FBAR器件模型和若干应用技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线通信技术的不断发展,促使无线射频终端趋于小型化、集成化设计。与传统介质滤波器和声表面波滤波器技术相比,新型薄膜体声波谐振器(Thin Film Bulk Acoustic Resonator, FBAR)具有工作频率高、插入损耗小、带外抑制大、温度系数低、Q值高、体积小、且可与标准CMOS工艺相兼容等优点,有广阔的应用前景,正越来越受到国内外学术界和业界的关注。
     本文研究了FBAR器件模型和FBAR技术的应用两大方面内容,具体对FBAR建模和制备、FBAR滤波器设计和FBAR传感信号采集芯片设计等三部分内容进行了分析研究,主要研究成果如下:
     1.从FBAR的Mason等效电路模型出发,建立了ADS仿真模型库;基于等效复介电常数建立了FBAR的HFSS三维电磁场仿真模型,实现了FBAR声场和电磁场的协仿真。将两者的仿真结果进行比较,进一步验证了模型的准确性和可靠性。基于已建立的模型,设计制备了不同结构的纵波和剪切模式FBAR,并对样品进行了测试。测试结果表明,FBAR的Q值最高可达1350左右。
     2.设计了用于GSM、PHS、WCDMA通信终端的FBAR带通滤波器,以及用于MIMO终端的多工器,仿真结果表明,滤波器和多工器有着优良的滤波特性,完全可满足目前各通信终端的要求;研究分析了FBAR堆叠滤波器、FBAR带阻滤波器、剪切模式FBAR滤波器的原理和设计方法,给出了相应的设计实例,并提出了一种具有隔离层的多耦合型滤波器;对包括寄生、带宽、带外抑制、功率容量和温度补偿等FBAR滤波器相关参数进行了研究,并提出了多种提高FBAR滤波器功率容量的方法。
     3.设计、流片并测试了FBAR传感器信号采集芯片,测试结果表明,芯片实现了传感信号的处理功能,偶尔因为计数同步问题出现±1KHz的频率误差。针对测试存在的问题对芯片进行改进设计,有效消除了芯片计数过程中存在的误差,并已在SMIC0.18μm工艺下进行第二次流片。
With the rapid development of wireless communication technology, the radio frequency terminals are becoming more miniaturized and integrated. Compared with the conventional di-electric filter and SAW filter, thin film bulk acoustic resonator (FBAR) has high operating fre-quency, low insertion loss, high outband rejection, good temperature coefficient, high Q, small size, and compatible process with CMOS technology. Thus, this technology has widely applica-tion prospects.
     Three parts are researched in this paper, including the modeling and fabrication of FBAR, design of FBAR filter, and design of FBAR sensor signal processing chip. The main achieve-ments are listed as follows:
     1. Based on FBAR Mason model, the ADS simulation library is built up. And the HFSS three-dimensional electromagnetic field simulation model is also applied to achieve acous-tic-electromagnetic field co-simulation based on equivalent complex dielectric constant. The simulation results of these two models further verify the accuracy and reliability of the models. Based on the established model, different structures of longitudinal and shear mode FBAR are designed and fabricated, and the samples are tested. Test results show that FBAR has a Q factor about 1350.
     2. Designed the FBAR bandpass filters for GSM, PHS, and WCDMA terminal, respectively. And a multiplexer for MIMO terminal is also designed. Simulation results show that the filters and multiplexer have excellent filter characteristics which can meet the requirements of current communication terminals. Then we research the theory and design method of FBAR stacked filter, stopband filter, shear mode FBAR filter, and the corresponding filter design example is given. Moreover, a method for multipled coupled resonator filters with an isolation layer is proposed. We also analysis some FBAR filter parameters, including the parasitic parameters, bandwidth, out-band rejection, power capacity and temperature com-pensation. What's more, some new methods are proposed to improve the power capacity of FBAR or FBAR filter.
