苯分子和四氯化碳的高压拉曼相变研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用金刚石对顶砧(DAC)高压技术和原位拉曼光谱测量方法,以苯分子和四氯化碳为研究对象,对两种液体分子进行了原位高压拉曼测量工作。
     通过金刚石小压机对液体苯加压到12.87GPa,同时利用拉曼光谱仪对每一阶段进行信号的采集,经过数据后发现:苯环的呼吸振动υ1(987 cm-1)在4.03GPa附近劈裂出新峰υ1D,苯环面内变形振动υ6(607 cm-1)在4.03GPa和10.89GPa左右都有新峰出现。验证了苯分子分别在0.06GPa、4.03GPa、10.89GPa发生相变的研究成果。同时随着压强的增加,和频和基频随压力蓝移的速度不同,导致频差增大,计算后得到费米振动耦合系数ω减小,费米共振最终在10.89GPa左右消失。
     在CCl4分子的高压拉曼研究中,我们发现四氯化碳分子的拉曼峰都发生蓝移现象。随着压强增加,拉曼峰线发生劈裂,并在高压下简并消失都说明了高压导致结构的相变。低波数拉曼线变窄和新晶格模式的产生也说明了CCl4正在经历一个无规则向规则晶体的转变过程。随压强增加费米共振双峰交换位置,耦合现象减弱、直至12.28GPa时消失,佐证了CCl4在不同压强下有不同相变的发生。
With the improving of molecular spectroscopy and the developing of diamond anvil cell technology , the Raman study is widely used in molecular crystal structure under high-pressure, it has a significant contribution in the molecular bond strength between the role of co-existence especially. In recent years , the molecular dynamics have been the subjects of much research interest., which the representative of substances are benzene, carbon tetrachloride and other hydrocarbons. At present, there are not many reports of benzene and carbon tetrachloride molecules under high pressure and the pressure are relatively low. This experiment will increase the pressure to 12.87GPa by the DAC. The situ signal under high pressure was collected by the Raman spectroscopy, Detailed analysis the phase transitions of the benzene and carbon tetrachloride molecules in the pressure range, Study the changes of the molecular structure of the sample under high pressure. Explaining the Fermi resonance of the sample changes with the pressure be increased.
     Phase transition of benzene has been carried out for many years, the form of benzene has been very clear under high pressure. The Raman spectra of benzene has very significant changes with the increased Pressure, including the peak changes of relative intensity, frequency moving, half-width and the production and disappearance of Fermi resonance, etc, in which the scientific information is very rich, it is necessary to be given more attachment. This experiment which combines previous research results increases the pressure on the liquid benzene by DAC, analysising molecular structure changes of benzene (0-12.89GPa). The first phase transition of benzene occurred When the pressure reached 0.06GPa. At this time there are four molecules per unit cell in benzene molecules, its space group is(D2h15).As other samples the Raman vibrational spectra of benzene move to higher frequency with the increased pressure, mainly because the pressure speed up the frequency of the vibration .Ring breathing vibrationυ1 (987 cm-1) of benzene splits ,when the pressure reached 4.03GPa. And there is a new peak nearυ6 (607 cm-1) at this pressure. At this phase transition point, the benzene molecules transit from II phase to III phase. The intensity ratio ofυ1和υ1D changes, With the pressure increasing .It is almost equal at the 9.89GPa and the Fermi resonance phenomenon disappeared at this point. This is because both breathing modeυ1 (987 cm-1) and benzene ring in-plane deformation vibration modeυ6 (607 cm-1) of benzene occur phase transition under high pressure. There is a new peak appear near the benzene ring plane deformation vibrationυ6 (607 cm-1), when the pressure reaches 10.89GPa, This proves that the second-order phase transition of benzene molecules take place at the 10.89GPa. We get research results that phase transition point of the benzene is 0.06GPa, 4.03GPa, 10.89GPa by the Raman slope curve changes of Pressure - frequency shift. In addition, through the experimental results of measurement and the calculation formula, we get the Fermi resonance value of R f/a、?、ωand ?0 under the pressure. We found that with the pressure increases the spacingΔ0 of the breathing mode of benzeneυ1 (987 cm-1), benzene ring plane deformation vibration modeυ6 (607 cm-1), and benzene ring stretching mode C-Cυ8 (1580 cm-1) is increasing, the coupling constantωof Fermi resonance is constantly decreasing, and R f/a is also decreases. This is mainly due to the difference Raman bands blue shift velocity ofυ1 (ring breathing a1g) +υ6 (ring deformation e2g) combination and theυ8 (ring stretching e2g) fundamental, Lead to the frequency difference increased, the coupling coefficientωand the intensity ratio R f/a decrease.
