苯乙烯—异戊二烯(或丁二烯)嵌段共聚物表面结构的形成及其影响因素
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物的表面性能是由其表面结构决定的。要达到对聚合物表面结构进行设计与控制的目的,则必须对表面层分子的化学物理性质,表面层的聚集态结构及表面结构的形成等进行充分研究。苯乙烯-异戊二烯(或丁二烯)嵌段共聚物是热塑性弹性体,作为粘合剂和密封材料在日常生活中有广泛应用。由于它们各嵌段元素组成相同且技术手段的限制,目前有关它们表面化学组成的报道很少且已报道的有关它们表面化学组成的分析深度也大于几个分子层的水平。
     本论文利用具有准单分子层界面敏感性与获取丰富的界面分子结构信息及原位研究能力的和频振动光谱(SFG,sum Frequency Generation Vibrational Spectroscopy)技术为主要研究手段,结合其他表征手段研究成膜条件对苯乙烯-异戊二烯(或丁二烯)嵌段共聚物表面结构的形成的影响,并研究所形成的表面结构与固化过程、聚合物溶液性质之间的关系。得到以下结论:
     (1)成膜溶液浓度明显影响SB、SBS浇铸膜表面结构和性质。1% w/v浓度时,浇铸膜表面具有较高的PB含量,二嵌段SB浇铸膜表面基本为低表面能的PB段覆盖。随着浓度的增加,浇铸膜表面PS含量逐渐增加。浇铸成膜固化过程是从溶液无序到固态相对有序的自组装过程,最终形成的表面结构要受聚合物在溶液中聚集状态和链段活性的影响。低浓度时,聚合物链相对舒展,且甲苯溶剂分子在表面存在的时间较长,PB可能具有相对较高的迁移速率和较长的迁移时间,因而表面具有更高的PB富集度,甚至完全由PB段覆盖。
     (2)与浇铸成膜不同,苯乙烯/丁二烯嵌段共聚物旋涂膜表面存在高含量的PS且基本不受成膜溶液浓度的影响。旋涂成膜的过程是溶剂快速挥发的快速固化过程,不存在低表面能组分向表面的离析。甲苯蒸汽处理可使PB段向表面迁移,处理一定时间后旋涂膜和高浓度浇铸膜表面都能达到由一层纯的PB覆盖的结构。
     (3)研究链结构、成膜溶剂对苯乙烯/丁二烯嵌段共聚物表面结构形成的影响发现,二嵌段共聚物SB比三嵌段共聚物SBS有利于PB组分在表面富集。同时发现对于二嵌段共聚物SB只有在PB的选择性溶剂环己烷成膜时,其表面层化学结构才为是纯的PB组分。三嵌段共聚物SBS无论是PB的选择性溶剂环己烷还是PS的选择性溶剂甲苯成膜,三嵌段共聚物SBS的最表面层化学结构,都是由PB与PS组分共存。
     (4)利用轴称滴形分析法(ADSA-P,Axisymmetric Drop Shape Analysis-Profile)和原子力显微镜技术(AFM,Atomic Force Microscope)研究不同SIS膜表面水的前进接触角测量过程中三相线处stick-slip现象与表面粘弹性关系时发现,在一定的表面能范围内,stick-slip突变过程中水接触角的差值Δθ与膜表面F-D曲线逼近部分斜率呈线性关系。说明SIS膜表面的stick-slip现象主要是由于其表面的粘弹性引起的。
Polymer surface properties depend critically upon the molecular structure at the polymer surface. Hence, to meet the challenge of designing and controlling the structure and properties of block copolymer surfaces at the molecular or nanoscale level, the relationship between the chemical structure of copolymer,film-formation methods surface structures of resulting films must be clearly understanded. Block copolymers composed of styrene and isoprene (butadiene) are thermoplastic elastomeric materials and they are widely used as adhesives and sealants. The chemical structures on these block copolymers surfaces remains largely unstudied and poorly understood because only few surface techniques are effective to probe such copolymer surface at the molecular level.
     In this paper, polystyrene/polyisoprene (polybutadiene) block copolymers surface structure and properties were investigated by contact angle measurement, surface tension measurements, atomic force microscopy (AFM) and sum frequency generation vibrational spectroscopy (SFG) which has unique ability to probe the molecular spectroscopy and molecular group orientation at submolecular level. The influence of film-forming methods and polymer solution properties on film surface structure formation was explored.