     3. Completed the design, tape out and test of FBAR sensor signal processing chip. Test results show that the function of sensor signal acquisition is normal except±1KHz frequency error. According to problems in the test, we improve the design of the chip. Thereby, the errors that exist in the counting process are eliminated effectively. And the improved chip is man-ufacturing again in SMIC 0.18μm process.
引文
[1]W. E. Newell, "Face-mounted piezoelectric resonators," Proceedings of the IEEE, vol.53, No.6, pp.575-581,1965.
    [2]T. R. Sliker, and D. A. Roberts, "A Thin-Film CdS-Quartz Composite Resonator," Journal of Applied Physics, vol.38, No.5, pp.2350-2358,1967.
    [3]K. M. Lakin, and J. S. Wang, "Acoustic bulk wave composite resonators," Applied Physics Letters, vol.38, No.3, pp.125-127,1981.
    [4]S. V. Krishnaswamy, J. Rosenbaum, S. Horwitz, C. Vale, and R. A. Moore, "Film bulk acoustic wave resonator technology," Proceedings of IEEE 1900 Ultrasonics Symposium, vol.1, pp.529-536,1990.
    [5]R. Rudy, P. Bradley, J. D. III Larson, and Y. Oshmyansky, "PCS 1900 MHz duplexer using thin film bulk acoustic resonators (FBARs)," Electronics Letters, vol.35, No.10, pp. 794-795,1999.
    [6]P. Bradley, R. Rudy, J. D. III Larson, Y. Oshmyansky, and D. Figueredo, "A film bulk acoustic resonator (FBAR) duplexer for USPCS handset applications," Proceedings of 2001 IEEE MTT-S International Microwave Symposium Digest, vol.1, pp.367-370,2001.
    [7]http://www.infineon.com.
    [8]http://www.nxp.com.
    [9]http://www.triquint.com.
    [10]M. A. Dubois, C. Muller, G. Parat, and P. Vincent, "Integration of high BAW resonators and filters above IC," Proceedings of Solid-State Circuits Conference,2005. Digest of Technical Papers. ISSCC.2005 IEEE International, pp.392-606,2005.
    [11]I. Hiroyuki, L. Hasnain, R. Ashoke, and S. Krishnamurthy, "System and method for con-trolling resonance frequency of film bulk acoustic resonator devices," US Patent 2009039981,2009.
    [12]J. S. Shin, Y. K. Park, I. S. Song, D. H. Kim, and C. S. Kim, "Tunable resonator using film bulk acoustic resonator (FBAR)," US Patent 2009115553,2009.
    [13]J. Y. Park, H. C. Lee, K. H. Lee, Y. J. Ko, and J. U. Bu, "Silicon bulk micromachined FBAR filters for W-CDMA applications," Proceedings of Microwave Conference,2003. 33rd European, vol.3, pp.907-910,2003.
    [14]A. Vilander, "Film bulk acoustic wave resonator with differential topology," US Patent 2006273866,2006.
    [15]K. Yahata, T. Tanaka, and M. Ishii, "Fbar filter," US Patent 2007210876,2007.
    [16]D. Penunuri, "Acoustic wave filter and method of forming the same," US Patent 6424238, 2002.
    [17]E. Komuro, M. Imura, Q. Su, P. B. Kirby, and R. W. Whatmore, "Film bulk acoustic reso-nator filter," US Patent 2004150295,2004.
    [18]T. Ikuta, and K. Kitazawa, "High frequency module," US Patent 2003169575,2003.
    [19]H. Zhang, J. Kim, W. Pang, H. Yu, and E. S. Kim, "5GHz low-phase-noise oscillator based on FBAR with low TCF," Proceedings of 13th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers, vol.1, pp.1100-1101, 2005.
    [20]R. S. Naik, "Bragg Reflector Thin-Film Resonators for Miniature PCS Bandpass Filters," MIT,1998.
    [21]G. Yoon, and J. D. Park, "Fabrication of ZnO-based film bulk acoustic resonator devices using W/SiO2 multilayer reflector," Electronics Letters, vol.36, No.16, pp.1435-1437, 2000.
