含气管粘膜的复合气管支架构建与移植实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
临床上由于各种喉气管疾病如外伤、肿瘤等因素导致的喉气管狭窄,需切除狭窄段并修复之。通常,气管缺损如达成人气管1/2及儿童气管1/3长度,可行端端吻合术来修复;当超过这个界限时,需植入气管假体才能重建气管的连续性。自体组织移植如肋软骨、鼻中隔软骨、胸锁乳突肌等,因增加创伤、供体来源有限等原因使用受限。同种异体材料及人工材料也存在着感染、远期排斥等问题而难以实用。因此有效的气管替代材料的应用是十分重要的。
     随着组织工程技术的迅猛进展,气管组织工程的研究也逐渐受到重视。气管重建成功的关键环节有三:1、软骨支架重建;2、创面在瘢痕形成之前再上皮化;3、移植物的再血管化。经过多年努力,软骨支架的构建已在裸鼠体内获得成功。然而,理想的气管替代物必需考虑气管管腔内衬以有功能的气管上皮细胞,且良好的血管化也是保持结构成分的可活性的重要因素。但是,目前国内在气管上皮细胞的培养技术方面尚未成熟,有待于进一步研究。
     细胞支架的选择也是非常重要的。胶原不仅支持组织重建,而且有利于多种细胞在体外培养,同样也适合于上皮细胞的形成和分化,有报道使用胶原凝胶培养大鼠、豚鼠、兔、狗和人的气管上皮细胞?[1-3]?。
     SIS是天然细胞外基质类生物材料,一般取自猪的小肠粘膜下层。近年来,SIS作为一种生物支架材料在组织工程研究中日益受到重视,并广泛应用于骨骼肌、腹壁、硬脑膜、膀胱、血管等组织器官缺损的修复?[4]?。有报道将SIS复合上皮细胞及成肌细胞用来构建组织工程食管?[5]?。当前,用于软骨组织工程支架的合成材料主要是聚酯类的PGA和PLA,以及PGA和PLA的共聚物。既往我科使用鼻中隔软骨细胞种植到PGA无纺网支架,在裸鼠体内形成了管状软骨组织。
     本研究以胶原复合SIS及PGA无纺网支架材料分别复合气管粘膜上皮细胞和软骨细胞进行体外培养,再将双层复合物相叠加形成管状结构,埋植入裸鼠体内培养,通过观察动物存活时间及移植物体内演变情况,为复合气管支架的构建提供理论和实验依据。
     研究目的
     1.探讨建立兔气管粘膜上皮细胞的原代培养方案,自制兔小肠粘膜下层(SIS),通过胶原、SIS与气管粘膜上皮细胞共培养,观察气管粘膜上皮细胞与SIS的组织相容性,为使SIS作为上皮组织工程化载体打下基础。
     2.评估软骨细胞与PGA载体的组织相容性及PGA及SIS两种支架材料体内降解的情况。
     3.观察裸鼠存活时间及移植物体内演变过程,明确构件的生长及血管结构的形成情况。
     材料与方法
     1、兔气管粘膜上皮细胞培养及其与自制小肠粘膜下层复合培养的实验研究应用组织块法培养兔气管粘膜上皮细胞,无血清培养基体外培养,倒置显微镜观察细胞生长分化情况,抗角蛋白单克隆抗体免疫组织化学染色及扫描电镜验证纤毛上皮细胞特性。用顺序化学脱细胞处理法机械剥离获取兔小肠粘膜下层,进行组织学检测。将气管上皮细胞与胶原、SIS体外复合培养,行组织学观察。
     2、原代软骨细胞-PGA共培养及体外构建管状气管支架
     用胰酶消化法获得原代法兔关节软骨细胞,行倒置显微镜及组织学观察。再将软骨细胞种植在PGA无纺网支架上体外培养1w,将上述气管粘膜上皮复合物叠加在软骨细胞-PGA层上,包绕在直径4mm实心玻璃棒上,可吸收缝合线捆绑固定。
     3、复合气管支架体内培养的实验研究
     将复合管状气管支架分别埋植于9只裸鼠前肢腋下,观察裸鼠存活时间及构件在动物体内演变过程;于4、8、12w后分批处死动物,每批3只,取出构件进行组织学鉴定,观察其粘膜上皮、软骨以及血管结构的形成情况。
     结果
     1、兔气管粘膜上皮细胞培养及其与自制小肠粘膜下层复合培养的实验研究
     原代气管上皮细胞培养1w后增殖旺盛,10d时上皮细胞分布范围更广,并汇合呈铺路石样生长,部分细胞可见纤毛活动,抗角蛋白单克隆抗体免疫组织化学染色及扫面电镜验证纤毛上皮细胞特性。将气管上皮细胞-SIS复合物体外培养1w后,组织学检测示:可见气管粘膜上皮和SIS双层结构形成,气管粘膜上皮较薄,其下的SIS层较厚,呈较均匀的结缔组织基质。胶原层不明显。
     2、原代软骨细胞-PGA共培养及体外构建管状气管支架
     原代软骨细胞活性较强,增殖旺盛,约1w细胞基本长满瓶壁,组织学检测显示软骨细胞特性。将其种植于PGA支架形成软骨细胞-PGA复合物,再将气管粘膜上皮复合物叠加在其上,将叠加物包绕在直径4mm、长7mm的实心玻璃棒上,可吸收缝合线捆绑固定,可以在体外构建出管状气管结构。
     3、复合气管支架体内培养的实验研究
     将气管支架种植到裸鼠体内后,观察整个实验过程未见构件的感染和排出。分批处死动物后,取出标本,移除玻璃棒,大体观察可见:4w时移植物大小与植入前基本一致;8w时外形较前略有缩小,可见瓷白色软骨样结构,触之有韧性,管腔基本完整;12w时形态与8w时基本相同。HE染色石蜡切片,光镜观察示:4w时气管上皮及软骨细胞结构尚不典型,仍有较多的PGA纤维和SIS残留。8w时,开始出现椭圆形软骨陷窝,软骨细胞间距加大,近管腔面可见纤毛样上皮结构形成,但尚不完整;P GA纤维基本降解吸收,但SIS支架仍有残留。12w时整体组织结构较8w时成熟;软骨层表面覆盖一薄层粘膜上皮结构,未观察到粘膜下血管结构形成;SIS基本完全降解吸收。
     结论
     1.组织块法培养的原代气管粘膜上皮细胞具有一定的增殖能力,此方法对获取组织工程种子细胞具有一定的应用价值,但由于取材量少,一次不能得到大量的气管上皮细胞,故尚不能满足气管修复实验的要求。顺序化学脱细胞法制备的SIS安全性好,易保存,操作性强,可重复制备,且细胞相容性好,故可以作为气管上皮细胞理想的支架材料。
