aggregates of various morphologies from amphiphilic block copolymers in solution. Polym Adv Tech, 1998, 9: 677~699.
    [107] Wooley K L. [J]. Shell crosslinking polymer assemblies: nanoscale constructs inspired from biological systems. J Polym Sci: Part B: Polym Chem, 2000, 38: 1397~1407.
    [108] Resendes R, Massey J, Dorn H, Winnik M A, Manners I. [J]. A convenient, transition metal-catalyzed route to water-soluble amphiphilic organometallic block copolymers:synthesis and aqueous self-assembly of poly(ethylene oxide)-block-poly(ferrocenylsilane).Macromolecules, 2000, 33(1): 8~10.
    [109] Lammertink R G H, Hempenius M A, Vancso G J, Shin K, Rafailovich M H, Sokolov J. [J].Mophology and surface relief structures of asymmetric poly(styrene-block-ferrocenylsialne) thin films. Macromolecules, 2001, 34(4): 942~950.
    [110] Chen T, Wang L, Jiang G-H, Wang J-J, Wang J-F, Zhou J-F. Poly(ferrocenyl-dimethylsilane-b-dimethylsiloxane) microsphere with shell thickness controllable structure prepared through self-assembly. Polymer, 2005,46(15): 5773~5777.
    [111] Resendes R, Massey J A, Temple K, Cao L, Power-Billard K N, Winnik M A, Manners I. [J].Supramolecular organometallic polymer chemistry multiple morphologies and superstructures from the solution self-assembly of polyferrocene-block-polysiloxane-block-polyferrocene triblock copolymers. Chem Eur J, 1998, 4(11): 2117~2128.
    [112] Raez J, Barjovanu R, Massey J A, Winnik M A, Manners 1. [J]. Self-assembled organometallic block copolymer nanotubes. Angew Chem Int Ed, 2000, 39(21): 3862~3865.
    [113] Arsenault A C, Rider D A, Tetreault N, Chen J I-L, Coombs N, Ozin G A, Manners I. Block copolymers under periodic, strong three-dimensional confinement. J Am Chem Soc, 2005,127(28): 9954~9955.
    [114]Kulbaba K, Maclachlan M J, Evans C E B, Manners I. [J]. Organometallic gels:characterization and electrochemical studies of swellable, thermally crosslinked poly(ferrocenylsilane)s. Macromol Chem Phys, 2001, 202(9): 1768~1775.
    [115] Turrin C O, Chiffre J, de Montauzon D, Daran J C, Caminade A M, Manoury E, Balavoine G, Majoral J P. [J]. Phosphorus-containing dendrimers with ferrocenyl units at the core,within the branches, and on the periphery. Macromolecules, 2000, 33(20): 7328~7336.
    [116] Wang X-S, Winnik M A, Manners I. [J]. Swellable, redox-active shell-linked organometallic nanotubes. Angew Chem Int Ed, 2004, 43: 3703~3707.
    [117] Wang X-S, Wang H, Coombs N, Winnik M A, Manners I. [J]. Redoxed-induced synthesis and encapsulation of metal nanoparticles in shell-cross-linked organometallic nanotubes. J Am Chem Soc, 2005, 127(25): 8924~8925.
    [118] Cuadrado I, Moran M, Casado C M, Alonso B, Lobete F, Garc(?)a B, ibisate M, Losada J. [J].Ferrocenyl-functionalized poly(propylenimine) dendrimers. Organometallics, 1996, 15(25):5278~5280.
    [119] Cedric-Olivier T, Chiffre J, de Montauzon D, Daran J-C, Caminade A-M, Manoury E, Balavoine G, Majoral J-P. [J]. Phosphorus-containing dendrimers with ferrocenyl units at the core, within the branches, and on the periphery. Macromolecules, 2000, 33(20):7328~5280.
    [120] Takada k, Diaz D J, Abru(?)a H D, Cuadrado I, Casado C, Alonso B, Moran, M, Losada J. [J].Redox-active ferrocenyl dendrimers: thermodynamics and kinetics of adsorption, in-situ electrochemical quartz crystal microbalance study of the redox process and tapping mode AFM imaging. J Am Chem Soc, 1997, 119(44): 10763~10773.
    [121] Daniel M-C, Ruiz J, Austruc D. [J]. Supramolecular H-bonded assemblies of redox-active metal lodendrimers and positive and unusual dendritic effects on the recognition of H_2PO_4~1. J Am Chem Soc, 2003, 125(5): 1150~1151.
    [122] Hinder C, Keles Y, St(?)ckli T, Knapp H F, de los Acros T, Oelhafen P, Korczagin I,Hempenius M A, Vancso G J, Pugin R, Heinzelman H. [J]. Organometallic block copolymers as catalyst precursors for templated carbon nanotube growth. Adv Mater, 2004, 16(11):876~879.
    [1] 王文钦.[D].新型聚苯乙烯负载茂锆催化剂催化烯烃聚合的研究,浙江大学博士论文,2005.
    [2] 王学杰.[D].二茂铁基聚合物的合成和性能研究,浙江大学博士论文,2005.
    [3] 陈涛.[D].线型及支化二茂铁基聚合物的合成、自组装及性能研究,浙江大学博士论文,2006.
    [4] Wrighton M S, Palazzotto M C, Bocarsly A B, Bolts J M, Fischer A B, Nadjo L. [J]. Preparation of chemically derivatized platinum and gold electrode surface. Synthesis, characterization, and surface attachment of trichlorosilyferrocene, (1,1'-ferrocenediyl)-dichlorosilane, and 1,1'-bis(triethoxysilyl)ferrocene. J. Am. Chem. Soc. 1978, 100(23): 7264~7271.
    [5] Fischer A B, Kinney J B, Staley R H, Wrighton M S. [J]. Derivation of surfaces via reaction of strained silicon-carbon bonds. Characterization by photoacoustic spectroscopy. J. Am. Chem. Soc. 1979, 101(22): 6501~6506.
    [6] Wang J-J, Wang L, Wang X-J, Chen T, Chen Y. [J]. Synthesis of poly(ferrocenyl-silanes) with different molecular weight and their electrochemical behavior. J Appl Poly Sci, 2006, 100: 473~477.