    [22]J. Lee, J. Jung, J. Park, and H. Kim, "Extraction of material parameters in film bulk acous-tic resonator (FBAR) using genetic algorithm," IEEE Electron Device Letters, vol.25, No. 2, pp.67-69,2004.
    [23]C. M. Yang, K. Uehara, Y. Aota, S. K. Kim, S. Kameda, H. Nakase, Y. Isota, and K. Tsu-bouchi, "Growth of A1N film on Mo/SiO2/Si (111) for 5 GHz-band FBAR using MOCVD," IEEE Ultrasonics Symposium, vol.1, pp.165-168,2004.
    [24]J. E. A. Southin, and R. W. Whatmore, "Finite element modeling of nanostructured pie-zoelectric resonators (NAPIERS)," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.51, No.6, pp.654-662,2004.
    [25]J. Bjurstrom, D. Rosen, I. Katardjiev, V. M. Yanchev, and I. Petrov, "Dependence of the electromechanical coupling on the degree of orientation of c-textured thin A1N films," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.51, No.10, pp.1347-1353,2004.
    [26]董树荣,金浩,王德苗,“薄膜体声波谐振器的电磁场建模与仿真,”浙江大学学报(工学版),vol.40,No.9,pp.1477-1481,2006.
    [27]众鹏,刘燕翔,任天令,刘理天,“基于硅表面加工工艺的射频体声波滤波器研究,'压电与声光,vol.24,No.1,pp.1-3,2002.
    [28]汤亮,郝震宏,乔东海,汪承灏,“薄膜体声波谐振器的梯形射频滤波器设计,”声学技术,vol.27,No.2,2008.
    [29]蒋松涛,吴孟强,吴勇,张树人,“薄膜体声波滤波器的材料、设计及应用,”材料导报,vol.20.No.11,2006.
    [30]谢仁艿,康琳,陈亚军,韦戌,吴培亨,“基于NbN, A1N技术的体声波器件研究,”体温物理学报,vol.27,No.3,2005.
    [31]K. W. Tay, C. L. Huang, and L. Wu, "Influence of piezoelectric film and electrode mate-rials on film bulk acoustic-wave resonator characteristics," Japanese Journal of Aoolied Physics, vol.43, No.3, pp.1122-1126,2004.
    [32]P. H. Sung, C. M. Fang, P. Z. Chang, Y. C. Chin, and P. Y. Chen, "The method for inte-grating FBAR with circuitry on CMOS chip," Proceedings of 2004 IEEE International Frequency Control Symposium and Exposition, pp.562-565,2004.
    [33]G. Wingqvist, J. Bjurstrom, A. C. Hellgren, and I. Katardjiev, "Immunosensor utilizing a shear mode thin film bulk acoustic sensor," Sensors and Actuators B:Chemical, vol.127, No.1, pp.248-252,2007.
    [34]A. P. S. Khanna, E. Gane, and T. Chong, "A 2GHz voltage tunable FBAR oscillator," IEEE MTT-S International Microwave Symposium Digest, vol.2, pp.717-720,2003.
    [35]J. D. III Larson, "Temperature-compensated film bulk acoustic resonator (FBAR) devic-es," US Patent 2005110598,2005.
    [36]R. C. Ruby, and W. Pang, "HBAR oscillator and method of manufacture," US Patent 2008079516,2008.
    [37]D. A. Figueredo, R. C. Ruby, Y. Oshmyansky, and P. Bradley, "Thin film bulk acoustic (FBAR) and inductor on a monolithic substrate and method of fabricating the same," US Patent 2003009863,2003.
    [38]姚廷明,“双模介质滤波器的研究,”南京理工大学(硕士论文),2008.
    [39]S. Krishnaswamy et.al., "Large scale integration resonators." 1984 GOMAC Microelec-tronics Conference,1984.
    [40]B. R. McAvoy, "Microwave acoustic devices in systems," Microwave Journal, pp.36-42, 1987.