     2. PGA有良好的细胞相容性,软骨细胞在其表面生长,不影响细胞的形态,因此是较好的软骨细胞载体。PGA和SIS材料在体内约8~12w可降解吸收。
     3.复合气管支架植入裸鼠体内8w及12w时,组织学检测显示粘膜上皮和软骨结构的形成,但粘膜下未见明显的血管结构,故移植物的血管化尚有待于进一步研究。
It is often necessary to resect laryngotracheal stenosis and to reconstruct theresulting defects for patients who have various types of tracheal disease liketrauma or tumor that cause stenosis.Circumferentially resected tracheas are conventionallyreconstructed by endtoendanastomosis,but the general limits of saferesection are about half of the tracheal length in adults and probably one third insmall childen.Tracheal resection longer than these limits requires replacement.Using autogenous tissue such as costal cartilage,nasal septal cartilage to patch thedefects takes risk of adding wounds and the source of grafts is lmited.Allograftsand artificial materials are also limited because of infection and longtermrejection.Therefore,effective production of grafts for tracheal reconstruction is very important.As tissue enginnering technique develops quickly,tissueengineeredtrachea have been thought highy of increasingly.The key to success fortracheal reconstruction is to reconstruct cartilage stent,reepithelization andrevascularization.Now,the cartilage stent has been made in nude mousesuccessfully.But functional tracheal epithelium and good vascularization are stillbig problems.
     Choosing cell stent materials is also very substaintial.Collagen is importantnot only for supporting tissue construction,but also for many kinds of cells beingcultured in vitro. Collagenous gel is also suitable for differentiation and formationof epithelial cells.With this method,culture of tracheal epithelial cells of severalspecies,such as rats,guinea pigs,rabbits,dogs,and humans has been reported [13].
     SIS is a nature,biocompatible,acellular,collagenbasedmatrix derived fromthe porcine small intestine submocosa. For the past few years,SIS has beenwidely used for the repair of skeletal muscle, abdominal wall, dura matermembrane,bladder,and vessels [4] .Also,some researcher fabricated the frameworkof a biodegradable artificial esophagus with the epithelial cells and the myoblastcells seeded on the small intestinal submucosa [5] .PGA,PLA and the copolymer ofthe both are main synthetic materials of cartilage tissueengineeringstents. In ourprevious studies,we demonstrated that human nasoseptal chondrocytesPGAconstruct could develop into a new cartilage in predetermined shapes in athymicmice.
