嵌入式电极侧向场激励FBAR若干问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
薄膜体声波谐振器(FBAR)具有谐振频率和质量灵敏度高,尺寸小及与CMOS工艺兼容等特点,这些特点使FBAR技术成为制备生物化学传感器的理想技术。但是常规FBAR技术在应用于液态环境时尚存在一些如寄生波多及Q值低等缺陷。为了解决以上缺陷,我们提出了全新的嵌入式电极侧向场激励FBAR,该谐振器工作于纯剪切波模式,所以在液态环境下可以保持较高的Q值。
     本论文的主要研究内容如下:①对嵌入式电极侧向场激励FBAR进行数学建模;②利用ANSYS设计仿真嵌入式电极侧向场激励FBAR有限元模型;③系统地研究衬底温度对反应溅射沉积AlN薄膜的结构性能和沉积速率的影响,同时研究了室温下紫外线辅助射频反应磁控溅射沉积AlN薄膜的工艺技术;④利用MEMS技术制备了嵌入式电极侧向场激励FBAR。
     本论文的主要研究成果如下:
     1.成功地推导并得到了嵌入式电极侧向场激励FBAR的数学模型,证明了其工作于纯剪切波模式,并重新定义了相应的剪切波声速和机电耦合系数的计算公式。
     2.首次对嵌入式电极侧向场激励FBAR模型进行了ANSYS有限元仿真分析。在此基础上,创新性地分析了嵌入式电极的设计原理并提出了相应的设计遵循公式,申请并获得了“国家自然科学基金青年基金”支持。
     3.系统地研究了衬底温度对直流和射频反应磁控溅射制备的AlN薄膜的沉积速率和结构性能的影响。适当的衬底温度下直流和射频反应磁控溅射都可制备得到c轴择优取向较好的AlN压电薄膜,但在同等条件下直流反应磁控溅射获得的薄膜性能更好。适当地控制反应溅射参数,在常温下可以利用直流反应磁控溅射制备得到c轴择优取向较好的AlN压电薄膜。相关的成果发表于SCI收录的杂志《Journal of ELECTRONIC MATERIALS》上。
     4.创新性地研究了室温下紫外线辅助射频反应磁控溅射制备取向可控的AlN压电薄膜。在室温下紫外线辅助沉积薄膜时,只要功率足够高就可以制备得到高c轴择优取向的AlN薄膜;而在高功率下,将氮气和氩气流量比增加到80/40sccm时,可以制备得到(100)择优取向的AlN薄膜。相关的成果发表于SCI收录的杂志《Materials Letters》上。
     5.与清华大学合作将FBAR器件在低温(低于350℃)工艺下直接集成到了CMOSIC上。相关成果发表于"RF MEMS, Resonators, and Oscillators"的国际会议上。
     6.首次成功制备了布拉格型嵌入式电极侧向场激励FBAR,其谐振频率为1.61GHz。
     本论文所涉及的研究对FBAR传感器在生物化学传感领域的应用具有积极的推动作用。
Film bulk acoustic resonators (FBARs) exhibit high resonant frequency, high mass sensitivity, small size and CMOS-compatibility, thus making this technology a promising candidate for chemical and biology sensors. But there are still some shortcomings, such as the existence of spurious modes and the reduction of Q value in liquid environment. We proposed a novel lateral field excited FBAR with embedded electrodes, which has the advantages of pure shear mode resonance and high Q value in liquid environment.
     The main research contents are:①conducted a mathematical analysis of the lateral field excited FBAR with embedded electrodes;②developed various finite-element models (FEMs) of the lateral field excited FBAR with embedded electrodes and implemented the analysis using ANSYS;③systematically studied the influence of substrate temperature on structural properties and deposition rate of AlN thin film deposited by reactive magnetron sputtering and investigate ultra-violet light assisted reactive RF magnetron sputtering technology for deposition of AlN thin films at room temperature;④prepared a lateral field excited FBAR with embedded electrodes with MEMS technology.
     The main results of this research are listed as follows:
     1. We had got a mathematical mode of the lateral field excited FBAR with embedded electrodes, proved that this FBAR worked in pure shear wave mode, refined the formula of the shear mode wave velocity and electromechanical coupling coefficient.
     2. We investigated the lateral field excited FBAR with embedded electrodes with finite-element models study using ANSYS for the first time. Based on this, we creatively analysis the principle and proposed a formula for of the design of embedded electrodes. This work had applied for and got supported by the "National Natural Science Foundation of China Youth Foud".
     3. Systematically invstigated the influence of substrate temperature on structural properties and deposition rate of AlN thin film deposition by direct current (DC) or radio frequency (RF) reactive magnetron sputtering. AIN thin film with good C-axis preferred orientation would be prepared under appropriate substrate temperature by both DC and RF reactive magnetron sputtering, but DC performed better at the same condition. AIN thin film with good C-axis preferred orientation can be prepared at room temperature by DC reactive magnetron sputtering with optimal condition. The research had been published in "Journal of ELECTRONIC MATERIALS", which was cited by SCI.
     4. Proposed and developed a UV-light assisted RF reactive magnetron sputtering method to deposite AIN thin film with controlled crystal orientation at room temperature.(002) oriented columnar AIN crystal can be deposited at high power; while (100) oriented crystal structure can be obtained when the N2/Ar flow ratio is increased to80/40sccm with UV-light assistance at room temperature by RF reactive magnetron sputtering. The research had been published in "Materials Letters", which was cited by SCI.
     5. We had fabricate a FBAR on a CMOS IC at quite low temperature below350℃cooperate with tsinghua university. The research had been presented on "RF MEMS, Resonators, and Oscillators".
     6. For the first time, we had successfully prepared a lateral field excited FBAR with electrodes and Bragg reflector, the resonant frequency is1.61GHz.
     The research of this doctoral dissertation will promote the development of FBAR technology in chemical and biology sensing applications.
引文
[1]. Voiculescu, I. and A.N. Nordin, Acoustic wave based MEMS devices for biosensing applications. biosensors & bioelectronics,2012.33(1):p.1-9.
    [2]. Katardjiev, I. and V. Yantchev, Recent developments in thin film electro-acoustic technology for biosensor applications. Vacuum,2012.86(5SI):p.520-531.
    [3]. Wingqvist, G., Thin-film electro-acoustic sensors based on AlN and its alloys:possibilities and limitations. microsystem technologies-micro-and nanosystems-information storage and processing systems,2012.18(7-8SI):p.1213-1223.
    [4]. Wingqvist, G., Electro-acoustic sensors based on AlN thin film:possibilities and limitations. Proceedings of SPIE,2011.8066.
    [5]. Wingqvist, G., AIN-based sputter-deposited shear mode thin film bulk acoustic resonator (FBAR) for biosensor applications — A review. Surface and Coatings Technology,2010. volume 205(issue 5):p.1279-1286.
    [6]. Micheli, G., et al., Thin Film Bulk Acoustic Wave Resonators for Gravimetric Sensing.2009: p.103.
    [7]. Tadigadapa, S. and K. Mateti, Piezoelectric MEMS sensors:state-of-the-art and perspectives. Measurement Science and Technology,2009.20(0920019).
    [8]. Ferrari, V. and R. Lucklum, Overview of Acoustic-Wave Microsensors, in Piezoelectric Transducers and Applications, A.A. Vives, A.A. Vives^Editors.2008, Springer Berlin Heidelberg, p. 39.
    [9]. Brederlow, R., et al. Biochemical sensors based on bulk acoustic wave resonators. in Electron Devices Meeting,2003. IEDM'03 Technical Digest. IEEE International.2003.
    [10]. Gabl, R., et al., First results on label-free detection of DNA and protein molecules using a novel integrated sensor technology based on gravimetric detection principles. Biosensors & Bioelectronics,2004.19(6):p.615-620.
    [11]. Auer, S., et al., Detection of DNA hybridisation in a diluted serum matrix by surface plasmon resonance and film bulk acoustic resonators. Analytical and Bioanalytical Chemistry,2011. 400(5):p.1387-1396.
    [12]. Nirschl, M., et al., CMOS-Integrated Film Bulk Acoustic Resonators for Label-Free Biosensing. Sensors,2010.10(5):p.4180-4193.
    [13]. Benetti, M., et al., Thin film bulk acoustic wave resonator (TFBAR) gas sensor. Ultrasonics Symposium,2004:p.1581-1584.
    [14]. Chen, D., et al., Nerve gas sensor using film bulk acoustic resonator modified with a self-assembled Cu2+/11-mercaptoundecanoic acid bilayer. Sensors and Actuators B:Chemical,2010. 150(1):p.483-486.
    [15]. Chen, D., et al., Film bulk acoustic resonator based biosensor for detection of cancer serological marker. Electronics Letters,2011.47(21):p.1169-U23.
    [16]. Lin, A., et al., Explosive trace detection with FBAR-based sensor, in Micro Electro Mechanical Systems (MEMS),2008 IEEE 21st International Conference on; Tucson,AZ.2008: Tucson,AZ. p.208-211.
    [17]. Zhang, H., et al., Sequence specific label-free DNA sensing using film-bulk-acoustic-resonators. IEEE Sensors Journal,2007.7(11-12):p.1587-1588.
    [18]. Zhang, H., et al., Mercuric ion sensing by a film bulk acoustic resonator. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2007.54(9):p.1723-1725.
    [19]. Zhang, H., et al., Micromachined silicon and polymer probes integrated with film-bulk-acoustic-resonator mass sensors E-1949-2011. Journal of Micromechanics and Microengineering,2010.20(12500812).