     In high-pressure Raman experiments of ccl4 molecules we found that the Raman peak of carbon tetrachloride are blue shift. With increasing pressure the Raman line split. Raman line become narrow at low wave number and lattice patterns create illustrates that the rules of CCl4 are going through a process to no rules crystal. Fermi resonance peaks exchange position and reduced coupling shows that CCl4 have different phase transitions under different pressures.
     This thesis will provide the experimental basis for the application of liquids such as benzene and carbon tetrachloride molecules in materials science , also provide an effective means to in-depth study the micro-structure of benzene and carbon tetrachloride molecules under pressure .
引文
[1]苏文辉,许大鹏,刘宏建.凝聚态物理学中若干前沿问题的高压研究[J].吉林大学自然科学学报特刊, 1992, 170.
    [2] JAMIESON J C, LAWSON A W, NACHTRIEB N D. New Device for Obtaining X-Ray Diffraction Patterns from Substances Exposed to High Pressure [J]. Rev. Sci. Instrum., 1959, 30: 1016
    [3]张广强,许大鹏*,王德涌,张琳,宋更新,薛燕峰,孙静姝,刘晓梅,苏文辉.纳米SiO2在高压高温下的结构转化.吉林大学学报(理学版), 2008, 46(2): 311-313. (核心)
    [4] WONG, K W, WANG Y M, LEE S T, et al. Diamond Relat [J]. Mater. 1999, 8: 1885.
    [5]高压物理讲义(参考资料),吉林大学超硬材料国家重点实验室.
    [6]张广强,不同初始状态的SiO2在高温高压下的结构转变研究,吉林大学博士学位论文,2009.6.
    [7] BASSETT W A. The birth and development of laser heating in diamond anvil cells [J]. Review of Scientific Instruments, 2001, 72(2): 1283-1288.
    [8]于华民,静高压下TiO2结构转变的拉曼研究,吉林大学硕士学位论文,2007.6.
    [9] William A.Bassett.Rev.Sci.Instrum.,72(2):1283-1288,Feb2001. [16]Denis Andraut and Guillaume Fiquet. Rev.Sci.Instrum., 72(2):1283-1288,Feb2001.
    [10] H. E. Lorenzana, I. F. Silvera and K. A. Goettel, Phys, Rev. Lett. 63 (1998) 2080.
    [11] A. W. Lawson, and T. Y. Tang, Rev. Sci. Instrum. 21 (1950) 815. [14] C. E. Weir, E. R. Lippincott, A. Van Valkenburg and E. N.Bunting, J.Re.Natl.Bur. Stand., Sec. A 63 (1959) 55.
    [12]YUSA H. Laser-heated diamond anvil cell system for photochemical reaction measurements [J]. Review of Scientific Instruments, 2001, 72(2): 1309-1312.
    [13]HUBERT H, GARVIE L, DEVOUARD B, et al. High-Pressure, High-Temperature Synthesis and Characterization of Boron Suboxide (B6O) [J].Chem. Mater., 1998, 10: 1530.