    [41]陈炜,“薄膜体声波滤波器(FBAR)的研究与建模,”浙江大学(硕士论文),2005.
    [42]俞科挺,“FBAR双工器的分析和设计,”浙江大学(硕士论文),2006.
    [43]J. F. Carpentier, A. Cathelin, C. Tilhac, et. al., "A SiGe:C BiCMOS WCDMA zero-IF RF front-end using above-IC BAW filter," ISSCC.2005 IEEE International Solid-State Cir-cuits Conference, Digest of Technical Papers, vol.1, pp.394-395,2005.
    [44]C. P. Moreira, A. A. Shirakawa, E. Kerherve, J. M. Pham, P. Jarry, I). Belot, and P. Ancey, "Design of a fully-integrated BiCMOS/FBAR reconfigurable RF receiver front-end," 18th Symposium on Integrated Circuits and Systems Design, pp.138-143,2005.
    [45]M. el Hassan, C. P. Moreira, A. A. Shirakawa, E. Kerherve, Y. Deval, D. Belot, and A. Cathelin, "A multistandard RF receiver front-end using a reconfigurable FBAR filter," IEEE North-East Workshop on Circuits and Systems, pp.173-176,2006.
    [46]Y. H. Chow, H. T. Tan, S. C. Low, M. Mutanizam, T. W. Lee, C. C. Lim, S. H. Khoo, Y. Y Liew, and W. K. Kim, "A miniature LNA-filter GPS receiver front-end module combining FBAR and E-mode pHEMT technology," IEEE MIT-S International Microwave Sympo- sium Digest, pp.1525-1528,2008.
    [47]http://www.avagotech. com
    [48]R. P. OToole, S. G. Burns, G. J. Bastiaans, and M. D. Porter, "Thin aluminum nitride film resonators:miniaturized high sensitivity mass sensors," Anal. Chem., vol.64, No.11, pp. 1289-1294,1992.
    [49]Z. Wang, J. D. N. Cheeke, and K. J. Cheng, "Perturbation method for analyzing mass sen-sitivity of planar multilayer acoustic sensors," IEEE Transactions on Ultrasonics, Ferroe-lectrics and Frequency Control, vol.43, No.5, pp.844-851,1996.
    [50]H. Zhang, M. S. Marma, E. S. Kim, C. E. McKenna, and M. E. Thompson,"Implantable resonant mass sensor for liquid biochemical sensing," 17th IEEE International Conference on MEMS, pp.347-350,2004.
    [51]H. Zhang, "Micromachined bulk acoustic resonators for radio-frequency systems and bio-chem mass sensing," Ph.D.:UNIVERSITY OF SOUTHERN CALIFORNIA,2006.
    [52]H. Campanella, J. Esteve, J. Montserrat, A. Uranga, G. Abadal, N. Barniol, and A. Roma-no-Rodriguez, "Localized and distributed mass detectors with high sensitivity based on thin-film bulk acoustic resonators," Applied Physics Letters, vol.89, No.3, pp.033507, 2006.
    [53]马绍宇,韩雁,董树荣,李侃,周海峰,“基于薄膜体声波谐振器的高灵敏度质量传感器,”固体电子学研究与进展,vol.28,No.2,pp.304-307,2008.
    [54]H. Y. A. Lin, M. Waters, E. Kim, and S. Goodman, "Explosive trace detection with FBAR-based sensor," Proc.2008 21st IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2008), Tucson, AZ, USA, pp.208-211,2008.
    [55]S. Pottigari and J. Kwon, "VACUUM-GAPPED FILM BULK ACOUSTIC RESONATOR FOR LOW-LOSS MASS SENSING IN LIQUID," in Proc.2009 Solid-State Sensors, Ac-tuators and Microsystems Conference,2009. TRANSDUCERS 2009. International, Denver, CO,USA, pp.156-159,2009.
    [56]M. L. Johnston, I. Kymissis, and K. L. Shepard, "FBAR-CMOS oscillator array for mass-sensing applications," IEEE Sensors Journal, vol.10, No.6, pp.1042-1047,2010.