    [20]. Ashley, G.M., et al., Chemically Sensitized Thin-Film Bulk Acoustic Wave Resonators as Humidity Sensors. Journal of The Electrochemical Society,2010.157(12):p. J419-J424.
    [21]. Zhao, X.B., et al., Protein functionalized ZnO thin film bulk acoustic resonator as an odorant biosensor. Sensors and Actuators B:Chemical,2012.163(1):p.242-246.
    [22]. Qiu, X.T., et al., Film Bulk Acoustic-Wave Resonator Based Relative Humidity Sensor Using ZnO Films E-1949-2011. Electrochemical and Solid-State Letters,2010.13(5):p. J65-J67.
    [23]. Qiu, X.T., et al., The effects of temperature, relative humidity and reducing gases on the ultraviolet response of ZnO based film bulk acoustic-wave resonator E-1949-2011. Sensors and Actuators B:Chemical,2011.151(2):p.360-364.
    [24]. Qiu, X.T., et al., Experiment and theoretical analysis of relative humidity sensor based on film bulk acoustic-wave resonator E-1949-2011. Sensors and Actuators B:Chemical,2010.147(2):p. 381-384.
    [25]. Qiu, X.T., et al., The Effects of Relative Humidity and Reducing Gases on the Temperature Coefficient of Resonant Frequency of ZnO-Based Film Bulk Acoustic Wave Resonator E-1949-2011. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2010.57(9):p.1902-1905.
    [26]. Qiu, X., et al., Film bulk acoustic-wave resonator based ultraviolet sensor E-1949-2011. Applied Physics Letters,2009.94(15191715).
    [27]. Wang, Z., et al., Room Temperature Ozone Detection using ZnO based Film Bulk Acoustic Resonator (FBAR). Journal of The Electrochemical Society,2012.159(1):p. J13-J16.
    [28]. Zhang, H. and E.S. Kim, Micromachined acoustic resonant mass sensor. Journal of Microelectromechanical Systems,2005.14(4):p.699-706.
    [29]. Zhang, H., et al., A film bulk acoustic resonator in liquid environments. Journal of Micromechanics and Microengineering,2005.15(10):p.1911-1916.
    [30]. Wingqvist, G., et al. Shear mode AlN thin film electroacoustic resonator for biosensor applications, in Sensors,2005 IEEE.2005.
    [31]. Bjurstrom, J., et al., Design and Fabrication of Temperature Compensated Liquid FBAR Sensors, in 2006 IEEE Ultrasonics Symposium, Volume ii of v.2006:Vancouver, Canada, p.898-901.
    [32]. Wingqvist, G., et al., Immunosensor utilizing a shear mode thin film bulk acoustic sensor. Sensors and Actuators B:Chemical,2007.127(1):p.248-252.
    [33]. Wingqvist, G., et al., Mass sensitivity of thin film resonator devices. Proceedings of the 2007 IEEE International Frequency Control Symposium-Joint with the 21st European Frequency and Time Forum,2007.1-4:p.581-586.
    [34]. Wingqvist, G., et al., Shear mode AlN thin film electro-acoustic resonant sensor operation in viscous media. Sensors and Actuators B:Chemical,2007.123(1):p.466-473.
    [35]. Bjurstrom, J., et al., Temperature compensation of liquid FBAR sensors. Journal of Micromechanics and Microengineering,2007.17(3):p.651-658.
    [36]. Wingqvist, G., et al., On the applicability of high frequency acoustic shear mode biosensing in view of thickness limitations set by the film resonance. Biosensors and Bioelectronics,2009.24(11): p.3387-3390.
    [37]. Enlund, J., et al., FBAR Sensor Array for in Liquid Operation. Sensors Journal, IEEE,2010. 10(12):p.1903-1904.
    [38]. Sharma, G., et al., Fabrication and characterization of a shear mode AlN solidly mounted resonator-silicone microfluidic system for in-liquid sensor applications. Sensors And Actuators A: Physical,2010.159(1):p.111-116.
    [39]. Chang, W.T., et al., Investigation of Liquid Sensor Using a Dual-Mode Thin Film Bulk Acoustic Resonator (FBAR) Combined with Au/Cr Layers. Advanced Materials Research,2011. 201-203:p.700-703.
    [40]. Cheng, C.C., et al., Shear Mode ZnO Thin Film Applied in FBAR Sensor. Advanced Materials Research,2011.201-203:p.718-721.
    [41]. Chung, C.J., et al., Synthesis and bulk acoustic wave properties on the dual mode frequency shift of solidly mounted resonators. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2008.55(4):p.857-864.
    [42]. Lin, R.C., et al., Highly sensitive mass sensor using film bulk acoustic resonator. Sensors And Actuators A:Physical,2008.147(2):p.425-429.
    [43]. Yanagitani, T., et al., Characteristics of pure-shear mode BAW resonators consisting of (11(2)over-bar0) textured ZnO films. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2007.54(8):p.1680-1686.
    [44]. Milyutin, E. and P. Muralt, Electro-Mechanical Coupling in Shear-Mode FBAR With Piezoelectric Modulated Thin Film. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2011.58(4):p.685-688.
    [45]. Wencheng, X., et al., In-Liquid Quality Factor Improvement for Film Bulk Acoustic Resonators by Integration of Microfluidic Channels. Electron Device Letters, IEEE,2009.30(6):p. 647-649.
    [46]. Xu, W.C., et al., A High-Quality-Factor Film Bulk Acoustic Resonator in Liquid for Biosensing Applications. Journal of Microelectromechanical Systems,2011.20(1):p.213-220.
    [47]. Xu, W., A. Abbaspour-Tamijani and J. Chae. Oscillating behavior of quality factor of a film bulk acoustic resonator in liquids. in Solid-State Sensors, Actuators and Microsystems Conference, 2009. Transducers 2009. International.2009.
    [48]. Xu, W.C., A. Abbaspour-Tamijani and J. Chae, Oscillatory Q Factor in Film Bulk Acoustic Resonators With Integrated Microfluidic Channels. IEEE Sensors Journal,2011.11(10).
    [49]. Zhang, X., et al.. Thermal Analysis and Characterization of a High Q Film Bulk Acoustic Resonator (FBAR) as Biosensers in Liquids, in Micro Electro Mechanical Systems (MEMS),2009 IEEE 22nd International Conference on.2009:Sorrento.ltaly. p.939-942.
    [50]. Xu, W.C., J. Appel and J. Chae, Real-Time Monitoring of Whole Blood Coagulation Using a Microfabricated Contour-Mode Film Bulk Acoustic Resonator. Journal of Microelectromechanical Systems,2012.21(2):p.302-307.
    [51]. Pottigari, S.S. and W.K. Jae. Vacuum-gapped film bulk acoustic resonator for low-loss mass sensing in liquid. in Solid-State Sensors, Actuators and Microsystems Conference,2009. TRANSDUCERS 2009. International.2009.
    [52]. Bi, F.Z. and B.P. Barber, Bulk acoustic wave RF technology. IEEE Microwave Magazine, 2008.9(5):p.65-80.
    [53]. Campanella, H., Acoustic wave and electromechanical resonators:concept to key. Integrated microsystems series. Vol.34.2010, Norwood, MA.:Artech House.
    [54]. Wilson, S.A., et al., New materials for micro-scale sensors and actuators An engineering review. Materials science and engineering R:Reports,2007.56(1-6):p.1-129.
    [55]. Pierson, H., Handbook of refractory carbides and nitrides:properties, characteristics, processing, and applications.1996:William Andrew.
    [56]. 王家俊,聚酰亚胺/氮化铝复合材料的制备与性能研究,2001,浙江大学.
    [57]. 匡加才,AlN粉体及陶瓷的制备、结构与性能研究,2004,国防科学技术大学.
    [58]. 胡永达,氮化铝共烧基板金属化及其薄膜金属化特性研究,2002,电子科技大学.
    [59]. 仝建峰,氮化铝陶瓷基片碳热还原法低成本制备技术研究,2002,北京航空材料研究院.
    [60]. Engelmark, F., et al., Electrical characterization of AlN MIS and MIM structures. IEEE Transactions on Electron Devices,2003.50(5):p.1214-1219.
    [61]. Wang, X.D., K.W. Hipps and U. Mazur, Infrared and Morphological-Studies of Hydrogenated AlN Thin-Films. Langmuir,1992.8(5):p.1347-1353.
    [62]. Wang, X.D., K.W. Hipps and U. Mazur, Infrared Study of Ion-beam Deposited Hydrogenated AlN Thin-Films.2. Effect of Deuterium Substitution. Journal of Physical Chemistry, 1992.96(21):p.8485-8488.
    [63]. Harper, J., J.J. Cuomo and H. Hentzell, Synthesis of Compound Thin Films by Dual Ion Beam Deposition. I. Experimental Approach. Journal of Applied Physics,1985.58(1):p.550-555.
    [64]. Hentzell, H., J. Harper and J.J. Cuomo, Synthesis of Compound Thin Films by Dual Ion Beam Deposition.2. Properties of Aluminum-Nitrogen Films. Journal of Applied Physics,1985.58(1): p.556-563.
    [65]. Tanaka, N., et al., Preparation of Aluminum Nitride Epitaxial Films by Electron Cyclotron Resonance Dual-Ion-Beam Sputtering. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers,1994.33(9B):p.5249-5254.
    [66]. Murayama, Y. and K. Kashiwagi, Aluminum Nitride Films by RF Reactive Ion-Plating. Journal of Vacuum Science & Technology,1980.17(4):p.796-799.