    [14] MING L AND BASSETT W A. Laser heating in the diamond anvil press up to 2000℃sustained and 3000℃pulsed at pressures up to 260 kilobars [J]. Review of Scientific Instruments, 1974, 45(9): 1115
    [15]王华馥、吴自勤.固体物理实验方法.高等教育出版社,北京,1997
    [16]Machler R,Uggowizter P J and Solenthaler C.Structure,mechanical properties andstress corrosion behavior of high strength spray deposited 7000 series aluminum alloy.Mat.Sci.and Tech,1991,7(5):447-451
    [17] Roberto B and Lorenzo U, J.Chem.Phys. 112,8522(2000).
    [18] Yuichi Akahama and Haruki Kawamura, Phys.Rev.B. 61,8801,(1999).
    [19]周建十.高压科学与技术[M].吉林:吉林大学出版社, 1986.
    [20]刘铁成,四氯化碳和苯分子的高压原位拉曼光谱和费米共振研究,吉林大学博士学位论文,2009,11
    [21] H Shimizu and N Saitoh, Phys.Rev.B. 57,230,(1998).
    [22] R J Meier and M P VanAlbada, Phys.Rev.Lett. 52,1045,(1984).
    [23]王克基.高压科学与技术[M].吉林:吉林大学出版社, 1985.
    [24]Guangqiang Zhang, Yue Xu, Dapeng Xu*, Deyong Wang, Yanfeng Xue, and Wenhui Su. Pressure-induced crystallization of amorphous SiO2 with silicon-hydroxy group and the quick synthesis of coesite under lower temperature. High pressure research, 2008, 28(4): 641-650. (SCI)
    [25] SU W, WU D, LI X, et al. Investigation using high-pressure synthesis of double rare-earth oxides of ABO3 composition [J]. Physica B, 1986, 658: 139-140.
    [26]周建十.高压科学与技术[M].吉林:吉林大学出版社, 1986.
    [27]王克基.高压科学与技术[M].吉林:吉林大学出版社, 1985.
    [28] J Freeman and A Wang, Can.Mineral. 46,1477-1500(2008)
    [29] A W Lawson and T. Y. Tang, Rev. Sci. Instrum. 21 815, (1950)
    [30]谢鸿森.地球科学中静态超高压实验研究的发展趋势[J].高压物理学报, 1997, 11(增刊): 2.
    [31]姜峰,杜建国,王万春等.高温高压模拟实验研究[J].沉积学报, 1998,15(4): 145.
    [32]张振宁,高压处理对LY12铝合金组织及性能的影响,工学硕士学位论文,燕山大学,2009年5月
    [33]李良福,利用高压结晶法获得超高强度铝合金的研究.鞍钢技术,1997(4):45-48
    [34]R.J.Hemley,N.W.Ashcroft.The revealing role of pressure in the condensed matter sciences.Physics Today,1998,51(8):26
    [35]周密,卟啉J聚集体高压拉曼光谱研究——分子弹簧垫圈模型,吉林大学博士学位论文,2009.5.
    [36]张志坚,张文淮.碎屑岩储层中有机包裹体的形成机制研究[J].地质科技情报, 1994, 3(1): 53-59.
    [37] HAMMES G G. Spectroscopy for the Biological Sciences [M]. New Jersey: John Wiley & Sons, 2005.
    [38]张鹏翔,赵金涛.显微拉曼技术在公安法学中的应用[J]光散射学报,1998,10(3-4):200-203.
    [39]张琳,锆钛酸铅陶瓷材料的拉曼散射研究,吉林大学硕士学位论文,2006.6.
    [40]张延会,吴良平,孙真荣.拉曼光谱技术的应用进展[J].化学教学, 2006, (4): 32-35.
    [41]KHDAIR A, GERARD B, HANDA H, et al. Surfactant-polymer nanoparticles enhance the effectiveness of anticancer photodynamic therapy [J]. Molecular Pharmacevtics. 2008, 5: 795-807.
    [42] AROCA R. Surface-enhanced Vibrational Spectroscopy [M]. Chichester: John Wiley & Sons, 2006.