     It is found that very subtle variation in the polymer concentration of toluene solution can remarkably influence the surface structures of the cast films. At a copolymer concentration of 1% w/v, the PB segment in the polystyrene-block-polybutadiene(SB) diblock copolymer and polystyrene-block- polybutadiene-block-polystyrene(SBS) triblock copolymer were the most apt to segregate in the free surface region. Especially, the film of SB diblock copolymer was covered by pure PB segment. With increasing of the copolymer concentration, surface structures with more PS segment were visualized. During solution concentrating process, ordered microphase-separated surface structures were gradually formed and the final surface structure was affected by molecular association and the activity of polymer chains in the solution. At a relatively low copolymer concentration, the more stretched polymer chains and also the longer presented time of solvent molecular at solution surface give the polymer chain enough time and activity to segregate to the surface, resulting in a pure PB coverage on the surface.
     For spin-coated films, the PB content is lower on the surface, regardless of polymer concentration. Owe to the fast process for film formation, the evaporation process is too fast for PB component to segregate at the outmost surface. After annealing in toluene vapor, the surface was covered by pure PB, in order to minimize the surface energy.
     The surface structures of films casted from varing polystyrene/polybutadiene block copolymers solution were studied. The results showed that, the proportion of PB at the outmost surface of films is higher for SB solution cast films than that for SBS solution cast films. When the SB diblock copolymer was cast by cyclohexane solution, a PB-selective solvent, the resultant surface of SB was dominated by PB component. Cast by toluene solution, a good solvent of both PS and PB, but have a preferential affinity to PS, however, surface segregation of PB was restricted and the surface was composed of PS and PB. The SFG results showed that, both toluene and cyclohexane were used as solvents, PB coexist with PS at the outmost surface of SBS cast films.
     The relationship between the surface viscoelastic properties and the stick-slip of the three-phase line in measurement of dynamic contact angle with water on SIS copolymers was studied by axisymmetric drop shape analysis-profile (ADSA-P) and atomic force microscope (AFM). It is found that, in a certain surface energy range, the abrupt change of water contact angle (Δθ) in the stick-slip pattern has linear relationship with the slope of the contact region in the force curves. All of the evidence strongly suggests that stick-slip phenomenon on SIS films surface was caused by the surface viscoelasticity.
引文
[1] Langmuir I. The constitution and fundamental properties of solids and liquids part I solids [J]. J Am Chem Soc, 1916, 38: 2221-2295
    [2] Synytska A, Appelhans D, et al. Perfluoroalkyl end-functionalized oligoesters: correlation between wettability and end-group segregation [J]. Macromolecules, 2007, 40:297-305.
    [3] Bhatia Q S, Pan D H, Koberstein J T. Preferential surface adsorption in miscible blends of polystyrene and poly(vinyl methyl ether) [J]. Macromolecules, 1988, 21: 2166—2175
    [4] Garbassi F, Morra M, Occhiello E. Polymer Surfaces From Physics to Technology[M], John Wiley&Sons, Chichester, 1994.
    [5] Romero-Sánchez M D, M Pastor-Blas M, et al. Addition of ozone in the UV radiation treatment of a synthetic styrene-butadiene-styrene (SBS) rubber [J]. International Journal of Adhesion & Adhesives, 2005, 25: 358–370.
    [6] Andersen T H, Tougaard S, Larsen N B, Almdal K, Johannsen I. Surface morphology of PS–PDMS diblock copolymer films [J]. Journal of Electron Spectroscopy and Related Phenomena, 2001, 121: 93–110
    [7] Hong Y, Coombs S J, Cooper-White J J, et al. Film blowing of linear low-density polyethylene blended with a novel hyperbranched polymer processing aid [J]. Polymer, 2000, 41: 7705–7713.
    [8] Botelho do Rego A M, Pellegrino O, Martinho J M G, Lopes da Silva J. Surface analysis of PS-PEO diblock copolymer films by HREELS [J]. Langmuir 2000, 16: 2385-2388.
    [9] Urushihara Y, Nishino T. Effects of film-forming conditions on surface properties and structures of diblock copolymer with perfluoroalkyl side chains [J]. Langmuir 2005, 21: 2614-2618
    [10] Krupers M J, Sheiko S S, Moller M. Micellar morphology of a semifluorinated diblock copolymer [J]. Polym Bull, 1998, 40: 211-217.