    [67]. lshihara, M., et al., Effect of bias voltage on AlN thin films prepared by electron shower method. Thin Solid Films,1996.282(1-2):p.321-323.
    [68]. Mortet, V., et al., Aluminium nitride films deposition by reactive triode sputtering for surface acoustic wave device applications. Surface and Coatings Technology,2003.176(1):p.88-92.
    [69]. Ji, X.H., et al., Structural properties and nanoindentation of AlN films by a filtered cathodic vacuum arc at low temperature. Journal of Physics D:Applied Physics,2004.37(10):p.1472-1477.
    [70]. Zhang, X., et al.. The TiN/AIN multilayers deposited by filtered vacuum arc deposition. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2003.206:p.382-385.
    [71]. 黄美东等,偏压对阴极电弧离子镀AIN薄膜的影响.材料研究学报,2001.15(6):第675-680页.
    [72]. Keckes, J., et al.. Evaluation of thermal and growth stresses in heteroepitaxial AIN thin films formed on (0001) sapphire by pulsed laser ablation. Journal of Crystal Growth,2002.240(1-2):p. 80-86.
    [73]. Six, S., J.W. Gerlach and B. Rauschenbach, Ion beam assisted pulsed laser deposition of epitaxial aluminum nitride thin films on sapphire substrates. Surface and Coatings Technology,2001. 142:p.397-401.
    [74]. Lu, Y.F., et al., Ion-assisted pulsed laser deposition of aluminum nitride thin films. Journal of Applied Physics,2000.87(3):p.1540-1542.
    [75]. Sharma, A.K. and R.K. Thareja, Pulsed laser ablation of aluminum in the presence of nitrogen:Formation of aluminum nitride. Journal of Applied Physics,2000.88(12):p.7334-7338.
    [76]. Cibert, C., et al., Pulsed laser deposition of aluminum nitride thin films for FBAR applications. Applied Surface Science,2007.253(19):p.8151-8154.
    [77]. Ren, Z.M., et al., Room temperature synthesis of c-AIN thin films by nitrogen-ion-assisted pulsed laser deposition. Journal of Applied Physics,2000.88(12):p.7346-7350.
    [78]. Ohta, J., et al., Room-temperature epitaxial growth of AlN films. Applied Physics Letters, 2002.81(13):p.2373-2375.
    [79]. Seki, K., et al., Room-temperature growth of AlN thin films by laser ablation. Applied Physics Letters,1992. v 60(n 18):p. p 2234.
    [80]. 丁艳芳等,AlN薄膜的KrF准分子脉冲激光沉积.功能材料,2005.36(12):第1831-1833,1836页.
    [81]. 张霞,陈同来与李效民,Si(100)衬底上PLD法制备高取向度A1N薄膜.无机材料学报,2005.20(2):第419-424页.
    [82]. 刘彦松等,利用ZnO缓冲层制备A1N薄膜.压电与声光,2000.22(5):第322-325页.
    [83]. 谢尚晻,何欢与符跃春,脉冲激光沉积AlN薄膜的结构表征和性能研究进展.材料导报,2010.24(11):第45-49页.
    [84]. 黄继颇等,脉冲激光沉积制备c轴取向AlN薄膜.压电与声光,1999.21(5):第387-389页.
    [85]. 吕磊等,室温下脉冲激光沉积制备高取向度AlN薄膜.光电子·激光,2007.18(10):第1212-1214页.
    [86]. Tanaka, S., et al., Defect formation during hetero-epitaxial growth of aluminum nitride thin films on 6H-Silicon carbide by gas-source molecular beam epitaxy. Japanese Journal of Applied Physics Part 1:Regular Papers Short Notes & Review Papers,1996.35(3):p.1641-1647.
    [87]. Iwata, S., et al., Growth and optical properties of AlN homoepitaxial layers grown by ammonia-source molecular beam epitaxy. Journal of Crystal Growth,2007.301:p.461-464.
    [88]. Karmann, S., et al., Growth of columnar aluminum nitride layers on Si(111) by molecular beam epitaxy. Materials Science and Engineering B:Solid State Materials for Advanced Technology, 1997.50(1-3):p.228-232.
    [89]. Fan, Z.Y., et al., High temperature growth of AlN by plasma-enhanced molecular beam epitaxy. Materials Science and Engineering B:Solid State Materials for Advanced Technology,1999. 67(1-2):p.80-87.
    [90]. Jeganathan, K., et al., High-quality growth of AlN epitaxial layer by plasma-assisted molecular-beam epitaxy. Japanese Journal of Applied Physics Part 2:Letters,2002.41(1AB):p. L28-L30.
    [91]. Tanaka, S., R.S. Kern and R.F. Davis, Initial Stage of Aluminum Nitride Film Growth on 6H-Silicon Carbide by Plasma-Assisted, Gas-Source Molecular Beam Epitaxy. Applied Physics Letters,1995.66(1):p.37-39.
    [92]. Harris, K.K., et al., Microstructure and thermal stability of aluminum nitride thin films deposited at low temperature on silicon. Journal of The Electrochemical Society,2002.149(2):p. G128-G130.
    [93]. Kaya, K., et al.. Synthesis and surface acoustic wave properties of AlN thin films fabricated on (001) and (110) sapphire substrates using chemical vapor deposition of AlCl3-NH3 system. Japanese Journal of Applied Physics Part 1:Regular Papers Short Notes & Review Papers,1997. 36(5A):p.2837-2842.
    [94]. Kaya, K., et al., Synthesis of AlN thin films on sapphire substrates by chemical vapor deposition of AlCl3-NH3 system and surface acoustic wave properties. Japanese Journal of Applied Physics Part 1:Regular Papers Short Notes & Review Papers,1996.35(5 A):p.2782-2787.
    [95]. Aota, Y., et al., AlN film using low temperature MOCVD process for FBAR, in Ultrasonics Symposium (IUS),2008 IEEE; Beijing,China.2008:Beijing,China. p.2197-2200.
    [96]. Lobanova, A.V., et al., Growth conditions and surface morphology of AlN MOVPE. Journal of Crystal Growth,2008.310(23):p.4935-4938.
    [97]. Imura, M., et al., High-temperature metal-organic vapor phase epitaxial growth of AlN on sapphire by multi transition growth mode method varying V/1II ratio. Japanese Journal of Applied Physics Part 1:Regular Papers Brief Communications & Review Papers,2006.45(11):p.8639-8643.
    [98]. 龚辉与范正修,c轴定向氮化铝薄膜的制备.光学学报,2002.22(8):第933-936页.
    [99]. 秦福文等,GaN缓冲层上低温生长AlN单晶薄膜.半导体光电,2003.24(1):第32-36页.
    [100]. 门传玲等,离子束增强沉积AlN薄膜的研究.压电与声光,2001.23(5):第366-369页.
    [101]. Huttel, Y., et al., Epitaxial growth of AlN on sapphire (0001) by sputtering:a structural, morphological and optical study. Journal of Crystal Growth,2002.242(1-2):p.116-123.
    [102]. Huang, J.P., et al., Preparation of AlN thin films by nitridation of Al-coated Si substrate. Thin Solid Films,1999.340(1-2):p.137-139.
    [103]. 阿布都艾则孜·阿布来提等,AlN靶材射频磁控溅射制备A1N薄膜及性质研究.新疆大学学报(自然科学版),2009.26(3):第327-331页.
    [104]. Bathe, R., et al., AlN thin films deposited by pulsed laser ablation, sputtering and filtered arc techniques. Thin Solid Films,2001.398:p.575-580.
    [105]. HASHIMOTO, K.Y., RF Bulk acoustic wave filters for communications.2009, Norwood, Mass:London:Artech House.
    [106]. 田民波,薄膜技术与薄膜材料.2006,北京:清华大学出版社.
    [107]. 杨克涛与陈光辉,AlN薄膜的研究进展.山东陶瓷,2005.28(1):第17-21页.
    [108]. 许小红等,AlN压电薄膜材料研究进展.稀有金属材料与工程,2002.31(6):第456-459页.
    [109]. 刘吉延与斯永敏,AlN压电薄膜研究进展.材料导报,2003.17(z1):第210-213页.
    [110]. 宋秀峰等,磁控溅射法制备AlN薄膜的研究进展.山东陶瓷,2006.29(6):第20-23页.
    [111]. Huang, G., et al., Study of structural fabrication process of Film Bulk Acoustic Resonator (FBAR), in Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA),2008 Symposium on; Nanjing,China.2008:Nanjing,China. p.304-308.
    [112]. Akiyama, M., et al., Statistical approach for optimizing sputtering conditions of highly oriented aluminum nitride thin films. Thin Solid Films,1998.315(1-2):p.62-65.
    [113]. Drusedau, T.P. and K. Koppenhagen, Substrate heating by sputter-deposition of AlN:the effects of dc and rf discharges in nitrogen atmosphere. Surface and Coatings Technology,2002. 153(2-3):p.155-159.
    [114]. Huang, C.L., K.W. Tay and L. Wu, Aluminum nitride films deposited under various sputtering parameters on molybdenum electrodes. Solid-State Electronics,2005.49(2):p.219-225.
    [115]. Tay, K., C. Huang and L. Wu, Highly c-axis oriented thin AlN films deposited on gold seed layer for FBAR devices. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures,2005.23(4):p.1474-1479.
    [116]. Vashaei, Z., et al., Influence of sputtering parameters on the crystallinity and crystal orientation of AlN layers deposited by RF sputtering using the AlN target. Journal of Crystal Growth, 2009.311(3):p.459-462.