    [57]W. P. Mason, "Electronmechanical transducers and wave filters," 2nd ed, Nostrand Com-pany Inc.,1964.
    [58]S. Butterworth, "On electrically-maintained vibrations," Proceedings of the Physical So-ciety of London, vol.27, pp.410-424,1914.
    [59]K. S. Van Dyke, "The electric network equivalent of a piezoelectric resonator," Phys. Rev., pp.895,1925.
    [60]J. D. Larson Ⅲ, P. D. Bradley, S. Wartenberg, and R. C. Rudy, "Modified butterworth-van dyke circuit for FBAR resonators and automated measurement system," IEEE Ultrasonics Symposium, vol.1, pp.863-868,2000.
    [61]S. H. Zhao, S. R. Dong, H. J. Zhang, W. W. Cheng, and X. X. Han, "Modeling of RF filter component based on film bulk acoustic resonator," IEEE Transactions on Consumer Elec-tronics, vol.55, No.2, pp.351-355,2009.
    [62]K. M. Lakin, "Modeling of thin film resonators and filers," IEEE MTT-S International Microwave Symposium Digest, vol.1, pp.149-152,1992.
    [63]Q. X. Su, P. Kirby, E. Komuro, M. Imura, Q. Zhang, and R. Whatmore, "Thin-film bulk acoustic resonators and filters using ZnO and Lead-Zirconium-Titanate thin film," IEEE Transactions on Microwave theory and Techniques, vol.49, No.4, pp.769-778,2001.
    [64]N. Camilleri, J. Kirchgessner, J. Costa, D. Ngo, and D. Lovelace, "Bonding pad models for silicon VLSI technologies and their effects on the noise figure of RF NPNs," IEEE MTT-S Int Microwave Symposium Digest, vol.2, pp.1179-1182,1994.
    [65]R. Aigner, "MEMS in RF filter applications:thin-film bulk acoustic wave technology," Wiley InterSciencie:Sensors Update, vol.12, pp.175-210,2003.
    [66]R. S. Naik, "Bragg Reflector Thin-Film Resonators for Miniature PCS Bandpass Filters," Massachusetts Institute of Technology,1998.
    [67]M. Farina, and T. Rozzi, "Electromagnetic Modeling of Thin-Film Bulk Acoustic Resona-tors," IEEE Transactions on Microwave Theory and Technology, vol.52, No.11, pp. 2496-2502,2004.
    [68]王德苗,金浩,董树荣,“薄膜体声波谐振器(FBAR)的研究进展,”电子元件与材料,vol.24,No.9,pp.65-68,2005.
    [69]http://www.mweda.com./tools/ShowArticle.asp?ArticleTD= 112
    [70]吴碧艳,“电极形状对FBAR横模特性的影响,”传感技术学按,vol.19,No.5,pp.1924-1929,2006.
    [71]P. Ceng, T. L. Ren, and L. T. Liu, "A novel piezoelectric-based RF BAW filter," Micro-electronic Engineering, vol.66, No.1-4, pp.779-784,2003.
    [72]http://www.amcrf.com
    [73]H. Jin, S. R. Dong, D. M. Wang, "Design of balanced RF filter for wireless applications using FBAR technology," IEEE Conference on Electron Devices and Solid-State Circuits, pp.57-60,2005.
    [74]Huijin Zhang, Shurong Dong, Weiwei Cheng, Mengjun Wu, and Yan Han, "Stopband RF filter based on FBAR," The 2nd International Conference on Nanomanufacturing (nano-Man2010), Tianjin, China,2010.
    [75]T. Yanagitani, M. Kiuchi, M. Matsukawa, and Y. Watanabe, "Characteristics of pure-shear mode BAW resonators consisting of (1120) textured ZnO films," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.54, No.8, pp.1680-1686,2007.
    [76]S. Marksteiner, G. Fattinger, R. Aigner, and J. Kaitila, "Acoustic reflector for a BAW resona-tor," US Patent US20040140869A1,2004.