     In this study,we would seeded primary rabbit tracheal epithelial cells andcartilage cells onto the surface of SIS covered by collagen and a nonwoven meshof polyglycolic acid(PGA) respectively to form epitheliumSISand chondrocytesPGAconstructs.Then the two layers were stratified to make tubershaped structure,which was implanted into the donor of athymic mice to grow. By investigatingthe compound grafts’growth in vivo and animals’survival time,we cansupply theoretical and experimental evidence for the construction of compoundtracheal framework.
     Objective
     1. To investigate an appropriate model of rabbit tracheal primary epithelial cellculture.To find suitable way to make SIS as scaffold for tissue engineering.Toinvestigate the biocompatibility of SIS with epithelial cells and to explore thepossibility to construct tissue engineering epithelium with SIS as the scaffold andepithelial cells as the seed cells.
     2. To evaluate the biocompatibility of PGA with cartilage cells and thedegradation of the two stents of PGA and SIS in vivo.
     3. To investigate compound grafts’variation in athymic mice and animals’survival time,and identify the grafts’growth and formation of blood vessels.
     Materials and methods
     1. Model of tracheal epithelial cells primary culture and selfmadeSISpreparation and coculturewith epithelial cells
     Rabbit tracheal ciliated epithelial cells were obtained by an explantoutgrowth culture system,cultured with serumfreemedium supplementedhormones and growth factors in vitro,observed by photocontrast microscopy.
     Antikaratin monoclonal antibody immunohistochemical stain and scanningelectron microscope(SEM) were employed to verify the characteristics ofepithelial cells.Derived from rabbit jejunum,SIS was dealt with steps chemicaldecellulaand examined by histological stain.Then the SIS taken from rabbits was mixed with epithelial cells taken from homogeneous rabbits for culture invitro to form epitheliumSISconstruct.Histological observation was done underphase contrast microscope.
     2. Coculture of primary chondrocytes with PGA and construction of tubershapedof trachea
     Cartilage cells obtained from rabbit joint cartilage by enzyme digestion werecultured in vitro.After 1 week,the cells were characterized by photocontrastmicroscopy and also examined with hematoxylineosinstaining and AB/PASstaining.Then the cells were seeded onto a nonwoven mesh of PGA to form acellPGAconstruct. Then epitheliumSISlayer was stratified onto chondrocytesPGAlayer to form a compound, and the compoumd was wrapped around adiameter of 4 millimeter glass rod, and bound by absorbable suture.
     3. Compound tracheal construction cultured in vivo
     The compound grafts were implanted into forelimb oxter of 9 athymicmice separately.The grafts’growth in vivo and animals’survival time wereobserved. The specimens were harvested 4 ,8,12 weeks after implantation andsubjected to gross morphologic and histologic analysis.
     Results
     1. Model of tracheal epithelial cells primary culture and selfmadeSISpreparation and coculturewith epithelial cells
     Many tracheal epithelium cells with good proliferation property were foundin the culture system after 1 week. Epithelial cells distributed widely andconfluented at 10th day.During that time ciliary beating was active,and theverification tests presented positive. HE staining showed the two layers of theepithelium and SIS.Collagen was not evident.
     2. Coculture of primary chondrocytes with PGA and construction of tubershapeof trachea
     Primary cartilage cells was very active and with good proliferationproperty.The cells confluenced in about 1 week,and the histological stainingverified cartilage cell characteristics.Then the cells were seeded onto a nonwovenmesh of PGA to form a cellPGAconstruct. The construct with epitheliumSISlayer above could make tubershapein vitro by wrapping around a diameter of4 millimeter and lenghth of 7 millimeter glass rod.
     3. Compound tracheal construction cultured in vivo
     In vivo study,no evident inflammatory infection and rejection of the constructsafter implantation were found.After animals were killed in batch, the glassrods were taken out of the specimens. The gross specimens of 4 weeks revealedapproximately the same shapes as original predetermined shapes.At 8 and 12weeks newlyformedcartilage had fair elasticity and support ability,and luminaswere almost integrated. Histological observation demonstrated that new cartilagecells and tracheal epithelial layer were not typical yet in 4 weeks. In 8 weeks,thecolumnar ciliated epithelium was observed towards the face of the lumina but notintegrated,and the PGA were almost degradated.Until in 12 weeks,the SIS of thespecimens were nearly absorbed.At the time,there was an epithelium mucosaeabove the cartilage layer,but the structure of blood vessels could not be foundunder the tracheal mucosa in the whole study.