    [117]. 熊娟等,Mo电极上磁控反应溅射AlN薄膜.稀有金属材料与工程.2009.38(z2):第230-233页.
    [118]. Leung, T.T. and C.W. Ong, Nearly amorphous to epitaxial growth of aluminum nitride films. Diamond and Related Materials,2004.13(9):p.1603-1608.
    [119].于春花,陈希明与李化鹏,射频功率对射频磁控反应溅射制备AlN薄膜的影响.天津理工大学学报,2007.23(3):第29-31页.
    [120]. Kao, K.S., C.C. Cheng and Y.C. Chen, Synthesis of c-axis-oriented aluminum nitride films by reactive RF magnetron sputtering for surface acoustic wave. Japanese Journal of Applied Physics Part 1:Regular Papers Short Notes & Review Papers,2001.40(8):p.4969-4973.
    [121]. Cheng, C.C., et al., Morphology and structure of aluminum nitride thin films on glass substrates. Japanese Journal of Applied Physics Part 1:Regular Papers Short Notes & Review Papers, 1996.35(3):p.1880-1885.
    [122]. Cheng, C.C., et al., Low-temperature growth of aluminum nitride thin films on silicon by reactive radio frequency magnetron sputtering. Journal of Vacuum Science and Technology A:Vacuum, Surfaces, and Films,1996.14(4):p.2238-2242.
    [123]. Chiu, K.H., et al., Deposition characterization of reactive magnetron sputtered aluminum nitride thin films for film bulk acoustic wave resonator. Thin Solid Films,2007.515(11):p.4819-4825.
    [124]. Cheng, H., Y. Sun and P. Hing, The influence of deposition conditions on structure and morphology of aluminum nitride films deposited by radio frequency reactive sputtering. Thin Solid Films,2003.434(1-2):p.112-120.
    [125]. Engelmark, F., et al.. Synthesis of highly oriented piezoelectric AlN films by reactive sputter deposition. Journal of Vacuum Science and Technology A:Vacuum, Surfaces, and Films,2000. 18(4Part 2):p.1609-1612.
    [126]. Engelmark, F., et al., Structural and electroacoustic studies of AlN thin films during low temperature radio frequency sputter deposition. Journal of Vacuum Science and Technology: International journal devoted to vacuum, surfaces, and films,2001.19(5):p.2664-2669.
    [127]. Wang, B., Y.N. Zhao and Z. He, The effects of deposition parameters on the crystallographic orientation of AlN films prepared by RF reactive sputtering. Vacuum,1997.48(5):p.427-429.
    [128]. Kusaka, K., et al., Effect of input power on crystal orientation and residual stress in AlN film deposited by dc sputtering. Vacuum,2000.59(2-3):p.806-813.
    [129]. Mahmood, A., N. Rakov and M.F. Xiao, Influence of deposition conditions on optical properties of aluminum nitride (AN) thin films prepared by DC-reactive magnetron sputtering. Materials Letters,2003.57(13-14):p.1925-1933.
    [130]. Rakov, N., A. Mahmood and M. Xiao, Surface metallic state of aluminum-nitride (AlN) thin films prepared by direct current (DC)-reactive magnetron sputtering:optical spectroscopic analysis with incoherent light. Scripta Materialia,2004.50(5):p.589-592.
    [131]. Liu, W.J., et al., Microstructural evolution and formation of highly c-axis-oriented aluminum nitride films by reactively magnetron sputtering deposition. Journal of Crystal Growth,2005.276(3-4): p.525-533.
    [132]. Pantojas, V.M., W. Otano-Rivera and J.N. Caraballo, Statistical analysis of the effect of deposition parameters on the preferred orientation of sputtered AlN thin films. Thin Solid Films,2005. 492(1-2):p.118-123.
    [133]. Iriarte, G.F., Structural characterization of highly textured AIN thin films grown on titanium. Journal of Materials Research,2010.25(3):p.458-463.
    [134]. Penza, M., et al., Low Temperature Growth of RF Reactively Planar Magnetron-Sputtered AIN Films. Thin Solid Films,1995.259(2):p.154-162.
    [135]. Cherng, J.S., C.M. Lin and T.Y. Chen, Two-step reactive sputtering of piezoelectric AIN thin films. Surface and Coatings Technology,2008.202(22-23):p.5684-5687.
    [136]. Lee, H.C., et al., Influence of Sputtering Pressure on the Microstructure Evolution of AIN Thin Films Prepared by Reactive Sputtering. Thin Solid Films,1995.261(1-2):p.148-153.
    [137]. Kao, K.S., C.C. Cheng and Y.C. Chen, Synthesis and surface acoustic wave properties of AIN films deposited on LiNbO3 substrates. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2002.49(3):p.345-349.
    [138]. Xu, X.H., et al., Morphological properties of AIN piezoelectric thin films deposited by DC reactive magnetron sputtering. Thin Solid Films,2001.388(1-2):p.62-67.
    [139]. Dubois, M.A. and P. Muralt, Stress and piezoelectric properties of aluminum nitride thin films deposited onto metal electrodes by pulsed direct current reactive sputtering. Journal of Applied Physics,2001.89(11Part 1):p.6389-6395.
    [140]. Okano, H., et al., Preparation of c-axis Oriented AIN Thin Films by Low-Temperature Reactive Sputtering. Japanese Journal of Applied Physics Part 1:Regular Papers Short Notes & Review Papers,1992.31(10):p.3446-3451.
    [141]. Akiyama, M., et al., Preparation of highly oriented AIN thin films on glass substrates by helicon plasma sputtering and design of experiments. Thin Solid Films,1999.350(1-2):p.85-90.
    [142]. 杨世才等,纯氮气反应溅射AlN薄膜及性质研究.人工晶体学报,2010.39(1):第190-196页.
    [143]. Wang, B., et al., The growth of AIN films composed of silkworm-shape grains and the orientation mechanism. Materials Letters,2002.53(4-5):p.367-370.
    [144]. 卢勤,李化鹏与陈希明,沉积工艺参数对AlN薄膜择优取向影响的实验研究.天津理工大学学报,2009.25(5):第12-14页.
    [145]. Ishihara, M., et al., Control of preferential orientation of AIN films prepared by the reactive sputtering method. Thin Solid Films,1998.316(1-2):p.152-157.
    [146]. Cheng, H.E., T.C. Lin and W.C. Chen, Preparation of [002] oriented AIN thin films by mid frequency reactive sputtering technique. Thin Solid Films,2003.425(1-2):p.85-89.
    [147]. 乔保卫,刘正堂与李阳平,工艺参数对磁控反应溅射AlN薄膜沉积速率的影响.西北工业大学学报,2004.22(2):第260-263页.
    [148]. Fardeheb-Mammeri, A., et al., c-axis inclined AIN film growth in planar system for shear wave devices. Diamond and Related Materials,2008.17(7-10Sp. Iss. SI):p.1770-1774.
    [149]. Martin, F., et al., Shear mode coupling and tilted grain growth of AIN thin films in BAW resonators. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2006.53(7):p. 1339-1343.
    [150]. Clement, M., et al., Influence of sputtering mechanisms on the preferred orientation of aluminum nitride thin films. Journal of Applied Physics,2003.94(3):p.1495-1500.
    [151]. Iriarte, G.F., J.G. Rodriguez and F. Calle, Synthesis of c-axis oriented AIN thin films on different substrates:A review. Materials Research Bulletin,2010.45(9):p.1039-1045.
    [152]. Iriarte, G.F., J.G. Rodriguez and F. Calle, Optimal Synthesis of C-Axis Oriented AIN Thin Films. Integrated Ferroelectrics,2009.113:p.139-148.
    [153]. Sproul, W.D., D.J. Christie and D.C. Carter, Control of reactive sputtering processes. Thin Solid Films,2005.491(1-2):p.1-17.
    [154]. Drusedau, T.P., et al., Texturing effects in molybdenum and aluminum nitride films correlated to energetic bombardment during sputter deposition. Applied Physics A:Materials Science & Processing,2001.72(5):p.541-550.
    [155]. Degardin, A., et al., Model for reactive sputtering Optimisation results for YBaCuO thin films deposited on polycrystalline zirconia substrates. Journal of Alloys and Compounds,1997. 251(1-2):p.107-110.
    [156]. Ababneh, A., et al., The influence of sputter deposition parameters on piezoelectric and mechanical properties of AlN thin films. Material Science and Engineering B:Advanced Functional Solid-State Materials,2010.172(3):p.253-258.
    [157]. Meng, G.Y., S. Xie and D.K. Peng, Rate-limiting process and growth kinetics of AlN thin films by microwave plasma CVD with AlBr3-NH3-N-2 system. Thin Solid Films,1998.334(1-2):p. 145-150.
    [158]. Barankova, H. and L. Bardos, Effect of gas and cathode material on the r.f. hollow cathode reactive PVD. Surface and Coatings Technology,1999.120:p.704-708.
    [159]. Cheng, H., et al., AlN films deposited under various nitrogen concentrations by RF reactive sputtering. Journal of Crystal Growth,2003.254(1-2):p.46-54.
    [160]. Aita, C.R. and C.J. Gawlak, The dependence of aluminum nitride film crystallography on sputtering plasma composition. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,1983.1(2):p.403-406.
    [161]. Assouar, M.B., et al., Synthesis and microstructural characterisation of reactive RF magnetron sputtering AIN films for surface acoustic wave filters. Diamond and Related Materials, 2004.13(4-8):p.1111-1115.
    [162]. Li, K., et al., Preparation of AIN thin films for film bulk acoustic resonator application by radio frequency sputtering. Journal of Zhejiang University Science A,2009.10(3):p.464-470.