    [7] Zechel D L, Hultzsch K C, Rulkens R, Balaishis D, Ni Y, Pudelski J K, Lough A J, Manners I.[J]. Thermal and transition-metal-catalyzed ring-opening polymerization (ROP) of [l]silaferrocenophanes with chlorine substituents at silicon: a route to tunable poly(ferrocenylsilanes). Organometallics, 1996, 15(8): 1972~1978.
    [8] Rasburn J, Petersen R, Jahr T, Rulkens R, Manners I, Vancso G J. [J]. Solid-state synthesis and morphology of poly(ferrocenyldimethylailane). Chem. Mater., 1995, 7(5): 871~877.
    [9] Foucher D, Ziembinski R, Petersen R, Pudelski J, Edwards M, Ni Y, Massey J, Jaeger C R,Vancso G J, Manners I. [J]. Synthesis, characterization, and properties of high molecular weight unsymmetrically substituted poly(ferrocenylsilanes). Macromolecules, 1994, 27(14):3992~3999.
    [10] Wang J-J, Wang L, Wang X.-J., Chen T, Yu H-J. [J]. Synthesis and photolithography microstructures of polyferrocenylsilane methacrylates. Materials Letters 2006, 60(11):1416~1419.
    [11]Cyr P W, Rider D A, Kulbaba K, Manners I. [J]. Photopatternable metallopolymers: photo-cross-linking and photolithography of polyferrocenylsilane methacrylates.Macromolecules, 2004, 37(11): 3959~3961.
    [12] Braunschweig H, Dirk R, M(?)ller M, Nguyen P, Resendes R, Gates D P, Manners I. [J].Incorporation of a first row element into the bridge of a strained metallocenophane: synthesis of a boron-bridged [l]ferrocenophane. Angew Chem Int Ed, 1997, 36(21): 2338~2340.
    [13] Berenbaum A, Lough A J, Manners I. [J]. Synthesis, characterization, and the platinum-catalyzed ring-opening polymerization and stereselective dimerization of silicon-bridged [l]ferrocenophanes with acetylenic substituents. Organometallics, 2002,21(21): 4415~4424.
    [14] Berenbaum A, Braunschweig H, Dirk R, Engler U, Green J C, J(?)kle F, Lough A J, Manners I. [J]. Synthesis, electronic structure, and novel reactivity of strained, boron-bridged [1]ferrocenophanes. J Am Chem Soc, 2000, 122(24): 5765~5774.
    [1] Pannell K H, Imshennik V I, Maksimov V, II'ina M N, Sharma H K, Papkov V S, Suzdalev I P. [J]. Mixed-valence bahavior in an iodine complex, of a ferrocenylenesilylene polymer. Chem Mater. 2005, 17(7): 1844~1850.
    [2] Rulkens R, Resendes R, Verma A, Manners I. [J]. Ring-opening copolymerization of cyclotetrasilanes and silicon-bridged [1]ferrocenophanes: synthesis and properties of polysilane-poly(ferrocenophanes: synthesis and properties of polysilane- poly(ferrocenylsilane) random copolymers. Macromolecules, 1997, 30(26): 8165~8171.
    [3] Cyr P W, Tzolov M, Manners I, Sargent E H. [J]. Photooxidation and photoconductivity of polyferrocenylsilane thin fihns. Macromol Chem Phys, 2003, 204: 915~921.
    [4] Morikita T, Maruyama T, Yamamoto T, Kubota K, Katada M. [J]. New type of polymer containing 1,1'-ferrocenediyl unit in n-conjugated main chain. Preparation and redox bahavior. Inorganica Chimica Acta, 1998, 269:310~312.
    [5] Manners I. [J]. Synthesis and properties of poly(ferrocenylsilane) high polymers. Journal of Inorganic and Organometallic Polymers, 1993, 3(3): 185~196.
    [6] Nguyen P, Gómez-Elipe P, Manners 1. [J]. Organometallic polymers with transition metals in the main chain. Chem Rev, 1999, 99(6): 1515~1548.
    [7] Allcock H R. [J]. Inorganic-organic polymers. Adv Mater, 1994, 6(2): 106~114.
    [8] Cowan D O, Kaufman F. [J]. The organic solid state. Ⅲ. Spectroscopic and electrical properties of biferrocene[Fe(Ⅱ)Fe(Ⅲ)] picrate. J Am Chem Soc. 1970, 92(21): 6198~6204.
    [9] Gao Y, Twamley B, Shreeve J M. [J]. The first (ferrocenylmethyl)imidazolium and (ferrocenylmethyl)triazolium room temperature ionic liquids. Inorg Chem, 2004, 43(11): 3406~3412.
    [10] Pal S K, Alagesan K, Samuelson A G, Pebler J. [J]. Synthesis and characterization of novel charge transfer complexes formed by N,N'-bis(ferrocenylmethylidene)-p-phenylenediamine and N-(ferrocenylmethylidene)aniline. Journal of Organometallic Chemistry, 1999, 575: 108~118.
    [11] Cowan D O, Park P. [J]. X-ray photoelectron spectroscopy of ferrocene compounds. Chemical Communication, 1971, 1444~1446.
    [12] Miller J S, Glazhofer D T, Vazquez C, McLean R S, Calabrese J C, Marshall W J, Raebiger J W. [J]. Electron-Transfer salts of 1,2,3,4,5-pentamethylferrocene, Fe~(11) (C_5Me_5)(C_5H_5). Structure and magnetic properties of two 1:1 and two 2:3 Fe(C_5Me_5)(C_5H_5) electron-transfer salts oftetracyanoethylene. Inorg Chem, 2001, 40(9): 2058~2064.
    [13] 游效曾,孟庆金,韩万书主编.[M].配位化学进展.高等教育出版社,北京,2000,P123~131.
    [14] Ni Y, Manners I, Sheridan J B, Oakley R T. [J]. Synthesis of a ferrocene-based polymer via Ring-Opening Polymerization. Journal of Chemical Education, 1998, 75(6): 766~768.