    [77]T. Yanagitani, N. Mishima, M. Matsukawa, and Y. Watanabe, "Electromechanical coupling coefficient k15 of polycrystalline ZnO films with c-axes lie in the substrate plane," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.54, No.4, pp. 701-704,2007.
    [78]S. Wu, Z. X. Lin, M. S. Lee, R. Ro, and K. I. Chen, "Pure shear bulk acoustic wave of the oriented A1N," IEEE International Symposium on Application of Ferroelectrics, pp. 746-749,2007.
    [79]K. Lakin, J. Kaitila, R. Aigner, L. Elbrecht, R. Rudy, M. Ueda, et al, "RF bulk acoustic wave filters for communications," Artech House Publication:United States, pp.20-149, 2009.
    [80]K. M. Lakin, J. Belsick, J. F. McDonald, and K. T. McCarron, "Improved bulk wave reso-nator coupling coefficient for wide bandwidth filters," IEEE Ultrasonics Symposium, vol. 1, pp.827-831,2001.
    [81]K. M. Lakin, "Thin film resonator technology," IEEE Transactions on Ultrasonics, Fer-roelectrics, and Frequency Control, vol.52, No.5, pp.707-716,2005.
    [82]P. Bradley, R. Rudy, J. D. Larson Ⅲ, Y. Oshmyansky, and D. Figueredo, "A film bulk acoustic resonator (FBAR) duplexer for USPCS handset applications," IEEE MTT-S In-ternational Microwave Symposium Digest, vol.1, pp.367-370,2001.
    [83]M. A. Ylilammi, "Thin-film bulk acoustic resonator with enhanced power handling capac-ity," United Stated Patent US6515558B1,2003.
    [84]J. D. Larson, R. C. Rudy, P. D. Bradley, J. Wen, S. L. Kok, and A. Chien, "Power handling and temperature coefficient studies in FBAR duplexers for the 1900 MHz PCS band," IEEE Ultrasonics Symposium, vol.1, pp.869-874,2000.
    [85]J. D. Larson Ⅲ, "Temperature-compensated film bulk acoustic resonator (FBAR) devic-es," United Stated Patent US7408428B2,2008.
    [86]H. Zhang, and E. S. Kim, "Micromachined acoustic resonant mass sensor," Journal of Microelectromechanical System, vol.14, No.4, pp.699-706,2005.
    [87]H. Zhang, M. S. Marma, E. S. Kim, C. E. McKenna, and M. E. Thompson, "A film bulk acoustic resonator in liquid environment," Journal of Micromechanics and Microengi-neering, vol.15, No.10, pp.1911-1916,2005.
    [88]董树荣,韩雁,赵士恒,程维维,王德苗,李侃,“利用压电薄膜体声波器件的抗体检测生物芯片,”中国专利CN101246162A,2008.
    [89]G. Sauerbrey, "Verwendung von schwingquarzen zur microwagun," Zeitschrift fur Physik, vol.155, No.2, pp.206-222,1959.
    [90]A. K. Srivastava, and P. Sakthivel, "Quartz-crystal microbalance study for characterizing atomic oxygen plasma ash tools," Journal of Vacuum Science & Technology A, vol.19, No. 1, pp.97-100,2001.
    [91]"QCM100-quartz crystal microbalance theory and calibration," Stanford Research Systems (408) 744-9040.
    [92]N. Foroudi, and T. A. Kwasniewski, "CMOS high-speed dual-modulus frequency divider for RF frequency synthesis," IEEE Journal of Solid-State Circuits, vol.30, No.2, pp. 93-100,1995.
    [93]W. R. Yang, J. L. Lao, F. Ran, and J. Wang, "A 2.5GHz CMOS dual-modulus prescaler for RF frequency synthesizer," Proceedings of 7th International Conference on Solid-State and Integrated Circuits Technology, vol.2, pp.1547-1550,2004.
    [94]毕查德,拉扎维,“模拟CMOS集成电路设计,”西安:西安交通大学出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700