    [163]. Kusaka, K., et al., Effect of sputtering gas pressure and nitrogen concentration on crystal orientation and residual stress in sputtered AIN films. Vacuum,2002.66(3-4):p.441-446.
    [164]. Dumitru, V., et al., Optical and structural differences between RF and DC AlxNy magnetron sputtered films. Thin Solid Films,2000.359(1):p.17-20.
    [165]. Liu, W.K., et al., Fabrication of piezoelectric AIN thin film for FBARs. Science in China Series G:Physics, Mechanics and Astronomy,2009.52(2):p.226-232.
    [166]. 董树荣与王德苗,FBAR用AlN薄膜的射频反应溅射制备研究.真空科学与技术学报,2006.26(2):第155-158页.
    [167]. 杨保和等,射频磁控溅射生长C轴择优取向AlN压电薄膜.光电子·激光,2007.18(12):第1430-1434页.
    [168]. Venkataraj, S., et al., Structural, optical and mechanical properties of aluminium nitride films prepared by reactive DC magnetron sputtering. Thin solid films,2006.502(1-2):p.235-239.
    [169]. Greene, J.E., et al., Development of preferred orientation in polycrystalline TiN layers grown by ultrahigh vacuum reactive magnetron sputtering. Applied Physics Letters,1995.67(20):p. 2928-2930.
    [170]. Gao, X.D., et al., Fabrication and characterization of orientated grown AIN films sputtered at room temperature. Physica status solidi. A, Applications and materials Science,2007.204(4):p. 1130-1137.
    [171]. Iborra, E., et al., Effect of particle bombardment on the orientation and the residual stress of sputtered AlN films for SAW devices. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on,2004.51(3):p.352-358.
    [172]. Petrov, I., et al., Mass and energy resolved detection of ions and neutral sputtered species incident at the substrate during reactive magnetron sputtering of Ti in mixed Ar+N2 mixtures. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,1994.12(5):p. 2846-2854.
    [173]. Iriarte, G.F., F. Engelmark and L. Katardjiev, Reactive sputter deposition of highly oriented AIN films at room temperature. Journal of Materials Research,2002.17(6):p.1469-1475.
    [174]. Drusedau, T.P. and J. Biasing, Optical and structural properties of highly c-axis oriented aluminum nitride prepared by sputter-deposition in pure nitrogen. Thin solid films,2000.377:p.27-31.
    [175]. Knox-Davies, E.C., J.M. Shannon and S. Silva, The properties and deposition process of GaN films grown by reactive sputtering at low temperatures. Journal of Applied Physics,2006. 99(0735037).
    [176]. Chu, A.K., et al., Influences of bias voltage on the crystallographic orientation of AIN thin films prepared by long-distance magnetron sputtering. Thin Solid Films,2003.429(1-2):p. 1-4.
    [177]. You, Y.Z. and D. Kim, Influence of incidence angle and distance on the structure of aluminium nitride films prepared by reactive magnetron sputtering. Thin Solid Films,2007.515(5):p. 2860-2863.
    [178]. Kar, J.P., et al., Effect of inter-electrode spacing on structural and electrical properties of RF sputtered AIN films. Journal of Materials Science Materials in Electronics,2008.19(3):p.261-265.
    [179]. Ishihara, M., et al., Synthesis and surface acoustic wave property of aluminum nitride thin films fabricated on silicon and diamond substrates using the sputtering method. Japanese Journal of Applied Physics Part 1:Regular Papers Short Notes and Review Papers,2001.40(8):p.5065-5068.
    [180]. Ishihara, M., et al., Preparation of AIN and LiNbO3 thin films on diamond substrates by sputtering method. Diamond and Related Materials,2002.11(3-6Sp. Iss. SI):p.408-412.
    [181]. Brunet, F., et al., Highly textured hexagonal AIN films deposited at low temperature by reactive cathodic sputerring. Materials Science & Engineering, B:Solid-State Materials for Advanced Technology,1999.59(1-3):p.88-93.
    [182]. Artieda, A., et al., Effect of substrate roughness on c-oriented AIN thin films. Journal of Applied Physics,2009.105(0245042).
    [183]. Kiehne, G.T., G. Wong and J.B. Ketterson, Optical second-harmonic generation in sputter-deposited AIN films. Journal of Applied Physics,1998.84(11):p.5922-5927.
    [184]. Dimitrova, V.I., et al., Photo-, cathodo-, and electroluminescence studies of sputter deposited AIN:Er thin films. Applied Surface Science,2001.175:p.480-483.
    [185]. Ivanov,I., et al., Growth of epitaxial AIN (0001) on Si (111) by reactive magnetron sputter deposition. Journal of Applied Physics,1995.78(9):p.5721-5726.
    [186]. Han, Q.F., et al., Magnetron Sputter Epitaxy and Characterization of Wurtzite AllnN on Si(111) Substrates. Journal of Electronic Materials,2010.39(5):p.489-493.
    [187]. Barshiha, H.C., B. Deepthi and K.S. Rajam, Growth and characterization of aluminum nitride coatings prepared by pulsed-direct current reactive unbalanced magnetron sputtering. Thin Solid Films,2008.516(12):p.4168-4174.
    [188]. Tungasmita, S., et al., Pulsed low-energy ion-assisted growth of epitaxial aluminum nitride layer on 6H-silicon carbide by reactive magnetron sputtering. Journal of Applied Physics,2002.91(6): p.3551-3555.
    [189]. Riekkinen, T., et al., Influence of the seed layer on structural and electro-acoustic properties of sputter-deposited AlN resonators. Thin Solid Films,2009.517(24):p.6588-6592.
    [190]. Jang, H.W., et al., Crossover of the preferred growth orientation of AlN/Si(001) films during off-axis radio frequency sputter growth. Journal of Applied Physics,2003.94(5):p.2957-2961.
    [191]. Lanz, R., M.A. Dubois and P. Muralt, Solidly mounted BAW filters for the 6 to 8 GHz range based on AlN thin films. IEEE Ultrasonics Symposium,2001:p.843-846.
    [192]. Seo, H.C., I. Petrov and K. Kim, Structural Properties of AlN Grown on Sapphire at Plasma Self-Heating Conditions Using Reactive Magnetron Sputter Deposition. Journal of Electronic Materials, 2010.39(8):p.1146-1151.
    [193]. Loebl, H.P., et al., Piezoelectric thin AlN films for bulk acoustic wave (BAW) resonators. Materials Chemistry and Physics,2003.79(2-3):p.143-146.
    [194]. Iriarte, G.F., et al., Synthesis of c-axis-oriented AlN thin films on high-conducting layers:Al, Mo, Ti, TiN, and Ni. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2005. 52(7):p.1170-1174.
    [195]. Artieda, A., C. Sandu and P. Muralt, Highly piezoelectric AlN thin films grown on amorphous, insulating substrates. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films.,2010.28(3):p.390-393.
    [196]. Tanner, S.M. and V.V. Felmetsger, Microstructure and chemical wet etching characteristics of AlN films deposited by ac reactive magnetron sputtering. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films.,2010.28(1):p.69-76.
    [197]. Akiyama, M., et al., Influence of metal electrodes on crystal orientation of aluminum nitride thin films. Vacuum,2004.74(3-4):p.699-703.
    [198]. Akiyama, M., et al., Growth of highly c-axis oriented aluminum nitride thin films on beta-tantalum bottom electrodes. Journal of Materials Science,2006.41(14):p.4691-4694.
    [199]. Lee, J.B., et al., Effects of bottom electrodes on the orientation of AlN films and the frequency responses of resonators in AIN-based FBARs. Thin Solid Films,2004.447:p.610-614.
    [200]. Lee, S.H., J.K. Lee and K.H. Yoon, Growth of highly c-axis textured AlN films on Mo electrodes for film bulk acoustic wave resonators. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films.,2003.21(1):p.1-5.
    [201]. Lim, W.T., et al., Structural properties of AlN films grown on Si. Ru/Si and ZnO/Si substrates. Thin Solid Films,2001.382(1-2):p.56-60.
    [202]. Kamohara, T., M. Akiyama and N. Kuwano, Influence of polar distribution on piezoelectric response of aluminum nitride thin films. Applied Physics Letters,2008.92(0935069).
    [203]. Kamohara, T., et al., Influence of aluminum nitride interlayers on crystal orientation and piezoelectric property of aluminum nitride thin films prepared on titanium electrodes. Thin Solid Films, 2007.515(11):p.4565-4569.
    [204]. Kamohara, T., et al., Growth of highly c-axis-oriented aluminum nitride thin films on molybdenum electrodes using aluminum nitride interlayers. Journal of Crystal Growth,2005.275(3-4): p.383-388.
    [205]. Nukaga, N., et al., Local epitaxial growth of (103) one-axis-oriented SrBi2Ta2O9 thin films prepared at low deposition temperature by metalorganic chemical vapor deposition and their electrical properties. Japanese Journal of Applied Physics Part 1:Regular Papers Short Notes & Review Papers. 2001.40(9B):p.5595-5598.
    [206]. Kamohara, T., et al., Local epitaxial growth of aluminum nitride and molybdenum thin films in fiber texture using aluminum nitride interlayer. Applied Physics Letters,2006.89(0719197).
    [207]. Lin, Y.R. and S.T. Wu, Buffer-facilitated epitaxial growth of AlN on Al2O3(0001) at room temperature. Surface Science,2002.516(3):p. L535-L539.