    [15] Fischer A B, Kinney J B, Staley R H, Wrighton M S. [J]. Derivation of surfaces via reaction of strained silicon-carbon bonds. Characterization by photoacoustic spectroscopy. J. Am. Chem. Soc. 1979, 101(22): 6501~6506.
    [16] Massey J A, Kulbaba K, Winnik M A, Manners I. [J]. Solution characterization of the novel organometallic polymer poly(ferrocenyldimethylsilane). Journal of Polymer Science: Part B: Polymer Physics, 2000, 38: 3032~3041.
    [17] Foucher D, Ziembinski R, Petersen R, Pudelski J, Edwards M, Ni Y, Massey J, Jaeger C R, Vancso G J, Manners I. [J]. Synthesis, characterization, and properties of high molecular weight unsymmetrically substituted poly(ferrocenylsilanes). Macromolecules, 1994, 27(14): 3992~3999.
    [18] Zechel D L, Hulkens K C, Rulkens R, Balaishis D, Ni Y, Pudelski J K, Lough A J, Manners I, Foucher D A. [J]. Thermal and transition-metal-catalyzed Ring-Opening Polymerization (RC)P) of [1]silaferrocenophanes with chlorine substituents at silicon: a route to tunable poly(ferrocenylsilanes). Organometallics, 1996, 15(8): 1972~1978.
    [19] Larnmertink R G H, Hempenius M A, Manners I, Vancso G J. [J]. Crystallization and metalting behavior of poly(ferrocenyldimethylsilanes) obtained by anionic polymerization. Macromolecules[J], 1998, 31 (3): 795~800.
    [20] Neef C J, Glatzhofer D T, Micholas K M. [J]. Cyclopolymerization of 3-phenyl[5]ferrocenophane-1,5-dimethylene: synthesis and electronic properties of a polyferrocenophane. Journal of Polymer Science: Part A: Polymer Chemistry, 1997, 35: 3365~3376.
    [21] Yarnamoto T, Morikita T, Maruyama T, Kubota K, Katada M. [J]. Poly(aryleneethynylene) type polymers containing a ferrocene unit in the x-conjugated main chain. Preparation, optical properties, redox behavior, and Mossbauer spectroscopic analysis. Macrolnolecules, 1997, 30(18): 5390~5396.
    [22] 何曼君,陈维孝,董西侠编.[M].高分子物理(修订版).复旦大学出版社,上海,1991,P38~50.
    [23] 王国成.[D].等规聚苯乙烯和乙烯-苯乙烯共聚物的合成、表征及结品性能研究,浙江大学博士论文,2005.
    [24] Borsenberger P M, Gruenbaum W T. [J]. Electron transport in a molecularly doped polymer. Hournal of Polymer Science: Part B: Polymer Physics, 1996, 34: 575~582.
    [25] Pittman Jr C U, Sasaki Y. [J]. Mixed valence, semiconducting ferrocene-containing polymers. Chemistry Letters, 1975, 383~386.
    [26] Napo K, Safoula G, Bernède J C, D'Almeida K, Touirhi S, Alimi K, Barreau A. [J]. Influence of the iodine doping process on the properties of organic and inorganic polymer thin film. Polymer degradation and stability, 1999, 66: 257~262.
    [27] Espada L, Pannell K H, Papkov V, Leites L, Bukalov S, Suzdalev l, Tanaka M, Hayashi T. [J] Iodine-doped ferrocenylene-silylene and -germylene polymers. Organometallics, 2002, 21(18): 3758~3761.
    [28] 焦剑,雷渭媛主编.[M].高聚物结构、性能与测试,化学工业出版社,2003.
    [29] Sohn Y S, Hendrickson D N, Gray H B. [J]. Electronic structure of metallocenes. J Am Chem Soc, 1971, 93(15): 3603~3612.
    [30] Wassef M A, Abou El Fitouh S H. [J]. Preparation & properties of ferricinium polyiodides. Indian J Chem: Sect A, 1976, 14: 282~282.
    [31] Watanabe M, Motoyama I, Takayama T. [J]. Counter anion effect on molecular structures of some iodobiruthenocenium and iodoferrocenylruthenocenium salts. Journal of Organometallic Chemistry, 1996, 523:153~165.
    [32] Svensson P H, Kloo L. [J]. Synthesis, structure, and bonding in polyiodide and metal iodide-iodine systems. Chemical Review, 2003, 103(5): 1649~1684.
    [33] Hoesterey D C, Letson G M. [J]. Hole photoconductivity in ferrocene, triphenylamine, and Trctns-stilbene. Journal of Chemical Physics. 1964, 41(3): 675~679.
    [34] Miller R D, Michl J. [J]. Polysialne high polymers. Chem Rev. 1989, 89(6): 1359~1410.
    [35] Cowan D O, Park J, Pittman Jr C U, Sasaki Y, Mukherjee T K, Diamond N A. [J]. Serniconducting polymers. Mixed valence ferrocene-ferricenium polymers. J Am Chem Soc, 1972, 94(14): 5110~5112.
    [36] Green M A, Gunn M W. [J]. Four point probe hall effect and resistivity measurements upon semiconductors. Solid-State Electronics, 1972, 15: 577~585.
    [37] 沙振舜,黄润生主编.[M].新编近代物理实验,南京大学出版社,2002,P235~246.
    [38] 孙以材编著.[M].半导体测试技术,冶金工业出版社,北京,1984,P133~147.
    [39] 朱树新,顾振军主编.[M].导电性高分子材料,上海科学技术文献出版社,上海,1980,P1~139.
    [40] 林木欣,熊予莹,高长连,朱文钧,刘战存,冯显灿等编.[M].近代物理实验教程,科学出版社,1999,P204~210.
    [41] 张俐娜,薛奇,莫志深,金熹高编著.[M].高分子物理近代研究方法.武汉大学出版社,武汉,2003,P319.
    [42] Wang F, Zhao X, Wang T, Cao Y, Qian R. [J]. Air-stability of polyacetylene(PA) prepared with different catalyst systems. Chinese Journal of Applied Chemistry, 1985, 2(3): 74~76.