    [11] Zhuang H Z, Gardella J A. Solvent effects on the surface composition of bisphenol a polycarbonate and polydimethylsiloxane (BPAC-PDMS) random block copolymers[J]. Macromolecules 1997, 30: 3632-3639
    [12] Chen J X, Zhuang H Z, Zhao J, Gardella J A. Solvent effects on polymer surface structure [J]. Surface and interface analysis, 2001, 31: 713–720
    [13] Thomas H R, O’Malley J J. Surface studies on multicomponent polymer systems by x-ray photoelectron spectroscopy polystyrene/poly(ethylene oxide) diblock copolymers [J]. Macromolecules, 1979, 12: 323-329
    [14] Zhao N, Zhang X Y, Zhang X L, Xu J. Simultaneous tuning of chemical composition and topography of copolymer surfaces: micelles as building blocks [J]. ChemPhysChem, 2007, 8: 1108-1114
    [15] Zhao N, Xie Q D, Weng L H, Wang S Q, Zhang X Y, Xu J. Superhydrophobic surface from vapor-induced phase separation of copolymer, micellar solution [J]. Macromolecules, 2005, 38: 8996-8999
    [16] Huang W H, Luo C X, Zhang J L, Han Y C. Formation of ordered microphase-separated pattern during spin coating of ABC triblock copolymer [J]. J Chem Phys, 2007, 126: 104901
    [17]彭娟,崔亮,罗春霞,邢汝博,韩艳春,高分子表面有序微结构的构筑与调控[J]。科学通报,2009,54: 679-695
    [18] Cong Y, Li B Y, Han Y C, et al. Self-assembly of H-shaped block copolymers [J]. Macromolecules, 2005, 38: 9836-9846
    [19] Krausch G. Surface-induced self-assembly in thin polymer films [J]. Mater Sci Eng, 1995, 14: 1-94
    [20] Anastasiadis S H, Russell T P, Satija S K, Majkrzak C F. Neutron reflectivity studies of the surface-induced ordering of diblock copolymer films [J]. Phys Rev Lett, 1989, 62: 1852
    [21] Elbs H, Drummer C, Abetz V, et al. Thin film morphologies of ABC triblock copolymers prepared from solution [J]. Macromolecules,b2002, 35: 5570—5577
    [22] Epps T H, DeLongchamp D M, Fasolka M J, et al. Substrate surface energy dependent morphology and dewetting in an ABC triblock copolymer film [J]. Langmuir 2007, 23: 3355-3362
    [23] Cheng S Z D, Keller A. The role of metastable states in polymer phase transitions: concepts, principles and experimental observations [J]. Annu Rev Mater Sci, 1998, 28: 533
    [24]宫玉梅,何天白,基于高分子软物质特性构建嵌段共聚物的非平衡相[J]。高分子通报,2009,5:1-12
    [25] Chen Q, Zhang D, Somorjai G and Bertozzi C R. Probing the surface structural rearrangement of hydrogels by sum-frequency generation spectroscopy [J]. J Am Chem Soc 1999, 121: 446-447
    [26] Luzinov I, Minko S, Vladimir V T. Adaptive and responsive surfaces through controlled reorganization of interfacial polymer layers [J]. Prog Polym Sci 2004, 29: 635–698
    [27] Wang Y, Hong X D, Liu B Q, Ma C G, Zhang C F. Two-dimensional ordering in block copolymer monolayer thin films upon selective solvent annealing [J]. Macromolecules 2008, 41: 5799-5808
    [28] Kimura M, Matthew J M, Xu T, Kim S H, Russell T P. Long-range ordering of diblock copolymers induced by droplet pinning [J]. Langmuir, 2003, 19: 9910-9913
    [29] Kim G, Libera M. Morphological development in solvent-cast polystyrene-polybutadiene-polystyrene (SBS) triblock copolymer thin films [J]. Macromolecules, 1998, 31: 2569-2577
    [30] Serrano E, Zubeldia A, et al. Effect of different thermal treatments on the self-assembled nanostructures of a styrene–butadiene–styrene star block copolymer [J]. Polymer Degradation and Stability, 2004, 83: 495–507
    [31] Berg R, Groot H, Dijk M A, Denley D R. Atomic force microscopy of thin triblock copolymer films [J]. Polymer, 1994, 35: 5778-5781