    [208]. Ohshima, I., et al., Piezoelectric response to pressure of aluminum nitride thin films prepared on nickel-based superalloy diaphragms. Japanese Journal of Applied Physics, Part 1:Regular Papers, Short Notes & Review Papers,2006.45(6A):p.5169-5173.
    [209]. Lee, Y.C., et al., Improved optical and structural properties of ZnO thin films by rapid thermal annealing. Solid State Communications,2007.143(4-5):p.250-254.
    [210]. Moustaghfir, A., et al., Structural and optical studies of ZnO thin films deposited by rf magnetron sputtering:influence of annealing. Surface and Coatings Technology,2003.174:p. 193-196.
    [211]. Wang, L., et al., MOCVD growth of ZnO films on Si(111) substrate using a thin AlN buffer layer. Journal of Crystal Growth,2005.284(3-4):p.459-463.
    [212]. Buc, D., et al., Reactive unbalanced magnetron sputtering of AlN thin films. Vacuum,1998. 50(1-2):p.121-123.
    [213]. Akiyama, M., et al., Preparation of highly oriented aluminum nitride thin films on polycrystalline substrates by helicon plasma sputtering and annealing. Journal of the American Ceramic Society,2001.84(9):p.1917-1920.
    [214]. Kar, J.P., G. Bose and S. Tuli, Effect of annealing on DC sputtered aluminum nitride films. Surface and Coatings Technology,2005.198(1-3):p.64-67.
    [215]. Kar, J.P., et al.. Impact of post-deposition annealing on surface, bulk and interface properties of RF sputtered AlN films. Materials Science and Technology,2009.25(8):p.1023-1027.
    [216]. Kar, J.P., G. Bose and S. Tuli, Influence of rapid thermal annealing on morphological and electrical properties of RF sputtered AlN films. Materials Science in Semiconductor Processing,2005. 8(6):p.646-651.
    [217]. Link, M., et al., C-axis inclined ZnO films deposited by reactive sputtering using an additional blind for shear BAW devices. IEEE Ultrasonics Symposium,2005:p.202-205.
    [218]. 吴雯等,射频反应溅射制备倾斜AlN薄膜.功能材料与器件学报,2010.16(3):第285-288页.
    [219]. Bjurstrom, J., et al., Dependence of the electromechanical coupling on the degree of orientation of c-textured thin AlN films. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2004.51(10):p.1347-1353.
    [220]. You, D.J., et al., Effect of the deposition geometry on the electrical properties within Tin-doped indium oxide film deposited under a given RF magnetron sputtering condition. Thin Solid Films,2001.401(1-2):p.229-234.
    [221]. Lopez, J.G., et al., High energy ion characterization of sputtered AlN thin films. Diamond and Related Materials,2003.12(3-7):p.1157-1161.
    [222]. Vergara, L., et al., Influence of oxygen and argon on the crystal quality and piezoelectric response of AlN sputtered thin films. Diamond and Related Materials,2004.13(4-8):p.839-842.
    [223]. Six, S. and B. Rauschenbach, Stress generation during ion beam-assisted pulsed laser deposition of thin AlN films. Thin Solid Films,2002.415(1-2):p.285-289.
    [224]. Rodriguez-Navarro, A., et al., Control of the preferred orientation of AlN thin films by collimated sputtering. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films, 1998.16(3Part 1):p.1244-1246.
    [225]. Schulte, J. and G. Sobe, Magnetron sputtering of aluminium using oxygen or nitrogen as reactive gas. Thin Solid Films,1998.324(1-2):p.19-24.
    [226]. Martin, F., et al., Thickness dependence of the properties of highly c-axis textured AlN thin films. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,2004.22(2):p. 361-365.
    [227]. Sheldon, B.W., et al., Intrinsic compressive stress in polycrystalline films with negligible grain boundary diffusion. Journal of Applied Physics,2003.94(2):p.948-957.
    [228]. Rajamani, A., R. Beresford and B.W. Sheldon, Intrinsic stress evolution in aluminum nitride thin films and the influence of multistep processing. Applied Physics Letters,2001.79(23):p. 3776-3778.
    [229]. Geyer, U., U. von Hulsen and H. Kopf, Internal interfaces and intrinsic stress in thin amorphous Cu-Ti and Co-Tb films. Journal of Applied Physics,1998.83(6):p.3065-3070.
    [230]. Sheldon, B.W., et al., Competition between tensile and compressive stress mechanisms during Volmer-Weber growth of aluminum nitride films. Journal of Applied Physics,2005. 98(0435094).
    [231]. Meng, W.J., et al., Measurement of intrinsic stresses during growth of aluminum nitride thin films by reactive sputter deposition. Journal of Applied Physics,1993.74(4):p.2411-2414.
    [232]. Kusaka, K., et al., Effect of external magnetic field on c-axis orientation and residual stress in AlN films. Thin Solid Films,1998.332(1-2):p.247-251.
    [233]. Felmetsger, V.V., P.N. Laptev and S.M. Tanner, Innovative technique for tailoring intrinsic stress in reactively sputtered piezoelectric aluminum nitride films. Journal of Vacuum Science & Technology A,2009.27(3):p.417-422.
    [234]. Machunze, R., et al., Stress and texture in HIPIMS TiN thin films. Thin Solid Films,2009. 518(5Sp. Iss. SI):p.1561-1565.
    [235]. Iriarte, G.F., et al., Influence of deposition parameters on the stress of magnetron sputter-deposited AlN thin films on Si(100) substrates. Journal of Materials Research,2003.18(7):p. 1733-1733.
    [236]. Iborra, E., et al., Piezoelectric properties and residual stress of sputtered AlN thin films for MEMS applications. Sensors and Actuators A:Physical,2004.115(2-3):p.501-507.
    [237]. Meng, W.J. and G.L. Doll, Ion energy effects in AlN thin films grown on Si(111). Journal of Applied Physics,1996.79(3):p.1788-1793.
    [238]. 杨世才等,纯氮气反应溅射c-轴择优取向AlN薄膜的制备及性质研究.新疆大学学报(自然科学版),2009.26(4):第444-449页.
    [239]. Lanz, R., et al., Aluminum-Nitride Manufacturing Solution for BAW and other MEMS Applications Using a Novel, High-Uniformity PVD Source. IEEE Ultrasonics Symposium,2006:p. 1481-1485.
    [240]. Soussan, P., et al., Pulsed DC sputtered aluminum nitride:A novel approach to control stress and C-axis orientation, in Materials Research Society Fall Meeting Symposium G:Materials, Integration, and Packaging Issues for High-Frequency Devices 11 location:Leuven Belgium date:29/11/04.2005, MATERIALS RESEARCH SOCIETY:WARRENDALE. p.49-54.
    [241]. Sah, R.E., et al., Residual stress stability in fiber textured stoichiometric AlN film grown using rf magnetron sputtering. Journal of Vacuum Science & Technology A,2010.28(3):p.394-399.
    [242]. Caliendo, C. and P. Imperatori, Structural, optical, and acoustic characterization of high-quality AlN thick films sputtered on Al2O3(0001) at low temperature for GHz-band electroacoustic devices applications. Journal of Applied Physics,2004.96(5):p.2610-2615.
    [243]. Caliendo, C., P. Imperatori and E. Cianci, Structural morphological and acoustic properties of AlN thick films sputtered on Si(001) and Si(111) substrates at low temperature. Thin Solid Films, 2003.441(1-2):p.32-37.
    [244]. Artieda, A. and P. Muralt, Growth study of AlN on amorphous films with defined roughness. IEEE Ultrasonics Symposium,2008:p.907-911.
    [245]. Kang, H.C., S.H. Seo and D.Y. Noh, X-ray scattering study on the structural evolution of AlN/sapphire(0001) films during radiofrequency sputter growth. Journal of Materials Research,2001. 16(6):p.1814-1821.
    [246]. Chen, H.Y., et al., Effect of argon ion beam voltages on the microstructure of aluminum nitride films prepared at room temperature by a dual ion beam sputtering system. Applied Surface Science,2004.228(1-4):p.128-134.
    [247]. Tungasmita, S., et al., Enhanced quality of epitaxial AlN thin films on 6H-SiC by ultra-high-vacuum ion-assisted reactive dc magnetron sputter deposition. Applied Physics Letters,2000. 76(2):p.170-172.
    [248]. Guo, Q.X., et al., Microscopic investigations of aluminum nitride thin films grown by low-temperature reactive sputtering. Thin Solid Films,2005.483(1-2):p.16-20.
    [249]. Matsumoto, H., et al., Influence of underlayer materials on preferred orientations of sputter-deposited AIN/Mo Bilayers for film bulk acoustic wave resonators. Japanese Journal of Applied Physics, Part 1:Regular Papers, Short Notes & Review Papers,2004.43(12):p.8219-8222.
    [250]. 梁俊华,郭冰与刘旭,利用同质缓冲层溅射生长c轴择优取向氮化铝薄膜.浙江大学学报(工学版),2007.41(9):第1512-1515,1531页.
    [251]. Ruffner, J.A., et al., Effect of substrate composition on the piezoelectric response of reactively sputtered AlN thin films. Thin Solid Films,1999.354(1-2):p.256-261.
    [252]. Olivares, J., et al., Combined assessment of piezoelectric AlN films using X-ray diffraction, infrared absorption and atomic force microscopy. Diamond and Related Materials,2007.16(4-7):p. 1421-1424.
    [253]. Akiyama, M., et al., Enhancement of Piezoelectric Response in Scandium Aluminum Nitride Alloy Thin Films Prepared by Dual Reactive Cosputtering. Advanced Materials,2009.21(5):p.593-+.