    [43] Tanaka M, Hayashi T. [J]. Synthesis and electric cinductivity of poly[(dodecamethyl- 1,6-hexasilanediyl)-1, 1'-ferrocenediyl]. Bull Chem Soc Jpn, 1993, 66: 334~336.
    [44] Yamamoto T, Sanechika K, Yamamoto A, Katada M, Motoyama I, Sano H. [J]. Preparation, characterization and electric conductivity of CT adducts of crystalline poly(1,1'-ferrocenylene) with electron acceptors. Inorganica Chimica Acta, 1983, 73: 75~82.
    [45] 雀部博之编,曹镛,叶成,朱道本译.[M].导电高分子材料,科学出版社,北京,1989,P1~37,61~84,237~289.
    [46] Southard G E, Curtis M D. [J]. Synthesis of oligoferrocenylenearylenes and the X-Ray structure of 1,4-bis(tricarbonylmethyltungstentetramethylcyclopentadienyl)benzene. Synthesis, 2002, 9: 1177~1184.
    [47] Pittman Jr C U, Lai J C, Vanderpool D P, Good M, Prado R. [J]. Polymerization of ferrocenylmethyl acrylate and ferrocenylmethacrylate. Characterization of their polymers and their polymeric ferricinium salts. Extension to poly(ferrocenylethylene). Macromolecules, 1970, 3(6): 746~754.
    [48] Pittman Jr C U, Sasaki Y, Grube P L. [J]. Polyethynylferrocene. J Macromol Sci-Chem, 1974, A8(5): 923~934.
    [49] Allock H R, Lampe F W, Mark J E. Contemporary Polymer Chemistry (Third Edition).科学 出版社,北京, 2004, P717.
    [50] 韦丹著.[M].固体物理.清华大学出版社,北京,2003,P100~149.
    [51] Morrison Jr W, Krogsrud, S, Hendrickson D N. [J]. Polarographic and magnetic susceptibility study of various biferrocene compounds. Inorganic Chemistry, 1973, 12(9): 1998~2004.
    [52] Barlow S, Rohl A L, Shi S, Freeman C M, O'Hare D. [J]. Molecular mechanics study of oligomeric models for poly(ferrocenylsilanes) using the extensible systematic forcefield (ESFF). J Am Chem Soc, 1996, 118(32): 7578~7592.
    [53] Papkov, V. S.; Gerasimov, M. V.; Dubovik, I. I.; Sharma, S.; Dementiev, V. V.; Pannell, K. H. Crystalline structure of some poly(ferrocenylenedialkylsilyenes). Macromolecules, 2000, 33(19): 7107~7115.
    [54] Pittman Jr C U, Marlin G V, Rounsefell T D. [J]. O.rganometallic polymers. ⅩⅩⅢ. Free-radical-initiated, solution copolymerization of cyclopentadienylmanganese tricarbonyl. Macromolecules, 1973, 6(1): 1~8.
    [55] Pittman Jr C U, Surynarayanan B. Synthesis and polymerization of 3-vinylbisfulvalenediiron. Preparation and conductivity of its polymeric [Fe~ⅡFe~Ⅲ](TCNQ)_2. salts. J Am Chem Soc, 1974, 96(26): 7916~7919.
    [56] Abkowitz M A. [J]. Electronic transport in polymers. Philosophical Magazine B, 1992, 65(4): 817~829.
    [57] Cowan D O, Kaufman F. The organic solid state. Electron transfer in a mixed valence salt of biferrocene. J Am Chem Soc. 1970, 92(1): 219~220.
    [58] Long Y-T, Li C-Z, Sutherland T C, Chahma N, Lee J S, Kraatz H-B. [J]. A comparison of electron-transfer rates of ferrocenoyl-linked DNA. J Am Chem Soc. 2003, 125(29):8724~8725.
    [1] Nguyen P, Gómez-Elipe P, Manners I. [J]. Organometallic polymers with transition metals in the main chain. Chem Rev, 1999, 99(6): 1515~1548.
    [2] Kulbaba K, Manners I. [J]. Polyferrocenylsilanes: metal-containing polymers for materials science, self-assembly and nanostr.ucture application. Macromol Rapid Commun, 2001, 22(10): 711~724.
    [3] 王建军,王立,王学杰.[J].高度支化状二茂铁基聚合物研究进展.化学进展,2003,15(5):409~419.
    [4] 王学杰,于立,王建军.[J].高分子量聚二茂铁衍生物的性质与应用.功能高分子学报,2002,15(3):368~376.
    [5] Wang J-J, Wang L, Wang W-Q, Chen T. [J]. Progress on the Study of Structure and Property of Highly Branched Ferrocene-based Polymer. J Polym Mater, 2005, 21: 169~180.
    [6] 张祖训,汪尔康著.电化学原理和方法.[M].科学出版社,北京,2000.
    [7] Wang X-J, Wang L, Wang J-J, Chen T. [J]. Study on the Electrochemical Behavior of Poly(ferrocenylsilane) Films. J Phys Chem: Part B, 2004, 108(18): 5627~5633.
    [8] Nguyen M T, Diaz A F, Dement'ev V V, Pannell K H. [J]. Electrochemical and electrochromic properties of poly(dialkylsilyleneferrocenylene) films. Chem Mater, 1994, 6(7): 952~954.
    [9] Rulkens R, Lough A J, Manners I, Lovelace S R, Grant C, Geiger W E. [J]. Linear oligo(ferrocenyldimethylsilanes) with between two and nine ferrocene units: electrochemical and strictural models for poly(ferrocenylsilane) high polymers. J Am Chem Soc, 1996, 11 8(50): 12683~12695.
    [10] Nguyen M T, Diaz A F, Dement'ev V V, Pannell K H. [J]. High molecular weight poly(ferrocenediyl-silanes): synthesis and electrochemistry of [-(C_5H4)Fe(C_5H_4)SiR_2-]_n, R=Me, Et, n-Bu, n-Hex. Chem Mater, 1993, 5(10): 1389~1394.