    [32] Xu S P, Liu W Q. Synthesis and surface characterization of an amphiphilic fluorinated copolymer via emulsifier-free emulsion polymerization of RAFT [J]. Journal of Fluorine Chemistry, 2008, 129: 125–130
    [33] Fukunaga K, Elbs H, Magerle R, et al. Large-scale alignment of ABC block copolymer microdomains via solvent vapor treatment [J]. Macromolecules, 2000, 33: 947-953
    [34] Niu S J and Ravi F S. Stability of order in solvent-annealed block copolymer thin films [J]. Macromolecules, 2003, 36: 2428-2440
    [35] Peng J, Kim D H, Knoll W, et al. Morphologies in solvent-annealed thin films of symmetric diblock copolymer [J]. J Chem Phys, 2006, 125: 064702-8
    [36] Peng J, Xuan Y, Wang H, et al. Solvent-induced microphase separation in diblock copolymer thin films with reversibly switchable morphology [J]. J Chem Phys, 2004, 120: 11163-11170
    [37] Peng J, Wei Y H, Wang H F, Li B Y, Han Y C. Solvent induced sphere development in symmetric diblock copolymer thin films [J]. Macromol Rapid Commun 2005, 26: 738–743
    [38] Ryu D Y, Shin K, Drockenmuller E, Hawker C J, Russell T P. A generalized approach to the modification of solid surfaces [J]. Science, 2005,308: 236-239
    [39] Kwok D Y, Neumann A W. Contact angle measurement and contact angle interpretation [J]. Advances in Colloid and Interface Science, 1999, 81: 167-249
    [40] Chau T.T. A review of techniques for measurement of contact angles and their applicability on mineral surfaces [J]. Minerals Engineering, 2009, 22: 213–219
    [41]朱步瑶,赵振国,界面化学基础[M]。北京:化学工业出版社,1996:208
    [42] Tingey K G andrade J D. Probing surface microhe terogeneity of poly(ether urethanes) in an aqueous environment[J]. Langmuir,1991, 7: 2471-2478
    [43] Mansky P, Liu Y, Huang E, Russell T, Hawker P C. Controlling polymer-surface interactions with random copolymer brushes [J]. Science, 1997, 275: 1458-1560
    [44] Senshu K, Yamashita S, Mori H, Mitsunori I, Hirao A, Nakahama S. Time-resolved surface rearrangements of poly(2-hydroxyethyl methacrylate-block-isoprene) in response to environmental changes [J]. Langmuir, 1999, 15: 1754-1762
    [45] Zimmermann J, Rabe M, Verdes D, Seeger S. Functionalized silicone nanofilaments: A novel material for selective protein enrichment [J]. Langmuir, 2008, 24: 1053-1057.
    [46] Shanahan M E R. Simple theory of "Stick-Slip" wetting hysteresis [J]. Langmuir, 1995, 11: 1041-1043
    [47] McHale G, Shirtcliffe N.J, Newton M. I. Contact-angle hysteresis on super-hydrophobic surfaces [J]. Langmuir, 2004, 20: 10146-10149
    [48] Kwok D Y, Gietzelt T, Grundke K, Jacobasch H J, Neumann A W. Contact angle measurements and contact angle interpretation 1 Contact angle measurements by axisymmetric drop shape analysis and a goniometer sessile drop technique [J]. Langmuir 1997, 13, 2880-2894
    [49] Zhao B, Haasch R T, MacLaren S. Solvent-induced self-assembly of mixed poly(methylmethacrylate)/polystyrene brushes on planar silica substrates: Molecular weight effect [J]. J Am Chem Soc, 2004, 126, 6124-6134
    [50] Grundke K, Zschoche S, Pschel K, Gietzelt T, et al. Wettability of maleimide copolymer films: effect of the chain length of n-Alkyl side groups on the solid surface tension [J]. Macromolecules, 2001, 34: 6768-6775
    [51] Binnig G, Quate C F, Gerber C. Atomic force microscope [J]. Phys.Rev.Lett, 1986, 56: 930-933
    [52] Chi L F, Fuchs H, Johnston R R, et al. Domain structures in langmuir-blodgett films investigated by atomic force microscopy [J]. Science, 1993, 259: 213– 216.