    [43] Nie S, Emory S R. Probing SingleMolecules and SingleNanoparticles by Surface - Enhanced Raman Scattering [ J]. Science, 1997, 275: 1102.
    [44]张光寅,蓝国祥,王玉芳,晶格振动光谱学,高等教育出版社,2001年第二版。
    [45] Zhang J L, ZhaoM J, Chi F, Li C. UV Raman spectroscopic study on TiO2. I. phase transformation at the surface and in the bulk [J]. Phys. Chem. B, 2006, 110(2): 927-935.
    [46] KOKAZI M, UETOMO , SUZUKI S, et al. A light-harvesting arraycomposed of porphyrins and rigid backbones [J]. 2008, 10: 4477-4480.
    [47] RAGHAVACHARI R. Near-Infrared Applications in Biotechnology [M]. New York: Marcel Dekker, 2001.
    [48]郑楚生王英张惠芬,拉曼光谱在宝玉石鉴定中的应用.光散射学报,112(11):15-21,(2000),
    [49] HUANG X, ZHU C, ZHANG S, et al. Porphyrin-dithienothiopheneπ-conjugated copolymers: synthesis and their applications in field-effect transistors and solar cells [J]. Macromolecules, 2008, 41: 6895-6902.
    [50] PAOLESSE R, LVOVA L, NARDIS S, et al. Chemical images by porphyrin arrays of sensors [J]. Microchimica Acta. 2008, 163: 103–112.
    [51] MCHALE J L. Molecular Spectroscopy [M]. Beijing: Science Press, 2003.
    [52]SAKURAI T, SHI K, SATO H, et al. Prominent electron transport propertyobserved for triply fused metalloporphyrin dimer: directed columnar liquid crystallineassembly by amphiphilic molecular design [J]. Journal of the American Chemical.Society, 2008, 130, 13812–13813.
    [53]吴国桢.分子振动光谱学[M].清华大学出版社,2001.
    [54] STICH M I J, NAGL S, WOLFBEIS O S, et al. A dual luminescent senso material for simultaneous imaging of pressure and temperature on surfaces [J].Advanced Functional Materials. 2008, 18: 1399-1406.
    [55]程光煦.拉曼布里渊散射[M].北京:科学出版社, 2001. 50-95.
    [56] LEVIS R. Handbook of Raman Spectroscopy: From the Research Laboratory to the Process Line [M]. New York: Marcel Dekker, 2001.
    [57]程昱川.几类层状超薄膜结构的分子光谱研究[D].长春:吉林大学,2006.
    [58]许永建,罗荣辉,郭茂田.共聚焦显微拉曼光谱的应用和进展[J].激光杂志, 2007, 28(2): 13.
    [59]凌晓锋,李维红,宋苑苑等.胃癌组织的拉曼光谱初探[J].光谱学与光谱分析,2000,20(5):692-693.
    [60] SMITH E, DENT G. Morden Raman Spectroscopy: A Practical Approach[M]. Chichester: John Wiley & Sons, 2005.
    [61] JENSEN P, BUNKER P R. Computational Molecular Spectroscopy [M]. Chichester: John Wiley & Sons, 2000.
    [62]陆维敏,陈芳编,谱学基础与结构分析,高等教育出版社,2005年5月第1版,33-34
    [63]吴征铠.拉曼光谱的发现和最近的发展[J].光谱学与光谱分析, 1983, 3(2):65-71
    [64] BENEDETTI L, NGUYEN J, CALDWELL W, et al. Dissociation of CH4 at High Pressuresand Temperatures: Diamond Formation in Giant Planet Interiors [J]. Science, 1999, 286: 100-102.
    [65]梁桁楠,垫片加温高温高压实验装置的研究,吉林大学硕士学位论文,2009年6月
    [66] W Denner, W Dieterich, H Schulz, R Keller and W B Holzapfel, Rev. Sci. Instrum. 49 775, (1978)
    [67] L. Nikiel, R.Wrzalik, A. Brodka. Molecular physics,1989,67,399-406.