     Conclusion
     1. The explant outgrowth culture system may be useful in establishing a culturesystem for ciliated cells. In this way, using cultured ciliated epithelial cells asseeds for tracheal tissue engineering was potentially.Steps chemical decellular method was a good way made SIS as scaffold for tissue engineering because ofits security,easy to conservation and remake,and operability.SelfmadeSIS can beused as the scaffold to construct tissue engineering epithelium as it has goodbiocompatibility with tracheal epithelial cells.
     2. PGA also has good biocompatibility with cartilage cells without disturbing thecells form or inhibiting the growth and function of cartilage cells,so it can be agood kind of tissueengineeringcartilage scaffold.PGA and SIS can be degradatedin 8 and 12 weeks in vivo.
     3. After the grafts were embedded into athymic mice in 8 and 12 weeks,trachealepithelium and cartilage could be observed in histological staining but nostructure of blood vessels could be found under the tracheal mucosa.Therevascularization of the constructs should be further studied for longtermapplication.
引文
1. Whitcutt MJ,Adler KB,Wu R. A biphasic chamber system for maintainingpolarity of differentiation of cultured respiratory tract epithelial cells[J]. InVitro Cell Dev Biol. 1988,24(5):420428.
    2. Jetten AM, Brody AR, Deas MA, et al. Retinoic acid and substratum regulatethe differentiation of rabbit tracheal epithelial cells into squamous andsecretory phenotype. Morphological and biochemical characterization[J].LabInvest. 1987 ,56(6):654664.
    3. Yamaya M,Ohrui T ,Finkbeiner WE.Calciumdependentchloride secretionacross cultures of human tracheal surface epithelium and glands[J]. Am JPhysiol,1993 ,265:L170L177.
    4. Badylak S,Liang A,Record R,et a1.Endothelial cell adherence to smallintestinal submucosa:an acellular bioscaffold[J].Biomaterials,l999,20(2324):22572263.
    5.岑石强,李万里,黄富国等,小肠粘膜下层复合上皮细胞及成肌细胞构建组织工程食管的初步研究[J].中国修复重建外科杂志,2006,2O(1O):1040-1043.
    6. Daniel RA Jr,T aliaferro RM,S chaffarizick WR.E xperimental studies on therepair of wounds and defect of the trachea and bronchi[J].Chest,1950,17(4):426435.
    7. Ferguson DJ,Wild JJ,Wangensteen OH.Experimental resection of thetrachea[J].Surgery,1950,28(6):597619.
    8. Rose KG,Sesterhenn K,Wustrow F.Tracheal allotransplantation inman[J].Lancet,1979,l(4):433440.
    9. Neville WE , Bolanowski JP , Kotia GG, et al . Clinical experience with thesilicone tracheal prosthesis[J]. J Thorac Cardiovasc Surg , 1990 , 99 :604613.
    10. Grillo HC.Tracheal replacement:a critical review[J].Ann Thorac Surg,2002,73(6):19952004.
    11. Banis JC , Churnkian K, Kim M, et al.Prefabricated jejunal freetissuetransfer for tracheal reconstruction:e xperimental study[J] . Plastic Reconstru ,1996 ,98 :10461051.
    12. Osada H , Kojima K.Experimental tracheal reconstruction with a rotated rightstem bronchus[J]. Ann Thorac surg ,2000 ,70 :18861890.
    13. Liu Y, Nakamura T , Yamamoto Y, et al . A new tracheal bioartificial organ :evaluation of a tracheal allograft with minimal antigenicity after treatment bydetergent[J] . ASAIO J , 2000 ,46 :536539.
    14. Tojo T,Niwaya K,Sawabata N,et a1.Tracheal replacement withcryopreserved tracheal allograft:experimental in dogs[J].Ann ThoracSurg.1998,66(1):209213.
    15. Moriyama H,Sasajima T,Hirata S,et a1.Revascularization of caninecryopreserved tracheal allografts[J].Ann Thorac Surg,2000,69(6):17011706.
    16. Kunachak S,K ulapaditharom B,V ajaradul Y,et a1.C ryopreserved,ir radiatedtracheal homograft transplantation for laryngotracheal reconstruction inhuman beings[J].Otolaryngol Head Neck Surg,2000,122(6):911916.