    [53] Kajiyama T, Ohki I, Takahara A. Surface morphology and frictional property of polyethylene single crystals studied by scanning force microscopy [J]. Macromolecules, 1995, 28: 4768-4770
    [54] Woodcock E S, Chen C, Chen Z. Surface restructuring of polystyrene/polymethacrylate blends in water studied by atomic force microscopy [J]. Langmuir, 2004, 20: 1928~1933
    [55] Shahin V, Ludwig Y, Nikova D. Glucocorticoids remodel nuclear envelope structure and permeability [J]. J Cell Sci, 2005, 118: 2881-2889
    [56] Opdahl A, Koffas T S, Amitay-Sadovsky E, Kim1 J, A Somorjai G. Characterization ofpolymer surface structure and surface mechanical behaviour by sum frequency generation surface vibrational spectroscopy and atomic force microscopy [J]. J Phys.: Condens Matter, 2004, 16: R659–R677
    [57] Berger C E H, van der Werf K O, Kooyman R P H, de Grooth B G, Greve J. Functional group imaging by adhesion AFM applied to lipid monolayers [J]. Langmuir, 1995, 11: 4188-4192.
    [58] Jung J, Kim K W, Na K, Kaholek M, Zauscher S, Hyun J. Fabrication of micropatterned gold nanoparticle arrays as a template for surface-initiated polymerization of stimuli-responsive polymers [J]. Macromolecular Rapid Communications, 2006, 27: 776–780
    [59] Sheiko S S. Imaging of polymers using scanning force microscopy: from superstructures to individual molecules [J]. Advances in Polymer Science, 2000, 151: 61-174
    [60] Olivier N, Maurice B, Gilles C, Jacques S. In situ determination of the thermodynamic surface properties of chemically modified surfaces on a local scale: An attempt with the atomic force microscope [J]. Langmuir, 2004, 20: 2707-2712
    [61] Tsui O K C, Wang X P, Ho J Y L, Ng T K, Xiao X. Studying surface glass-to-rubber transition using atomic force microscopic adhesion measurements [J]. Macromolecules, 2000, 33: 4198-4204.
    [62] X P Wang, X Xiao, Tsui O K C. Surface viscoelasticity studies of ultrathin polymer films using atomic force microscopic adhesion measurements [J]. Macromolecules 2001, 34: 4180-4185
    [63] Wang X, Shi Q, Hu H, Zhang K. Probing relaxation of chain segments of polytert-butylacrylate film by force distance curve of atomic force microscopy [J]. European Polymer Journal,2004, 40: 2179–2183
    [64] Gracias D H, Zhang D, Lianos L, Ibach W, Shen Y R, Somorjai G A. A study of the glass transition of polypropylene surfaces by sum-frequency vibrational spectroscopy and scanning force microscopy [J]. Chemical Physics, 1999, 245: 277–284
    [65] Raghavan D, Gu X, et al. Characterization of heterogeneous regions in polymer systems using tapping mode and force mode atomic force microscopy [J]. Langmuir, 2000, 16: 9448-9459
    [66] Raghavan D, Gu X, Nguyen T, et al. Mapping polymer heterogeneity using atomic force microscopy phase imaging and nanoscale indentation [J]. Macromolecules, 2000, 33: 2573-2583.
    [67] Shen Y R. The principle of nonlinear optics [M]. New York: Wiley, 1984
    [68] Kim S H, Opdahl A, Marmo C, Somorjai G A. AFM and SFG studies of pHEMA-based hydrogel contact lens surfaces in saline solution: adhesion, friction and the presence of non-crosslinked polymer chains at the surface [J]. Biomaterials, 2002, 23: 1657-1666
    [69] Opdahl A, Somorjai G A. Solvent vapor induced ordering and disordering of phenyl side branches at the air/polystyrene interface studied by SFG [J]. Langmuir, 2002, 18: 9409-9412
    [70] Opdahl A, Phillips R A, Somorjai G A. Surface segregation of methyl side branches monitored by sum frequency generation (SFG) vibrational spectroscopy for a series of random poly(ethylene-co-propylene) copolymers [J]. J Phys Chem B, 2002, 106: 5212-5220.