    [254]. Grudkowski, T.W., et al., Fundamental-mode VHF/UHF minature acoustic resonators and filters on silicon. Applied Physics Letters,1980.37(11):p.993-995.
    [255], Lakin, K.M. and J.S. Wang, Acoustic bulk wave composite resonators. Applied Physics Letters,1981.38(3):p.125-127.
    [256]. Wang, J.S. and K.M. Lakin, Low-temperature coefficient bulk acoustic wave composite resonators. Applied Physics Letters,1982.40(4):p.308-310.
    [257]. Lakin, K.M., et al. Stacked crystal filters implemented with thin films. in Frequency Control, 1989., Proceedings of the 43rd Annual Symposium on.1989.
    [258]. Ylilammi, N., et al., Thin film bulk acoustic wave filter. IEEE Transactions on Ultrasonics. Ferroelectrics, and Frequency Control,2002.49(4):p.535-539.
    [259]. Lakin, K.M., et al., Thin film bulk acoustic wave resonator and filter technology. RAWCON 2001:IEEE Radio and Wireless, Proceedings,2001:p.89-92.
    [260]. Tay, K.W., et al., Growth of AlN thin film on Mo electrode for FBAR application. IEEE Ultrasonics Symposium,2003:p.2024-2027.
    [261]. Park, J.Y., et al. Micromachined FBAR RF filters for advanced handset applications, in Transducers, Solid-State Sensors, Actuators and Microsystems,12th International Conference on,2003. 2003.
    [262]. Southin, J. and R.I. Whatmore, Finite element modelling of nanostructured piezoelectric resonators (NAPIERs). IEEE Transactions on Ultrasonics. Ferroelectrics, and Frequency Control,2004. 51(6):p.654-662.
    [263]. Pan, W.L., et al., A surface micromachined electrostatically tunable film bulk acoustic resonator. Sensors and Actuators A:Physical,2006.126(2):p.436-446.
    [264]. Wanling, P., et al. Design and fabrication of a surface micromachined frequency tunable film bulk acoustic resonator with an extended electrostatic tuning range. in Ultrasonics Symposium,2005 IEEE.2005.
    [265]. Pang, W., et al., Electrical frequency tuning of film bulk acoustic resonator. Journal of Micro-electromechanical Systems,2007.16(6):p.1303-1313.
    [266]. Vorobiev, A., et al., Silicon Substrate Integration of BST Based Tunable TFBARs Using All-dielectric SiO2/AlN Bragg Reflectors.2010 Topical Meeting on Silicon Monolithic Integrated Circuits in RF System,2010:p.41-44.
    [267]. Kang, Y.R., et al., Air-gap type film bulk acoustic resonator using flexible thin substrate. Sensors and Actuators A:Physical,2005.117(1):p.62-70.
    [268]. Campanella, H., et al., Thin-film bulk acoustic wave resonator floating above CMOS substrate. IEEE Electron Device Letters,2008.29(1):p.28-30.
    [269]. Artieda, A. and P. Muralt, High-Q AlN/SiO2 Symmetric Composite Thin Film Bulk Acoustic Wave Resonators. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008.55(11):p.2463-2468.
    [270]. Lakin, K.M., G.R. Kline and K.T. McCarron, Development of miniature filters for wireless applications. Microwave Theory and Techniques, IEEE Transactions on,1995.43(12):p.2933-2939.
    [271]. Nishihara, T., et al. High performance and miniature thin film bulk acoustic wave filters for 5 GHz. in Ultrasonics Symposium,2002. Proceedings.2002 IEEE.2002.
    [272]. Lanz, R. and C. Lambert, Volume manufacturing aspects of BAW filters on a production cluster system.2005, IEEE:New York. p.210-214.
    [273]. Aigner, R., RF-MEMS filters manufactured on silicon:Key facts about Bulk-Acoustic-Wave technology.2003 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Digest of Papers,2003:p.157-161.
    [274]. Aigner, R. MEMS in RF-filter applications:thin film bulk-acoustic-wave technology, in Solid-State Sensors, Actuators and Microsystems,2005. Digest of Technical Papers. Transducers'05. The 13th International Conference on.2005.
    [275]. Dubois, M.A., P. Muralt and V. Plessky, BAW resonators based on aluminum nitride thin films.1999. IEEE:New York. p.907-910.
    [276]. Mai, L.. et al., A novel fabrication technique of FBAR devices for mobile broadband WiMAX applications. Microwave and Optical Technology Letters,2008.50(2):p.375-378.
    [277]. Olivares, J., et al., Sputtered SiO2 as Low Acoustic Impedance Material for Bragg Mirror Fabrication in BAW Resonators. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2010.57(1Sp. Iss. SI):p.23-29.
    [278]. Enlund, J., V. Yantchev and I. Katardjiev, Electric field Sensitivity of Thin Film Resonators Based on Piezoelectric AlN thin films.2006, IEEE:New York. p.468-471.
    [279]. Mai, L., et al., A comprehensive investigation of thermal treatment effects on resonance characteristics in FBAR devices. Microwave and Optical Technology Letters,2005.47(5):p.459-462.
    [280]. 谢仁艿等,基于NbN,AlN技术的体声波器件研究.低温物理学报,2005.27(3):第283-288页.
    [281]. Chung, C.J., et al., Fabrication and frequency response of solidly mounted resonators with 1/4 lambda mode configuration. Thin Solid Films,2008.516(16):p.5277-5281.
    [282]. Shalish, I., et al., Gold metallization for aluminum nitride. Thin Solid Films,1996.289(1-2): p.166-169.
    [283]. Lakin, K.M., et al., Improved bulk wave resonator coupling coefficient for wide bandwidth filters.2001, IEEE:New York. p.827-831.
    [284]. Chen, Q.M. and Q.M. Wang, The effective electromechanical coupling coefficient of piezoelectric thin-film resonators. Applied Physics Letters,2005.86(0229042).
    [285]. Oshmyansky, Y., et al., Sputtering processes for bulk acoustic wave filters.2002, advanced modular sputtering, Inc.
    [286]. Tay, K.W., C.L. Huang and L. Wu, Influence of piezoelectric film and electrode materials on film bulk acoustic-wave resonator characteristics. Japanese Journal of Applied Physics, Part 1:Regular Papers, Short Notes & Review Papers,2004.43(3):p.1122-1126.
    [287]. Vorobiev, A. and S. Gevorgian, Tunable thin film bulk acoustic wave resonators with improved Q-factor. Applied Physics Letters,2010.96(21).
    [288].吴碧艳,电极形状对FBAR横模特性的影响.传感技术学报,2006.19(5):第1924-1926,1929页.
    [289]. Rosen, D., J. Bjurstrom and I. Katardjiev, Suppression of spurious lateral modes in thickness-excited FBAR resonators. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2005.52(7):p.1189-1192.
    [290]. Tanifuji, S., et al., Spurious vibration suppression by film thickness control for FBAR, in Ultrasonics Symposium (IUS),2008 IEEE; Beijing,China.2008:Beijing,China. p.2193-2196.
    [291]. Corso, C.D., A. Dickherber and W.D. Hunt, Lateral field excitation of thickness shear mode waves in a thin film ZnO solidly mounted resonator. Journal of Applied Physics,2007.101(0545145).
    [292]. Milyutin, E., S. Gentil and P. Muralt, Shear mode bulk acoustic wave resonator based on c-axis oriented AIN thin film. Journal of Applied Physics,2008.104(0845088).
    [293]. Milyutin, E. and P. Muralt, PMBAR*-shear mode TFBAR based on (001)AlN thin film Piezo-Modulated Bulk Acoustic wave Resonator.2008, IEEE:New York. p.1215-1217.
    [294]. Yantchev, V. and I. Katardjiev, Micromachined thin film plate acoustic resonators utilizing the lowest order symmetric lamb wave mode. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2007.54(1):p.87-95.
    [295]. Jin, H., et al., Influence of Substrate Temperature on Structural Properties and Deposition Rate of AIN Thin Film Deposited by Reactive Magnetron Sputtering. Journal of Electronic Materials, 2012.41(7):p.1948-1954.
    [296]. Feng, B., et al., Ultra-violet light assisted reactive RF magnetron sputtering deposition of AIN thin films at room temperature. Materials Letters,2012.79:p.25-28.
    [297].金浩,嵌入式电极侧向场激励薄膜体声波谐振器研究,2012.
    [298]. Zhou, G.J., et al., Study of a CMOS Compatible Integration Strategy for Film Bulk Acoustic Resonator Post-CMOS Integration, in RF MEMS, Resonators, and Oscillators.2011:beijing.china.
    [299].殷之文,电介质物理学.2003,北京:科学出版社.
    [300].张福学,现代压电学.上册.2001,北京:科学出版社.
    [301].许小红与武海顺,压电薄膜的制备、结构与应用.2002,北京:科学出版社.
    [302]. Auld, B.A., Acoustic fields and waves in solids volume I.1973. New York:Wiley.
    [303].陈抗生,电磁场与电磁波.2003,北京:高等教育出版社.
    [304].李远,秦自楷与周志刚,压电与铁电材料的测量.1984,北京:科学出版社.
    [305].里斯蒂克,声学器件原理.1988,北京:电子工业出版社.
    [306].刘梅冬与许毓春,压电铁电材料与器件.1990,武汉:华中理工大学出版社.
    [307].王春雷,李吉超与赵明磊,压电铁电物理.2009,北京:科学出版社.
    [308].王矜奉,姜祖桐与石瑞大,压电振动.1989,北京:科学出版社.
    [309].吴连法,声表面波器件及其应用.1983,北京:人民邮电出版社.