    17. Tojo T,Kitamura S,Gojo S,et a1.Epithelial regeneration and preservationof tracheal cartilage after tracheal replacement with cryopreserved allograft inthe rat[J].J Thorac Cardiovasc Surg,1998,116(4):624627.
    18. Bujia J , Wilmes E , Hammer C , et al . Class II antigenicity of humancartilage:re levance to the use of homologous cartilage graft for reconstructivesurgery[J]. Ann Plast Surg , 1991 ,26 :541543.
    19. Liu Y, Nakamura T , Yamamoto Y, et al . Immunosuppressantfreeallotransplantation of the trachea : the antigenicity of tracheal grafts can bereduced by removing the epithelium and mixed glands from the graft bydetergent treatment [J]. J Thorac Cardiovasc Surg , 2000 ,120 :108114.
    20. Adams BF,Berry GJ,H uang X,e t a1.Im munosuppressive therapies for theprevention and treatment of obliterative airway disease in heterotopic rattracheal allografts[J].Transplantation,2000,69(11):22602266.
    21. Yokomise H,Inui K,W ade H,e t a1.Highdoseirradiation prevents rejectionof canine tracheal allografts[J].J Thorac Cardiovasc Surg,1994,107(6):13911397.
    22.陈肖嘉,刘枫春,刘树库,等.气管放疗加深低温保存后同种异体移植的实验研究[J].中华胸心血管外科杂志,2001,17(6):361-363.
    23. KhalilMarzoukJF.Allograft replacement of the trachea.Experimentalsynchronous revascularization of composite throtracheal transplant[J].JThorac Cardiovasc Surg,1993,105(2):242246.
    24. Mayer E,C ardoso PF,P uskas JD,e t a1.T he effect of basic fibroblast growthfactor and omentopexy on revascularization and epithelial regeneration ofheterotopic rat tracheal isografts[J]. J Thorac Cardiovasc Surg,1 992,1 04(1):180188.
    25. Nakanishi R,Hashimoto M,Yasumoto K.Improved airway healing usingbasic fibroblast growth factor in a canine tracheal autotransplantationmode1[J].Ann Surg,1998,227(3):446454.
    26. Behrend M,von Wasielewski R,Klempnauer J.Failure of airway healing inan ovine autotransplantation model that includes basic fibroblast growthfactor[J].J Thorac Cardiovasc Surg,2002,124(2):231240.
    27. Jocobs JR. Investigations into tracheal prosthetic reconstruction[J].Laryngosocope , 1988 ,98 :12391245.
    28. Teramachi M,Okumura N,Nakamura T,et a1.Intrathoracic trachealreconstruction with a collagenconjugatedprosthesis:evaluation of theefficacy of omental wrapping[J].J Thorac Cardiovasc Surg,1997,113(4):701711.
    29. Omori K,Nakamura T,Kanemaru S,et a1.Regenerative medicine ofthe trachea:th e first human case[J].A nn Otol Rhinol Laryngol,2 005,1 14(6):429433.
    30.饶天健,黄偶麟,周允中,等.聚酯聚丙烯复合人工气管重建气管的实验研究[J].中华胸心血管外科杂志,1999,15(1):48-50.
    31.史宏灿,徐志飞,秦雄,等.生物材料人工气管的设计与动物实验研究[J].第二军医大学学报,2002,23(10):1142-1145.
    32. Shi H,Xu Z,Qin X,et a1.Experimental study of replacing circumferentialtracheal defects with new prosthesis[J].Ann Thorac Surg,2005,79(2):672677.
    33. Suh SW, Kim J , Baek CH , et al . Development of new tracheal prosthesis :autogenous mucosalinedprothesis made from ploypropylene mesh[J]. Int JArif Organs , 2000 ,23 :261267.
    34. Vacanti CA,Paige KT,Kim WS,et al.Experimental tracheal replacement usingtissueengineeredcartilage[J].J Pediatr Surg,1994,29(2):201204.
    35. Fuchs JR,N asseri BA,V acanti JP.T issue engineering:a 21 st century solutionto surgical reconstruction[J].Ann Thorac Surg,2001,72(2):577591.
    36. Fuchs JR,Terada S,Ochoa ER,et a1.Fetal tissue engineering:in uterotracheal augmentation in an ovine mode1[J].J Pediatr Surg,2002,37(7):10001006.
    37. Fuchs JR,H annouche D,Terada S,e t a1.Fetal tracheal augmentation withcartilage engineered from bone marrowderivedmesenchymal progenitorcells[J].J Pediatr Surg,2003,38(6):984987.