    [71] Rane S S, Mattice W L, Dhinojwala A. Atomistic simulation of orientation of methyl groups and methylene bisectors and surface segregation, in freely standing thin films of atactic poly(ethylene-co-propylene) [J]. J Phys Chem B, 2004, 108: 14830-14839.
    [72] Chen C Y, Even Mark A, Chen Z. Detecting molecular-level chemical structure and grouporientation of amphiphilic PEO-PPO-PEO copolymers at solution/air and solid/solution interfaces by SFG vibrational spectroscopy [J]. Macromolecules, 2003, 36: 4478-4484.
    [73] Huang H Y, Hu Z J, Chen Y Z, Zhang F J, Gong Y M, He T B. Effects of casting solvents on the formation of inverted phase in block copolymer thin films [J]. Macromolecules, 2004, 37: 6523-6530
    [74] Huang H Y, Zhang F J, Hu Z J, Du B Y, He T B. Study on the origin of inverted phase in drying solution-cast block copolymer films [J]. Macromolecules, 2003, 36: 4084-4092
    [75] Tsarkova L, Knoll A, Krausch G, Magerle R. Substrate-induced phase transitions in thin films of cylinder-forming diblock copolymer melts [J]. Macromolecules, 2006, 39: 3608-3615
    [76] Serrano E, Zubeldia A, Larra?aga M, Remiro P, Mondragon I. Effect of different thermal treatments on the self-assembled nanostructures of a styrene–butadiene–styrene star block copolymer [J]. Polymer Degradation and Stability, 2004, 83: 495–507
    [77] Guo R, Huang H Y, Chen Y Z, Gong Y M, Du B Y, He T B. Effect of the nature of annealing solvent on the morphology of diblock copolymer blend thin films [J]. Macromolecules, 2008, 41: 890-900
    [78] Schwark D, Vezie D, Reffner J, Thomas E L, Annis B K. Characterization of the surface morphology of diblock copolymers via low-voltage, high-resolution scanning electron microscopy and atomic force microscopy [J]. J Mater Sci Lett, 1992, 11: 352-355.
    [79] Hasegawa H, Hashimoto T. Morphology of block polymers near a free surface [J]. Macromolecules, 1985, 18: 589-590.
    [80] John T Mehl, David M Hercules. Secondary ion mass spectrometry of poly(styrene-co-isoprene) diblock copolymers: improved surface sensitivity using the high-mass region [J]. Macromolecules, 2001, 34: 1845-1854.
    [81] Turturrot A, Gattiglia E, et al. Free surface morphology of block copolymers: 1 Styrene-butadiene diblock copolymers [J]. Polymer, 1995, 36: 3987-3996
    [82] Kim G, Libera W. Kinetic constraints on the development of surface microstructure in SBS thin films [J]. Macromolecules, 1998, 31: 2670-2672
    [83] Yang H, Sa U, Kang M, et al. Near-surface morphology effect on tack behavior of poly(styrene-b-butadiene-b-styrene) triblock copolymer/rosin films [J]. Polymer, 2006, 47: 3889-3895.
    [84] Ni H G, Wang X P. Surface wetting behavior of the poly(styrene-b-isoprene-b-styrene) triblock copolymer with different chemical structures of the polyisoprene block chain [J]. Surface Science. 2007, 601: 1560-1565
    [85] Lavielle L, Schultz J. Surface properties of graft polyethylene in contact with water: I Orientation phenomena [J]. J.Colloid Interface Sci, 1985, 106: 438-445.