    [11] Pannell K H, Dementiev V V, Li H, Cervantes-Lee F, Nguyen M T, Diaz A F. [J]. (1,1'-Ferrocenediyl)ferrocenyl(methyl)silane, its thermally ring-opened polymer, and oligomer models. Organometallics, 1994, 13(9): 3644~3650.
    [12] MacLachlan M J, Zheng J, Thieme K, Lough A J, Manners I, Mordas C, LeSuer R, Geiger W E, Liable-Sands L M, Rheingold A L. [J]. Synthesis, characterization, and ring-opening polymerization of a novel [1]silaferrocenophane with two ferrocenyl substituents at silicon. Polyhedron, 2000, 19: 275~289.
    [13] Power-Billard K N, Manners I. [J]. Hydrophilic and water-soluble poly(ferrocenylsilanes). Macromolecules, 2000, 33(1): 26~31.
    [14] Reyes-García E A, Cervantes-Lee F, Pannell K H. [J]. Synthesis, spectroscopic, and substituent-dependent self-assembly structural characterization of ferrocenyl-containing silanediols, Fc(R)Si(OH)_2, R=Me, CH_2=CHCH_2, n-Bu, t-Bu, Ph, c-Hx, including transformation to a ferrocenyl stannasiloxane, [OsiFc(n-Bu)O(t-Bu_2)Sn]_2. Organometallics, 2001, 20(22): 4734~4740.
    [15] Calleja G, Carré F, Cerveau G, Labbé P, Coche-Guérente L. [J]. X-ray structure of a novel tetrachloro[1.1]silaferrocenophane. Hydrolysis-polycondensation of poly(ferrocenyl-dichlorosilane). Electrochemical studies. Organometallics, 2001, 20(20): 4211~4215.
    [16] Peerce P J, Bard A J. [J]. Polymer films on electrodes part III. Digital simulation model for cyclic voltammetry of electroactive polymer film and electrochemistry of poly(vinylferrocene) on platinum. J Electroanal Chem, 1980, 114: 89~115.
    
    [17] Nguyen P, Stojcevic G, Khlbaba K, MacLachlan M J, Liu X.-H, Lough A J, Manners I. [J].Synthesis, characterization, and properties of symmetrically substituted, ring-opeed poly(ferrocenylalkoxy/aryloxysilanes). Macromolecules, 1998, 31(18): 5977~5983.
    
    [18] Dement'ev V V, Cervantes-Lee F, Parkanyi L, Sharma H, Pannell K H, Nguyen M T, Diaz A.[J]. Structure and electrochemistry of ferrocenyloligosilanes: α,ω-bis(ferrocenyl)- and a,ω- (1,1'-ferrocenediyl)oligosilanes. Organometallics, 1993, 12(5): 1983~1987.
    
    [19] Zechel D L, Hultzsch K C, Rulkens R, Balaishis D, Ni Y, Pudelski J K, Lough A J, Manners I. [J]. Thermal and transition-metal-catalyzed ring-opening polymerization (ROP) of [l]silaferrocenophanes with chlorine substituents at silicon: a route to tunable poly(ferrocenylsilanes). Organometallics, 1996, 15(8): 1972~1978.
    
    [20] Berenbaum A, Lough A J, Manners I. [J]. Synthesis, characterization, and the platinum-catalyzed ring-opening polymerization and stereselective dimerization of silicon-bridged [l]ferrocenophanes with acetylenic substituents. Organometallics, 2002,21(21): 4415~4424.
    
    [21] Chan W Y, Berenbaum A, Clendening S B, lough A J, Manners I. [J]. Toward highly metallized polymers: synthesis and characterizayion of silicon-bridged [l]ferrocenophanes with pendent cluster substituents. Organometallics, 2003, 22(19): 3796~3808.
    
    [22] Wang Z, lough A, Manners I. [J]. Synthesis and characterization of water-soluble cationic and anionic polyferrocenylsilane polyelectrolytes. Macromolecules, 2002, 35(20): 7669~7677.
    
    [23] Foucher D A, Ziembinski R, Tang B-Z, Macdonald P M, Massey J, Jaeger C R, Vancso G J,Manners I. [J]. Synthesis, characterization, glass transition bahavior, and the electronic structure of high molecular weight, symmetrically substituted poly(ferrocenylsilanes) with alkyl or aryl side groups. Macromolecules, 1993, 26(11): 2878~2884.
    
    [24] Trefonas III P, Djurovich P I, Zhang X-H, West R, Miller R D, Hofer D. [J]. Organosilane high polymers: synthesis of formable homopolymers. J Polym Sci: Polym Lett, 1983, 21:819~822.
    
    [25] Trefonas III P, West R, Miller R D, Hofer D. [J]. Organosilane high polymers: electronic spectra and photodegradation. J Polym Sci: Polym Lett, 1983, 21: 823~829.
    
    [26] Cyr P W, Rider D A, Kulbaba K, Manners I. [J]. Photopatternable metallopolymers:photo-cross-linking and photolithography of polyferrocenylsilane methacrylates. Macromolecules, 2004, 37(11): 3959~3961.
    [27] Holden D A, Guillet, J E. [J]. Singlet electronic energy transfer in polymers containing naphthalene and anthracene chromophores. Macromolecules, 1980, 13(2): 289~295.
    [28] Holden D A, Wang P Y-K, Guillet, J E. [J]. Interpretation of the fluorescence decay curves of some naphthalene-containing polymers. Macromolecules, 1980, 13(2): 295~298.
    [29] Wang B-B, Zhang X, Jia X-R, Li Z-C Ji Y, Yang L, Wei Y. [J]. Fluorescence and aggregation behavior of poly(amidoamine) dendimers peripherally with aromatic chromophores: the effect of dendritic architectures. J. Am. Chem. Soc. 2004, 126(46): 15180~15194.
    [30] Rainer Gr(?)ning, Jerry L. Atwood. [J]. The crystal structure of N-sodiohexamethyldisilazane,Na[N{Si(CH_3)_3}].J Organomet Chem, 1977, 137: 101~111.
    [31] Westerhausen M. [J]. Synthesis, properties, and reactivity of alkaline earth metal bis[bis(trialkylsilyl)amides]. Coordination Chemistry Reviews, 1998, 176: 157~210.