    38. Fuchs JR,Hannouche D,Terada S,et a1.Cartilage engineering from ovineumbilical cord blood mesenchymal progenitor cells[J].S tem Cells,2 005,23(7)958964.
    39.史宏灿.人工气管的研究进展[J].中国修复重建外科杂志,2005,19(4):326329.
    40. Britt JC, Park SS. Autogenous tissueengineeredcartilage: evaluation as animplant material.Arch Otolaryngol Head Neck Surg[J]. 1998,124(6):671677.
    41. Langer R,V acanti JP.T issue engineering[J].S cience,1 993,2 60:9 20926.
    42. Grande DA,H alberstadt C,N aughton G,et a1.E valuation of matrix scaffoldsfor tissue engineering of articular cartilage grafts[J].J Biomed MaterRes,1997,34:211220.
    43. de Chalain T,Phillips JH,H inek A.B ioengineering of elastic cartilage withaggregated porcine and human auricular chondrocytes and hydrogelscontaining alginate,collagen,and kappaelastin[J].J Biomed Mater Res,1999,44:280288.
    44. Okumura N,Nakamura T,Natsume T,et a1.Experimental study on a newtracheal prosthesis made from collagenconjugatedmesh[J].J ThoracCardiovasc Surg,1994,108:337345.
    45. Kojima K,B onassar LJ,R oy AK,et a1.A utologous tissueengineeredtracheawith sheep nasal chondrocytes[J].J Thorac Cardiovasc Surg,2002,123:11771184.
    46. Walles T,Giere B,Hofmann M,et a1.Experimental genelation of atissueengineeredfunctional and vascularized trachea[J].J Thorac CardiovascSurg,2004,128:900906.
    47. Vacanti CA,Kim W,Upton J,et a1.Tissueengineeredgrowth of boneand cartilage[J].Transplant Proc,1993,25(1 Pt 2):10191021.
    48. Cao Y,V acanti JP,p aige KT,e t a1.T ransplantation of chondrocytes utilizinga polymercellconstruct to produce tissueengineeredcartilage in the shape ofa human ear[J].Plast Reconstr Surg,1997,100:297302.
    49. Bystrenin AV,D avydov RS,M edvedeva SIu.A pplication of autocartilage fortreatment of tracheostenosis with chondromalacia[J].Vestn Otorinolaringol,2005,3:5254.
    50. Kojima K,Ignotz RA,Kushibiki T,et a1.Tissueengineeredtrachea fromsheep marrow stromal cells with transforming growth factor beta2 releasedfrom biodegradable microspheres in a nude rat recipient[J].J ThoracCardiovasc Surg,2004,128:147153.
    51.崔鹏程,陈文弦,罗家胜,等.人鼻中隔软骨构建组织工程化软骨[J].中华耳鼻咽喉科杂志,2002,36(1):2224.
    52.孙安科,陈文弦,崔鹏程,等.同种异体组织工程化软骨的构建和修复甲状软骨缺损的实验研究[J].中华耳鼻咽喉科杂志,2001,3 6(4):2 78230.
    53. Risbud M,Endres M,Ringe J,et a1.Biocompatible hydrogel supportsthe growth of respiratory epithelial cells:possibilities in tracheal tissueengineering[J].J Biomed Mater Res,2001,56:120127.
    54. Le Visage C,D unham B,F lint P,e t a1.C oculture of mesenchymal stem cellsand respiratory epithelial cells to engineer a human composite respiratorymucosa[J].Tissue Eng,2004,10:14261435.
    55. Coraux C,NawrockiRabyB,Hinnrasky J,et a1.Embryonic stem celsgenerate airway epithelial tissue[J].Am J Respir Cell Mol Biol,2005,32:8792.
    56. Ziegelaar BW,Aiqner J,Staudenmaier R,et a1.The characterization ofhuman respiratory epithelial cells cultured on resorbable scaffolds:first stepstowards a tissue engineered tracheal replacement[J].B iomaterials,2 002,2 3:14251438.
    57. Sakata J,V acanti CA,S chloo B,e t a1.T racheal composites tissue engineeredfrom chondrocytes,tracheal epithelial cells,and synthetic degradablescaffolding[J].Transplant Proc,1994,26:33093310.
    58. Dirksen ER,Felix JA,Sanderson MJ.Preparation of explant and organcultures and single cells from airway epithelium[J].Methods CellBiol.1985,47:6574.
    59. Yamaya M,Finkbeiner WE,Chun SY,et a1.Differentisted structure andfunction of cultures from human tracheal epithelium[J].Am J Physiol, 1992;262:L713L724.