    [86] Kim J H, Kim S C. Effect of PEO grafts on the surface properties of PEO-grafted PU/PS IPNs: AFM study [J]. Macromolecules 2003, 36:2867-2872
    [87] Ito T, Namba M, Bühlmann P, Umezawa Y. Modification of silicon nitride tips with trichlorosilane Self-Assembled Monolayers (SAMs) for chemical force microscopy [J]. Langmuir 1997, 13: 4323-4332
    [88] Butt H J, Cappella B, Kappl M. Force measurements with the atomic force microscope: Technique, interpretation and applications [J]. Surface Science Reports, 2005, 59: 1–152
    [89] Lee L, Lee H. Adhesion of High Polymers.ⅡWettability of Elastomers [J]. J Polym Sci (A-2) 1967, 5: 1103-1118
    [90] Lewin M. Mey-Marom A, Frank R. Surface free energies of polymeric materials, additives and minerals [J]. Polym Adv Technol, 2005, 16: 429–441
    [91] Wu S. Polymer interface and adhesion [M]. Marcel Dekker: New York, 1982
    [92] Zhang Q L, Ophelia K C T, Du B Y, Zhang Y J, Tang T, He T B. Observation of Inverted Phases in Poly(styrene-b-butadiene-b-styrene) Triblock Copolymer by Solvent-Induced Order?Disorder Phase Transition[J]. Macromolecules, 2000, 33: 9561-9567
    [93] John L B. The infrared spectra and structures of polybutadienes [J]. Journal of polymer science: part A, 1963,1: 47-58
    [94] Wang J, Paszti Z, Even M A, Chen Z. Measuring polymer surface ordering differences in air and water by Sum Frequency Generation Vibrational Spectroscopy [J]. J Am Chem Soc 2002, 124: 7016-7023
    [95] Binder J L. The infrared spectra and structures of polybutadienes [J]. Journal of polymer science part A, 1963, 1: 37-46
    [96] Wu Z L, Hao Z X, Ying P L, Li C, Xin Q. An IR Study on Selective Hydrogenation of 1,3-Butadiene on Transition Metal Nitrides: 1,3-Butadiene and 1-Butene Adsorption on Mo2N/γ-Al2O3 Catalyst [J]. J Phys Chem B, 2000, 104: 12275-12281
    [97] Gautam K S, Schwab A D, Dhinojwala A, et al. Molecular Structure of Polystyrene at Air/Polymer and Solid/Polymer Interfaces [J]. Physical review letter 2000, 85: 3854-3857
    [98] Gennes P G. Solvent evaporation of spin cast films:”crust”effects [J]. Eur Phys J E, 2002, 7: 31-34
    [99] Gennes P G, Reiter G. Spin-cast, thin, glassy polymer films: Highly metastable forms of matter [J]. Eur Phys J E, 2001, 6: 25-28
    [100] Strawhecker K E, Kumar S K, Douglas J F, Karim A. The critical role of solvent evaporation on the roughness of spin-cast polymer films [J]. Macromolecules 2001, 34: 4669-4672
    [101] Kahl H, Wadewitz T, Winkelmann J Surface tension of pure liquids and binary liquid mixtures [J]. J Chem Eng Data, 2003, 48: 580-586
    [102] Huang H Y, Hu Z J, Chen Y Z, Zhang F J, Gong Y M, He T B. Effects of casting solvents on the formation of inverted phase in block copolymer thin films [J]. Macromolecules, 2004, 37: 6523-6530
    [103] Opdahl A, Phillips R A, Somorjai G A. Surface Segregation of Methyl Side Branches Monitored by Sum Frequency Generation (SFG) Vibrational Spectroscopy for a Series of Random Poly(ethylene-co-propylene) Copolymers [J]. J Phys Chem B 2002, 106: 5212-5220
    [104] Ovejero G, Perez P, et al. Solubility and Flory Huggins parameters of SBES, poly(styrene-b-butene/ethylene-b-styrene) triblockcopolymer, determined by intrinsic viscosity [J]. European Polymer Journal, 2007, 43: 1444–1449
    [105] V Roucoules, J P S Badyal, et al. Super-hydrophobic surfaces produced by plasma fluorination of polybutadiene films, Langmuir, 2003, 19: 3432-3438
    [106] Green P F, Christenson T M, Russell T P, Jerome R. Equilibrium surface composition of diblock copolymers [J]. J Chem Phys, 1990, 92: 1478-1482
    [107] Thomas H R, O’Malley J J. Surface studies on multicomponent polymer systems by x-ray photoelectron spectroscopy: polystyrene/poly(ethyleneoxide) homopolymer blends [J]. Macromoleculues, 1981, 14: 1316-1320.