    [68] H K Mao and P M Bell, in Carnegie Institution of Washington Year Book 77 904, (1978)
    [69] Guozhen Wang, Jiehan Hu, Guobao Cheng. Spectroscopy and Spectral Analysis. 1995, 15,39-40.
    [70].L. Michaille, H. Ring, G. Sitja, and J.Pique, Phys. Rev. Lett, 1997, 78, 3848– 3851
    [71] H K Mao, P M Bell, Carnegie Institution of Washington Year Book, 78 663, (1979)
    [72]Mao.H.K,Bell.p.m,Carnegie Institute Yearbook, 1975,74;402-405.
    [73] M H Manghnani, E F Skelton, L C Ming, J C Jamieson, S Qadri, D Schiferl and J Balogh, in Physics of Solids Under High Pressure, edited by J S Schilling and R N Schelton (North-Holland, Amsterdam), p.47, (1981)
    [74] F E Huggins, H K Mao and D Virgo, in Carnegie Institution of Washington Year Book 74 405, (1975)
    [75] A L Ruoff and M A Baublitz, Jr., in Physics of Solids Under High Pressure, edited by J. S. Schilling and R. N. Schelton, p. 81, (1981)
    [76]. Xiaoling Gao, Lan S. Butler, Richard Cremer. Acta Laser Biology Sinica, 1998, 7, 22-26.
    [77] Yong Chen, Yaoqi Zhou, Pei Ni. Rock and Mineral Analysis, 2006, 25, 211-214.
    [78] H. K. Mao, A. Mao and P. M. Bell, Abstract of the 8th AIRAPT Conference,Uppsala, edited by C. M. Beckman, T. Johannisson and L. Tegner (ISBN,Swedan), Vol. II, p. 453.
    [79] H. K. Mao and P. M. Bell, Science 191 (1976) 851.
    [80] Bokhimi X., Morales A., Aguilar M.,Toledo-Antonio J.A., Pedraza F, International Journal of Hydrogen Energy, 2001, 26, 1279-1287.
    [81] M·H·Hettler, W. Wenzel eta.l, Current collapse in tunneling transport througn enzene [J/OL]. [2008-03-01] ArXiv: cond
    [82].M.Pravica, O.Grubor-Urosevic, M.Hu, P.Chow, B.Yulga, P.Liermann. J. Phys. Chem. B.2007, 111, 11635-11637.
    [83] PierLuigi Silvestrell,i Francesco Ancilotto and Flavio Toigo, Adsorption of benzene on Si (100) from first principles [ J/OL][2008-03-01]. arXiv: cond-mat/0002007 vl1Feb 2002.
    [84]. A.Jorio, R.Saito, J.H.Hafner, C.M.Lieber, M.Hunter, T.Mcclure, G.Dresselhaus, M.S.Dresselhaus. Phys. Rev. Lett. 2001, 86, 1118-1121.
    [85].Qingtian Meng, Yujun Zheng, Shiliang Ding. International Journal of Quantum Chemistry, 2000, 81, 154-161.
    [86]黄博文,王薇,王德云. HARTMANN势的能谱和和波函数[J].原子与分子物理学报, 1999, 16 (3): 443-448.-mat/0207483 vl19 Jul2002.
    [87]. Xiaoling Gao, Lan S. Butler, Richard Cremer. Acta Laser Biology Sinica, 1998, 7, 22-26.
    [88]F. Cansell, D. Fabre, and J. Petitet, J. Chem. Phys. 99, 10 (1993) .
    [89]. I.Harada, T.Shimanouchi. J. Chem. Phys. 1965, 44, 2016-2028
    [90]刘亚军.苯分子离子的理论研究[J].高等学校化学学报, 2001, 22 (4): 657-659.