    60. Daniels JT, Kearney JN, Lngham E. Human keratinocyte isolation and cellculture :a survey of current practices in the UK[J] . Burns,1996,22(1):3539.
    61. Usui S,S himizu T,K ishioka C,e t al. Secretory cell differentiation and mucussecretion in cultures of human nasal epithelial cells:use of a monoclonalantibody to study human nasal mucin[J].Ann Otol Rhinol Larygol,2000,109:271277.
    62. Bohm F,Wenzel M,Gerhardt HJ.Cultivation of ethmoidal sinus ciliatedepithelia[J].Acta Otolaryngol, 1989?108(12):136141.
    63. de Jong PM,v an Sterkenburg MA,H esseling SC,et al. Ciliogenesis in humanbronchial epithelial cells cultured at the airliquidinterface[J].Am J RespirCel Mol Biol,1994;10:271277.
    64. Dirksen ER,Felix JA,Sanderson MJ.Preparation of explant and organcultures and single cells from airway epithelium[J].Methods CellBiol,1985,47:6574.
    65. Luo Zhang.Michael J.Sanderson.Oscillations in ciliary beat frequency andintracellular calcium concentration in rabbit tracheal epithelial cells inducedby ATP[J].J Physio1,2003,546:733749.
    66. Schumann BL,Cody TE,Miller ML,et a1.Isolation characterization andlongtermculture of fetal bovine tracheal epithelial cells[J].In Vitro CellularDev Bio1,1988,24:211216.
    67.王旭,王甲汉,吴军等.复合皮的制作与临床应用[J].中国修复重建外科杂志,1997,11(2):100-102.
    68. Risbud M, Endres M, Ringe J, Bhonde R, Sittinger M. Biocompatiblehydrogel supports the growth of respiratory epithelial cells: possibilities intracheal tissue engineering [J]. J Biomed Mater Res,2001,56(1):120127.
    69. Bucheler M, Scheffler B, von Foerster U, et al.Growth of human respiratoryepithelium on collagen foil [J]. Laryngorhinootologie,2000,79(3):160164.
    70. Sanderson MJ,Sleigh MA.Ciliary activity of cultured rabbit trachealEpithelium:beat pattern and metachrony[J].J Cell Sci,1981;47:331347.
    71. BaezaSquibanA,Romet S,Moreau A,et al. Progress in outgrowth culturefrom rabbit tracheal explants:balance between proliferation and maintenanceof differentiated state in epithelial cells[J].In Vitro Ce11ular Dev Biol,1991;27A(6):453460.
    72. Moller PC,Partridge LR,Robert Cox R,et a1.An in vitro system for thestudy of tracheal epithelial cells[J].Tissue and Cel1,1987,19:783791.
    73. Gray TE,T homassen DG,M ass MJ,e t a1.Q uantitation of cell proliferation,colony formation,and carcinogen induced cytotoxicity of rat trachealepithelial cells grown in culture on 3T3 feeder layers[J].In Vitro,1983,19:559570.
    74. Wu R,Smith D.C ontinuous multiplication of rabbit tracheal epithelial cells ina defined,h ormonesupplementedmedium[J].In Vitro,1982,18:8 00811.
    75. Lechner JF,McClendon IA,LaVeck MA,et a1.Differential control byplatelet factors of squamous differentiation in normal and malignant humanbronchial epithelial cells[J].Cancer Res,1983,43:59155921.
    76. Wu R,Nolan E,Turner C.Expression of tracheal differentiated functions inserumfreehormonesupplementedmedium[J].J Cell Physio1,1985,125:167181.
    77. Neugebauer P, Endepols H, Mickenhagen A, et al. Ciliogenesis in submersionand suspension cultures of human nasal epithelial cells [J]. Eur ArchOtorhinolaryngo1,2003,260(6):325330.
    78. Hanamure Y, Deguchi K, Ohyama M. Ciliogenesis and mucus synthesis inculture human respiratory epithelial cells[J]. Ann Otol RhinolLaryngol,1994,103(11):889895.
    79. Chevillard M, Hinnrasky J, Pierrot D, et al.Differentiation of human surfaceupper airway epithelial cells in primary culture on a floating collagen gel [J].Epithelial Cell Biol,1993, 2(1):1725.
    80. Bridges MA, Walker DC, Harris RA, et al.Cultured human nasal epithelialmulticellular spheroids: polar cystlikemodel tissues [J].Biochem CellBiol,1991,69(23):102108.