    [32] Carpenter B E, Piers W E, Parvez M, Yap G P A, Rettig S J. [J]. Synthesis, characterization and chemistry of bis(pentafluorophenyl)boryl ferrocene. Can J Chem, 2001, 79: 857~867.
    [33] Kotz J C, Post E W. [J]. Ferrocenylboranes. I . The preparation and properties of ferrocenyldichloroborne. Inorg Chem, 1970, 9(7): 1661~1669.
    [34] Geymayer P, Rochow E G, Wannagat U. [J]. Bis-(trimethylsily)-amino-halogenoborane [1].Angew Chem, 1964, 76(11): 499~500.
    [35] Geymayer P, Rochow E G. [J]. Bis(trimethylsiyl)amino-halogenoborane und ihre cyclischen kondensationsprodukte. Monatshefte fur Chemie Bd. 1966, 97(2): 429~436.
    [36] Richard L. Wells, Alva L. Collins. Dehydrohalogenation and cleavage reactions in silicon-nitrogen-boron systems. Inorg Chem, 1966, 5: 1327~1328.
    [37] Russ C R, MacDiarmid A G. [J]. Verbindungen mit Si-N-B-bindungen [1]. Angew Chem,1964, 76(11): 500~501.
    [38] Herberhold M, Dorfler U, Milius W, Wrackmeyer B. [J]. l,3-Dibora-[3]ferrocenophanes;synthesis and characterization. J Organomet Chem, 1995, 492: 59~63.
    [39] Braunschweig H, Dirk R, Miiller M, Nguyen P, Resendes R, Gates D P, Manners I. [J].Incorporation of a first row element into the bridge of a strained metallocenophane: synthesis of a boron-bridged [l]ferrocenophane. Angew Chem Int Ed, 1997, 36(21): 2338~2340.
    [40] Berenbaum A, Braunschweig H, Dirk R, Engler U, Green J C, J(?)kle F, Lough A J, Manners I. [J]. Synthesis, electronic structure, and novel reactivity of strained, boron-bridged [1]ferrocenophanes. J Am Chem Soc, 2000, 122(24): 5765~5774.
    [41] Herberhold M, Dorfler U, Milius W, Wrackmeyer B. [J]. The first 1,2-dibora-[2]ferrocenophane and its dynamic bahaviour in solution. J Organomet Chem,1997,530:117~120. .
    [42] Jakle F, Berenbaum A, Louigh A J, Manners I. [J]. Selective ring-opeing reactions of [1] ferrocenophanes with boron halides: a novel route to" functionalized ferrocenylboranes and boron-containing oligo- and poly(ferrocene)s. Chem Eur J, 2000, 6(15): 2762~2771.
    [43] Gottlieb H E, Kotlyar V, Nudelman A. [J]. NMR chemical shifst of common laboratory solvents as trace impurties. J Org Chem, 1997, 62(21): 7512~7515.
    [44] 王学杰.[D].二茂铁基聚合物的合成和性能研究,浙江大学博士论文,2005,P18.
    [45] Massey J A, Kulbaba K, Winnik M A, Manners I. [J]. Solution characterization of the novel organometallic polymer poly(ferrocenyldimethylsilane). J Polym Sci: Part B: Polym Phys, 2000, 38: 3032~3041.
    [46] Barlow S, Rohl A L, Shi S, Freeman C M, O'Hare D. [J]. Molecular mechanics study of oligomeric models for poly(ferrocenylsilanes) using the extensible systematic forcefield (ESFF). J Am Chem Soc, 1996, 118(32): 7578~7592.
    [47] 程能林编著.[M].溶剂手册(第二版).化学工业出版社,北京,1994.
    [48] Foucher D A, Honeyman C H, Nelson J M, Tang B Z, Manners I. [J]. Organometallic ferrocenyl polymers displaying tunable cooperative interactions between transition metal centers. Angew Chem Int Ed Engl, 1993, 32(12): 1709~1711.
    [49] Foucher D, Ziembinski R, Petersen R, Pudelski J, Edwards M, Ni Y, Massey J, Jaeger C R, Vancso G J, Manners I. [J]. Synthesis, characterization, and properties of high molecular weight unsymmetrically substituted poly(ferrocenylsilanes). Macromolecules, 1994, 27(14): 3992~3999.
    [50] Curadrado I, Morán M, Casado C M, Alonso B, Lobete F, Garcia b, Ibisate M, Losada J. [J]. Ferrocenyl-functionalized poly(propyleniming) dendrimers. Organometallics, 1996, 15(25): 5278~5280.
    [51] Turrin C-O, Chiffre J, de Montauzon D, Daran J-C, Caminade A-M, Manoury E, Balavoine G, Majoral J-E [J]. Phosphorus-containing dendrimers with ferrocenyl units at the core, within the branches, and on the periphery. Macromolecules, 2000, 33(20): 7328~7336.
    [52] Takada K, Díaz D J, Abruna H D, Cuadrado I, Casado C, Morán M, Losada J. [J]. redox-active ferrocenyl dendrimers: thermodynamics and kinetics of adsorption, in-situ electrochemical quartzcrystal microbalance study of the redox process and tapping model AFM imaging. J Am Chem Soc, 1997, 119(44): 10763~10773.
    [53] Casado C M, Cuadrado I, Morán M, Alonso B, lobete F, Losada J. [J]. Synthesis of the first redox-active organometallic polymers containing cyclosiloxanes as frameworks. Organometallics, 1995, 14(6): 2618~2620.
    [54] Bard A J, Faulkner L R. Electrochemical methods fundamentals and applications. [M]. John Wiley& Sons, Inc. 1980.
    [55] Puerta A R, Remsen E E, Bradley M G, Sherwood W, Sneddon L G. [J]. Synthesis and ceramic conversion reactions of 9-BBN-modified allylhydridopolycarbosilane: a new single-source precursor to boron-modified silicon carbide. Chem Mater, 2003, 15(2):479~485.