    [91]. Guozhen Wang, Jiehan Hu, Guobao Cheng. Spectroscopy and Spectral Analysis. 1995, 15,39-40.
    [92]Gy., Vibrational Spectra of Benzene Derivatives (Academic, New York,) .
    [93]. L.Ciabini, M.Santoro, R.Bini, V.Schettino.Phys. Rev. Lett. 2002, 88, 085505
    [94].L. Nikiel, R.Wrzalik, A. Brodka. Molecular physics,1989,67,399-406.
    [95]. F.Cansell, D.Fabre, J.Petitet. J. Chem. Phys. 1993, 99, 7300-7304.
    [96].R. Zallen, C.H.Griffiths, M.L.Slade, M.Hayek, O.Brafman. Chem. Phys. Lett,1976, 39,85-93.
    [97]. J.Akella, G.C.Kennedy. J. Chem. Phys.1971, 55, 793-796.
    [98]李象远.电子转移的外电场效应-苯分子与苯正离子自由基间电子转移的从头算研究[J].高等学校化学学报, 1999, 20(8): 1280-1284.
    [99]. L.Ciabini, M.Santoro, R.Bini, V.Schettino.Phys. Rev. Lett. 2002, 88, 085505
    [100].A.C.Ferrari, J.Robertson. Raman Spectroscopy in Carbons: From Nanotubes toDiamond. The Royal Society, London. 2004, p48.
    [101].Qingtian Meng, Yujun Zheng, Shiliang Ding. International Journal of Quantum Chemistry, 2000, 81, 154-161.
    [102] Masafumi Adachi, Mitsuru Yoneyama, and Shinichiro Nakamura. Langmuir 1992, 8, 2240-2246.
    [103].M.M.Thiery, J.M.Besson, J.L.Bribes. J. Chem. Phys.1992, 96, 2633-2654.
    [104]F. Cansell, D. Fabre, and J. Petitet, J. Chem. Phys. 99, 10 (1993) .
    [105] Kristina E. Lipinska-Kalita, Michael G. Pravica, and Malcolm Nicol. J. Phys. Chem. B 2005, 109, 19223-19227
    [106] GAO Shu-qin, HE Jia-ning, Li Rong-fu(高淑琴,贺家宁,李荣福)Spectroscopy and Spectral Analysis(光谱学与光谱分析)2007 27(10):2042-2044.
    [107].A.C.Ferrari, J.Robertson. Raman Spectroscopy in Carbons: From Nanotubes to Diamond. The Royal Society, London. 2004, p48.
    [108] Xiaoling Gao, Lan S. Butler, Richard Cremer. Acta Laser Biology Sinica, 1998, 7, 22-26.
    [109] A.Jorio, R.Saito, J.H.Hafner, C.M.Lieber, M.Hunter, T.Mcclure, G.Dresselhaus, M.S.Dresselhaus. Phys. Rev. Lett. 2001, 86, 1118-1121.
    [110] M.Pravica, O.Grubor-Urosevic, M.Hu, P.Chow, B.Yulga, P.Liermann. J. Phys. Chem. B.2007, 111, 11635-11637.
    [111] L. Michaille, H. Ring, G. Sitja, and J.Pique, Phys. Rev. Lett, 1997, 78, 3848– 3851.
    [112] J.Akella, G.C.Kennedy. J. Chem. Phys.1971, 55, 793-796.
    [113] R. Zallen, C.H.Griffiths, M.L.Slade, M.Hayek, O.Brafman. Chem. Phys. Lett,1976, 39,85-93.
    [114] M.M.Thiery, J.M.Leger. J. Chem. Phys. 1988, 89, 4255-4271
    [115] M.Cardona, G.Guntherodt. Lignt Scattering In Solids VI, Springer, Berlin, 1984, p502.
    [116]M.Pravica, O.Grubor-Urosevic, M.Hu, P.Chow, B.Yulga, P.Liermann. J. Phys. Chem. B.2007, 111, 11635-11637.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700