    [310].武以立,邓盛刚与王永德,声表面波原理及其在电子技术中的应用.1983,北京:国防工业出版社.
    [311].许昌昆等译,声表面波器件及其应用/日本电子材料工业会编.1984,北京:科学出版社.
    [312].许煜寰,铁电与压电材料.1978,北京:科学出版社.
    [313].张沛霖与张仲渊,压电测量.1983,北京:国防工业出版社.
    [314]. Pozar, D.M., microwave engineering.2005, New York:Wiley.
    [315].金浩,薄膜体声波谐振器(FBAR)技术的若干问题研究,2006,浙江大学.
    [316]. Campanella, H., et al., Analytical and Finite-Element Modeling of Localized-Mass Sensitivity of Thin-Film Bulk Acoustic-Wave Resonators (FBAR). IEEE SENSORS JOURNAL,2009. 9(8):p.892-901.
    [317]. Campanella, H., et al., Localized-mass detection based on thin-film bulk acoustic wave resonators (FBAR):Area and mass location aspects. Sensors and Actuators. A, Physical,2008.142(1): p.322-328.
    [318]. Corso, C.D., A. Dickherber and W.D. Hunt, Lateral field excitation of thickness shear mode waves in a thin film ZnO solidly mounted resonator. Journal of Applied Physics,2007.101(0545145).
    [319]. Chen, D., et al., The c-axis oriented AlN solidly mounted resonator operated in thickness shear mode using lateral electric field excitation. Applied Physics A:Materials Science & Processing, 2010.100(1):p.239-244.
    [320]. Dickherber, A., C.D. Corso and W. Hunt, Lateral field excitation (LFE) of thickness shear mode (TSM) acoustic waves in thin film bulk acoustic resonators (FBAR) as a potential biosensor. 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society,2006. 1-15:p.1829-1832.
    [321].李侃,FBAR微质量传感器若干关键问题的研究,2011,浙江大学.
    [322].超声手册.1999,南京大学出版社:南京.
    [323]. Window, B., Recent advances in sputter deposition. Surface and Coatings technology,1995. 71(2):p.93-97.
    [324]. Mattox, D.M., Physical vapor deposition (PVD) processes. Plating and Surface Finishing, 1992.79(1):p.44-45.
    [325]. Ohring, M., Materials Science of Thin Films, Second Edition.2001, Hoboken, New Jersey: Academic Press
    [326]. Abe, T. and T. Yamashina, The deposition rate of metallic thin films in the reactive sputtering process. Thin Solid Films,1975.30(1):p.19-27.
    [327]. Avaritsiotis, J.N. and C.D. Tsiogas, A reactive sputtering process model for symmetrical planar diode systems. Thin Solid Films,1992.209(1):p.17-25.
    [328]. Berg, S. and T. Nyberg, Fundamental understanding and modeling of reactive sputtering processes. Thin Solid Films,2005.476(2):p.215-230.
    [329]. Depla, D., et al., Target voltage behaviour during DC sputtering of silicon in an argon/nitrogen mixture. Vacuum,2002.66(1):p.9-17.
    [330]. Depla, D. and R. De Gryse, Target poisoning during reactive magnetron sputtering:Part Ⅱ the influence of ion implantation. Surface & Coatings Technology,2004.183(2-3):p.184-189.
    [331]. Depla, D., et al., Towards a more complete model for reactive magnetron sputtering. Journal of Physics D:Applied Physics,2007.40(7):p.1957-1965.
    [332]. Depla, D., et al., Understanding the discharge voltage behavior during reactive sputtering of oxides. Journal of Applied Physics,2007.101 (0133011).
    [333]. Ershov, A. and L. Pekker, Model of d.c. magnetron reactive sputtering in Ar---O2 gas mixtures. Thin Solid Films,1996. Volume 289, Issues 1-2(30 November 1996):p. Pages 140-146.
    [334]. Kubart, T., et al., Dynamic behaviour of the reactive sputtering process. Thin Solid Films, 2006.515(2):p.421-424.
    [335]. Larsson, T., A model for reactive sputtering with magnetrons. Vacuum,1989.39(10):p. 949-954.
    [336]. Li, C., J.H. Hsieh and J.C. Cheng, A study on the effects of two reactive gases in the reactive sputtering process. Thin Solid Films,2006.506:p.168-172.
    [337]. Rao, G.M. and S. Mohan, Influence of oxygen partial pressure on the glow discharge characteristics during dc reactive magnetron sputtering. Vacuum,1991.42(8-9):p.515-517.
    [338]. Shinoki, F. and A. Itoh, Mechanism of rf reactive sputtering. Journal of Applied Physics, 1975.46(8):p.3381-3384.
    [339]. Afinito, J. and R.R. Parsons, Mechanism s of Voltage Controlled Reactive Planar Magnetron Sputtering of Al in Ar/N2 and Ar/02 Atmospheres. Journal of Vacuum Science & Technology A,1984. 2(3):p.1275-1284.
    [340]. Heller, J., Reactive sputtering of metals in oxidizing atmospheres. Thin Solid Films,1973. 7(2):p.163-176.
    [341]. Berg, S., et al., Computer modeling as a tool to predict deposition rate and film composition in the reactive sputtering process. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,1998.16(3Part 1):p.1277-1285.
    [342]. Berg, S., et al., Process modeling of reactive sputtering. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,1989.7(3Part 1):p.1225-1229.
    [343]. Severin, D., et al., Process stabilization and increase of the deposition rate in reactive sputtering of metal oxides and oxynitrides. Applied Physics Letters,2006.88(16150416).
    [344]. Severin, D., et al., Increase of the deposition rate in reactive sputtering of metal oxides using a ceramic nitride target. Journal of Applied Physics,2009.105(0933029).
    [345]. Kubart, T., et al., Experiments and modeling of dual reactive magnetron sputtering using two reactive gases. Journal of Vacuum Science & Technology A,2008.26(4):p.565-570.
    [346]. Kelly, P.J., et al., Reactive pulsed magnetron sputtering process for alumina films. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,2000.18(6):p.2890-2896.
    [347]. Sellers, J., Asymmetric bipolar pulsed DC:the enabling technology for reactive PVD. Surface and Coatings Technology,1998.98(1-3):p.1245-1250.
    [348]. Yu, X., et al., Recent developments in magnetron sputtering. Plasma Science and Technology,2006.8(3):p.337-343.
    [349]. Bartzsch, H. and P. Frach, Modeling the stability of reactive sputtering processes. Surface and Coatings Technology,2001.142:p.192-200.
    [350]. Biersack, J.P. and W. Eckstein, Sputtering studies with the Monte Carlo program TRIM. SP. Applied Physics A:Materials Science & Processing,1984.34(2):p.73-94.
    [351]. Kubart, T., et al., A model of DC reactive magnetron sputtering for graded solar thermal absorbers. Journal of Physics:Conference Series,2008.100.
    [352]. Li, C. and J.H. Hsieh, Stability analysis of reactive sputtering process with variable sticking coefficients. Thin Solid Films,2005.475(1-2):p.102-108.
    [353]. Martin, N. and C. Rousselot, Modelling of reactive sputtering processes involving two separated metallic targets. Surface and Coatings Technology,1999.114(2-3):p.235-249.
    [354]. Sarakinos, K.., et al., A semi-quantitative model for the deposition rate in non-reactive high power pulsed magnetron sputtering. Journal of Physics D:Applied Physics,2008.41(21530121).
    [355]]. 王振伟,牟宗信与刘升光,反应溅射的PID神经网络控制仿真.真空科学与技术学报,2009.29(4):第364-368页.
    [356]. Depla, D., S. Mahieu and R. De Gryse, Magnetron sputter deposition:Linking discharge voltage with target properties. Thin Solid Films,2009.517(9):p.2825-2839.
    [357]. Lounsbury, J.B., Effects of Added 02 upon Argon Emission from an rf Glow Discharge. Journal of Vacuum Science and Technology,1969.6(5):p.838-&.
    [358]. Pekker, L., Plasma chemistry model of DC magnetron reactive sputtering in Ar-O-2 gas mixtures. Thin Solid Films,1998.312(1-2):p.341-347.
    [359]. 佟洪波,巴德纯与闻立时,反应溅射AlN的模拟.真空科学与技术学报,2007.27(5):第377-379页.
    [360]. 佟洪波,柳青与巴德纯,反应溅射AlN薄膜的动态特性.真空科学与技术学报,2009.29(1):第31-34页.
    [361]. Somekh, R.E., The thermalization of energetic atoms during the sputtering process. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,1984.2(3):p.1285-1291.
    [362]. Petrov,1., et al., Microstructural evolution during film growth. Journal of Vacuum Science & Technology A,2003.21Suppl. S(5):p. S117-S128.
    [363]. Thornton, J.A., The microstructure of sputter-deposited coatings. Journal of Vacuum Science&Technology A:Vacuum, Surfaces, and Films,1986.4(6):p.3059-3065.
    [364]. Wingqvist, G., AlN-based sputter-deposited shear mode thin film bulk acoustic resonator (FBAR) for biosensor applications-A review. Surface and Coatings Technology,2010.205(5):p. 1279-1286.
    [365]. Xiong, J., et al., Synthesis of c-Axis Inclined AlN Films in an Off-Center System for Shear Wave Devices. Journal of Electronic Materials,2011.40(7):p.1578-1583.
    [366]. Callaghan, L.A., et al. Fabrication and testing of beam supported AlN FBARs. in Frequency Control Symposium and Exposition,2004. Proceedings of the 2004 IEEE International.2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700