    [56] Brunner A R, Bujalski D R, Moyer E S, Su K, Sneddon L G. [J]. Synthesis and ceramic conversion reactions of pinacoborane- and diethylborazine-modified poly(vinylsiloxane)s.the development of a processable single-source polymeric precursor to boron-modified silicon carbide. Chem Mater, 2000, 12(9): 2770~2780.
    [57] Grosche M, Herdtweck E, Peters F, Wagner M. [J]. Boron-nitrogen coordination polymers bearing ferrocene in the main chain. Organometallics, 1999, 18(22): 4669~4672.
    [58] Shapiro P J, Jiang F, Jin X, Twamley B, Patton J T, Rheingold A L. [J]. Zwitterionic phosphorus ylide adducts of boron-bridged ansa-Zirconocene complexes as precatalysts for olefin polymerization. Eur J Inorg Chem, 2004, 3370~3378.
    [59] Pournaghi-Azar M H, Ojani R. [J]. Electrode kinetic parameters of the ferrocene oxidation at platinum, gold and glassy carbon electrodes in chloroform. Electrochimica Acta, 1994, 39(7):953~955.
    [1] Lammertink R G H, Hempenius M A, van den Enk J E, Chart V Z-H, Thomas E L, Vancso G J. Nanostructured thin films of organic-organometatlic block copolymers: one-step lithography with poly(ferrocenylsilanes) by reactive ion etching. Adv Mater, 2000, 12(2): 98~103.
    [2] Hempenius M A, Lammertink R G H, Péter M, Vancso G J. Poly(ferrocenylsilanes) as etch barriers in nano and microlithographic applications. Macromol Symp, 2003, 196: 45~56.
    [3] Sclendenning S B, Aouba S, Rayat M S, Grozea D, Sorge J B, Brodersen P M, Sorge J B, Brodersen P M, Sodhi R N S, Lu Z-H, Yip C M, Freeman M R, Ruda H E, Manners I. [J]. Direct writing of patterned ceramics using electron-beam lithography and metallopolymer resists. Adv Mater, 2004, 16(3): 215~219.
    [4] Nguyen P, Gómez-Elipe P, Manners I. [J]. Organometallic polymers with transition metals in the main chain. Chem Rev, 1999, 99(6): 1515~1548.
    [5] Kulbaba K, Manners I. [J]. Polyferrocenylsilanes: metal-containing polymers for materials science, self-assembly and nanostructure application. Macromol Rapid Commun, 2001, 22(10): 711~724.
    [6] 王建军,王立,王学杰.[J].高度支化状二茂铁基聚合物研究进展,化学进展,2003,15(5):409~419.
    [7] Cheng A Y, Clendenning S B, Yang G-C, Lu Z-H, Yip C M, Manners I. [J]. UV photopatterning of a highly metallized, cluster-containing poly(ferrocenylsilane). Chem Commun, 2004, 780~781.
    [8] Chan W Y, Cheng A Y, Clendenning S B, Manners I. [J]. Synthesis and lithographic applications of highly metallized cluster-based polyferrocenylsilanes. Macromol Syrup, 2004, 209: 163~176.
    [9] Korczagin I, Golze S, Hempenius M A, Vancso G J. Surface micropatterning and lithography with poly(ferrocenylmethylphenylsilane). Chem Mater, 2003, 15(19): 3663~3666.
    [10] Jakle F, Wang Z, Manners I. [J]. Versatile and conventient routes to functionalized poly(ferrocenylsilanes). Macromol Rapid Commun, 2000, 21 (18): 1291~1296.
    [11] Cyr P W, Rider D A, Kulbaba K, Manners I. [J]. Photopatternable metallopolymers: photo-cross-linking and photolithography of polyferrocenylsilane methacrylates. Macromolecules, 2004, 37(11): 3959~3961.
    [12] Zechel D L, Hultzsch K C, Rulkens R, Balaishis D, Ni Y, Pudelski J K, Lough A J, Manners I. [J]. Thermal and transition-metal-catalyzed ring-opening polymerization (ROP) of [1] silaferrocenophanes with chlorine substituents at silicon: a route to tunable poly(ferrocenylsilanes). Organometallics, 1996, 15(8): 1972~1978.
    [13] Arsenault A C, Rider D A, Tetreault N, Chen J I-L, Coombs N, Ozin G A, Manners I. [J].Block copolymers under periodic, strong three-dimensional confinement. J Am Chem Soc,2005, 127(28): 9954~9955.
    [14] Wang X-S, Winnik M A, Manners I. [J]. Synthesis and self-assembly of po ly(ferrocenyldimethylsilane-b-dimethylaminoethyl methacrylate): toward water-soluble cylinders with an organometallic core. Macromolecules, 2005, 38(5): 1928~1935.
    [15] Thomas E L, Yoon J, Park C. [J]. Enabling nanotechnology with self assembled block copolymer patterns. Polymer, 2003, 44: 6725~6760.
    [16] Soo P L, Eisenberg A. [J]. Preparation of block copolymer vesicles in solution. Journal of Polymer Science: Part B: Polymer Physics, 2004, 42: 923~938.
    [17] Zhang L, Eisenberg A. [J]. Formation of crew-cut aggregates of various morphologies from amphiphilic block copolymers in solution. Polymers for advanced technologies, 1998, 9:677~699.
    [18] Wooley K L. [J]. Shell crosslinking polymer assemblies: nanoscale constructs inspired from biological systems. Journal of Polymer Science: Part B: Polymer Chemistry, 2000, 38:1397~1407.
    [19] Holden D A, Guillet, J E. [J]. Singlet electronic energy transfer in polymers containing naphthalene and anthracene chromophores. Macromolecules, 1980, 13(2): 289~295.
    [20] Holden D A, Wang P Y-K, Guillet, J E. [J]. Interpretation of the fluorescence decay curves of some naphthalene-containing polymers. Macromolecules 1980, 13(2): 295~298.
    [21] Wang B-B, Zhang X, Jia X-R, Li Z-C Ji Y, Yang L, Wei Y. [J]. Fluorescence and aggregation behavior of poly(amidoamine) dendimers peripherally with aromatic chromophores: the effect of dendritic architectures. J. Am. Chem. Soc. 2004, 126(46): 15180~15194.