    [108] Dai L, Griesser H J, Hong X, et al. Photochemical generation of conducting patterns inpolybutadiene films [J]. Macromolecules 1996, 29: 282-287
    [109] Saeid A, Nowrouz B. Surface tension of dilute solutions of alkanes in cyclohexanol at different temperatures [J]. J Chem Eng Data, 2008, 53: 2422–2425
    [110] Kenneth E S, Sanat K K. The critical role of solvent evaporation on the roughness of spin-cast polymer films [J]. Macromolecules, 2001, 34: 4669-4672
    [111] Chai J, Lu F, Li B, Kwok D Y. Wettability interpretation of oxygen plasma modified poly(methyl methacrylate) [J]. Langmuir, 2004, 20: 10919-10927
    [112] Augsburg A, Grundke K, P?schel K, Jacobasch H J, Neumann A W. Determination of contact angles and solid surface tensions of poly(4-X-styrene) films [J]. Acta Polym, 1998, 49: 417–426
    [113] Dickie R A, O Carter R, Hammond J S, et al. Substrate effects on the oxidative crosslinking of a polybutadiene coating [J]. Ind Eng Chem Prod Res Dev, 1984, 23: 297-300
    [114] Tavana H, Jehnichen D, Grundke K, Hair M L, Neumann A W. Contact angle hysteresis on fluoropolymer surfaces [J]. Advances in Colloid and Interface Science, 2007,134–135: 236–248
    [115] Kwok D Y, Gietzelt T, Grundke K, Jacobasch H J, Neumann A W. Contact angle measurements and contact angle interpretation.1: contact angle measurements by axisymmetric drop shape analysis and a goniometer sessile drop technique [J]. Langmuir, 1997, 13: 2880-2894
    [116] Kwok D Y, Wu R, Li A, Neumann A W. Contact angle measurements and interpretation: wetting behavior and solid surface tensions for poly(alkyl methacrylate) polymers [J]. J Adhesion Sci Technol, 2000, 14: 719–743
    [117] Tavana H, Yang G C. Christopher M Y, Dietmar A, Zschoche S, Grundke K, Hair M L, Neumann A W. Stick?slip of the three-phase line in measurements of dynamic contact angles [J]. Langmuir, 2006, 22: 628-636
    [118] Mao G,Wang J, Clingman R S, et al. Molecular design, synthesis and characterization of liquid crystal-coil diblock copolymers with azobenzene side groups [J]. Macromolecules, 1997, 30: 2556-2567
    [119] Vazaios A, Pitsikalis M, Hadjichristidis N. Triblock copolymers and pentablock terpolymers of n-hexyl isocyanate with styrene and isoprene: synthesis, characterization and thermal properties [J]. J Polym Sci Part A: Polym Chem, 2003, 41: 3094-3102
    [120] B?ker A, Reihs K, Wang J, Stadler R, Ober K C. Selectively thermally cleavable fluorinated side chain block copolymers: Surface Chemistry and Surface Properties [J]. Macromolecules, 2000, 33: 1310~1320
    [121] WU Ren-jie(吴人洁)。现代分析技术-在高聚物中的应用[M]。上海:上海科学技术出版社,1987: 237-239
    [122] Tavana H, Neumann A W. On the question of rate-dependence of contact angles. Colloids and Surfaces A: Physicochem Eng Aspects, 2006, 282–283: 256–262
    [123] Gavish M, Brennan P, Woodward A E. Infrared Spectral Correlations for Crystalline and Amorphous trans- 1, 4-Polyisoprene [J]. Macromolecules 1988, 21: 2075-2079
    [124] Cornell S W, Koenig J L. Raman spectra of polyisoprene rubbers [J]. Macromolecules, 1969, 2: 546-549
    [125] A W亚当森著,顾锡人译,表面的物理化学[M]。北京科学出版社,1984,351-370
    [126] Shanahan M E R, CarréA. Viscoelastic dissipation in wetting and adhesion phenomena [J]. Langmuir,1995, 11: 1396-1402
    [127] Shanahan M E R, CarréA. Anomalous spreading of liquid drops on an elastomeric surface [J]. Langmuir, 1994, 10: 1647-1649
    [128] Opdahl A, Hoffer S, Mailhot B, Somorjai G A. Polymer surface science [J]. The Chemical Record, 2001, 1: 101–122
    [129] King A G. Research advances: new molecule key to anti-heart attack drug?; 12 million molecules, 143 basic shapes; improving non-stick surfaces at the flip of a switch [J]. J Chem Educ, 2008, 85: 1598–1600
    [130] Ahuja A, Taylor J A, et al. Nanonails: a simple geometrical approach to electrically tunable superlyophobic surfaces [J]. Langmuir, 2008, 24: 9-14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700