    [22] Foucher D A, Ziembinski R, Tang B-Z, Macdonald P M, Massey J, Jaeger C R, Vancso G J,Manners I. [J]. Synthesis, characterization, glass transition bahavior, and the electronic structure of high molecular weight, symmetrically substituted poly(ferrocenylsilanes) with alkyl or aryl side groups. Macromolecules, 1993, 26(11): 2878~2884.
    [23] Fischer A, Brembilla A, Lochon P. [J]. Nitroside-mediated radical polymerization of 4-vinylpyridine: study of the pseudo-living character of the reaction and influence of temperature and nitroxide concentration. Macromolecules 1999, 32(19): 6069-6072.
    [24] Baur J E, Wang S, Brandt M C. [J]. Fast-scan voltammetry of cyclic nitroxide free radicals. Anal Chem, 1996, 68(21): 3815~3821.
    [25] Sohn Y S, Hendrickson D N, Gray H B. [J]. Electronic structure of metallocenes. J Am Chem Soc, 1971, 93(15): 3603~3612.
    [26] Rulkens R, Gates D P, Balaishis D, Pudelski J K, Mclntosh D F, Lough A J, Manners I. [J]. Highly strained, ring-tilted [1] ferrocenophanes containing group 16 elements in the bridge: synthesis, structures, and ring-opening oligomerization and polymerization of [1] thia- and [1] selenaferrocenophanes. J Am Chem Soc, 1997, 119(45): 10976~10986.
    [27] Rulkens R, Resendes R, Verma A, Manners I. [J]. Ring-opening copolymerization of cyclotetrasilanes and silicon-bridged [1] ferrocenophanes: synthesis and properties of polysilane-poly(ferrocenophanes: synthesis and properties of polysilane-poly(ferrocenyl-silane) random copolymers. Macromolecules, 1997, 30(26): 8165~8171.
    [28] Foxman B M, Rosenblum M. [J]. Synthesis and structure of 2,2'-binaphthalenediyl-substituted ferrocenes and derived oligomers. Organometallics 1993,12(12): 4805~4809.
    [29] Wang X-J, Wang L, Wang J-J, Chen T. [J]. Study on the Electrochemical Behavior of Poly(ferrocenylsilane) Films, Journal of Physical Chemistry: Part B 2004,108(18): 5627~5633.
    [30] Wang J-J, Wang L, Wang X-J, Chen T, Chen Y. [J]. Synthesis of Poly(ferrocenylsilanes) with different molecular weight and their electrochemical behavior. Journal of Applied Polymer Science 2006,100: 473~477.
    [31] Bard A J, Faulkner L R. [M]. Electrochemical methods fundamentals and applications. John Wiley & Sons, Inc. 1980.
    [32] Quirk M, Serda J. [M].半导体制造技术,电子工业出版社, 2004.
    [33] Huang W, Zhou Y, Yah D. [J]. Direct synthesis of amphiphilic block copolymers from glycidyl methacrylate and poly(ethylene glycol) by cationic ring-opening polymerization and supramolecular self-assembly thereof. Journal of Polymer Science: Part A: Polymer Chemistry, 2005, 43: 2038~2047.
    [34] Jiang H, Fang D, Hsiao B S, Chu B, Chen W. [J]. Optimization and characterization of dextran membranes prepared by electrospinning. Biomacromolecules, 2004, 5(2): 326~333.
    [35] Masuda M, Jonkheijm P, Sijbesma R R Meijer E W. [J]. Photoinitiated polymerization of columnar stacks of self-assembled trialkyl-1,3,5-benzenetricarboxamide derivatives. J Am Chem Soc 2003, 125(51): 15935~15940.
    [36] 孙忠贤.[M].电子化学品,化学工业出版社,2002.
    [37] Du J, Chen Y. [J]. Organic-inorganic hybrid nanoparticles with a complex hollow structure. Angew Chem Int Ed, 2004, 43: 5084~5087.
    [38] Wang X, Winnik M A, Manners I. [J]. Swellable, redox-active shell-crosslinked organometallic nanotubes. Angew Chem Int Ed, 2004, 43: 3703~3707.
    [39] Cao L, Manners I, Winnik M A. [J]. Synthesis and self-assembly of the organic-organometallic diblock copolymer poly(isoprene-b-ferrocenylphenylphosphine):shell cross-linking and coordination chemistry of nanospheres with a polyferrocene core.Macromolecules, 2001, 34(10): 3353~3360.
    [40] Wang X, Winnik M A, Manners I. [J]. Synthesis and self-assembly of poly(ferrocenyldimethylsilane-b-dimethylaminoethyl methacrylate): toward water-soluble cylinders with an organometallic core. Macromolecules, 1005, 38(5): 1928~1935.
    [41] Arnold R, matchett S A, Rosenblum M. [J]. Preparation and properties of stacked oligomeric and polymeric metallocenes. Organometallics 1988, 7(11): 2261~2266.
    [42] Hudson R D A, Foxman B M, Rosenblum M. [J]. Synthesis and properties of new stacked metallocene polymers. Organometallics, 1999, 18(20): 4098~4106.
    [43] Rosenblum M, Nugent H M, Jang K-S, Labes M M, Cahalane W, Klemarczyk P, Reiff W M. [J]. The synthesis and properties of face-to-face metallocene polymers. Macromolecules 1995,28(18): 6330~6342.
    [44] Nugent H M, Rosenblum M. [J]. Synthesis of face-to-face metallocene polymers. J. Am.Chem. Soc. 1993, 115(9): 3848~3849.
    [45] Frankowski D J, Raez J, Manners I, Winnik M A, Khan S A, Spontak R J. [J]. Formation of dispersed nanostructures from poly(ferrocenyldimethylsilane-b-dimethylsilaxane) nanotubes upon exposure to supercritical carbon dioxide. Langmuir, 2004, 20(21): 9304~9314.
    [46] Yang J, Li H, Wang G, He B. [J]. Excimer formation in uniaxially stretched polymer films.Journal of Applied Polymer Science, 2001, 82: 2347~2351.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700