    81. Pedersen PS, Frederiksen O, HolsteinRathlouNH, et al. Ion transport inepithelial spheroids derived from human airway cells [J]. Am J Physiol,1999,276(1 Pt 1):L75L80.
    82. Hanamure Y,Degughi K,Ohyama M.Ciliogenesis and mucus synthesis inculture human respiratory epithelial cells[J].Ann Otol Rhinollaryngol,1994,103:889895.
    83. Chevillard M,H innrasky J,P ierrot D,e t a1.Differentiation of human surfaceupper airway epithelial cells in primary culture on a floating collagenge1[J].Epithelial Cell Biol,1993,2:1725.
    84. Whitcutt MJ,Adlder K,Wu R,et a1.A bipasic chamber system formaintaining polarity of differentiation of cultured respiratory tract epithelialcells[J].In Vitro Cellular Dev Bio1,1988,24:420427.
    85. Usui S,S himizu T,K ishioka C,e t al. Secretory cell differentiation and mucussecretion in cultures of human nasal epithelial cells:use of a monoclonalantibody to study human nasal mucin[J].Ann Otol Rhinol Larygol,2000,109:271277.
    86.黄宁,唐彬,潘小玲,等.人气管上皮细胞气液界面无血清培养[J].基础医学与临床,2000,20(2):8992.
    87.张龙芳、崔鹏程,陈文弦等.兔气管纤毛上皮细胞原代培养的生物学特性及其体外生长规律[J]。中国临床康复,2006,10(1):3436.
    88. Lindberg K, Badylak SF. Porcine small intestinal submucosa (SIS):Abioscaffold supporting in vitro primary human epidermal cell differentiationand synthesis of basement membrane proteins[J]. Burns, 2001,27(3):254266.
    89. Cowles EA,Brailey LL,G ronowicz GA.In tegrinmediatedsignaling regulatesAP1transcription factors and proliferation in osteoblasts[J]. J Biomed MaterRes,2000.52(4):725737.
    90. Stanford CM,S olursh M,K eller JC. Significant role of adhesion properties ofprimary osteoblastlikecells in early adhesion events for chondroitin sulfateand dermatan sulfate surface molecules[J]. J Biomed Mater Res,1 999;4 7(3):345352.
    91. Talts U,Kuhn U,Roos G,et al. Modulation of extracellular matrixadhesiveness by neurocan and identification of its molecular basis[J]. ExpCell Res,2000,259(2):378388.
    92. VoytikHarbinSL , Brightman AO , Kraine MR , et al. Identification ofextractable growth factors from small intestinal submucosa[J].J CellBiochem,1997,67(4):478491.
    93. Hurst RE,Bonner RB. Mapping of the distribution of significant proteins andproteoglycans in small intestinal submucosa by fluorescence microscopy[J]. JBiomater Sci Polym Ed,2001,12(11):12671279.
    94. McDevitt CA,Wildey GM,Cutrone RM. Transforming growth factorbeta1in a sterilized tissue derived from the pig small intestine submucosa[J]. JBiomed Mater Res A, 2003,67(2):637640.
    95. Allman AJ,McPherson TB,Badylak SF,et al. Xenogeneic extracellularmatrix grafts elicit a TH2restrictedimmune response[J].Transplantation,2001,71(11):16311640
    96. Palmer EM,Beilfuss BA,Nagai T,et al. Human helper T cell activation anddifferentiation is suppressed by porcine small intestinal submucosa[J].TissueEng,2002,8(5):893900.
    97. Zhai Y,Ghobrial RM,Rusuttil RW,et al. Th1 and Th2 cytokines in organtransplantation: paradigm lost [J]? Crit Rev Immunol,1999,19(2):155172.
    98. Badylak SF,Kropp B,McPherson T,et al. Small intestional submucosa: arapidly resorbed bioscaffold for augmentation cystoplasty in a dog model[J].Tissue Eng,1998,4(4):379387.
    99. Sarikaya A,Record R,Wu CC,et al. Antimicrobial activity associated withextracellular matrices[J]. Tissue Eng,2002,8(1):6371
    100. Sacks MS,Gloeckner DC. Quantification of the fiber architecture andbiaxial mechanical behavior of porcine intestinal submucosa[J]. J BiomedMater Res,1999,46(1):110.
    101. de la Fuente SG,Gottfried MR,Lawson DC,et a1.Evaluation ofporcinederivedsmall intestine submucosa as a biodegradable graft forgastrointestinal healing[J].J Gastrointest Surg,2003,7(1):96l01.
    102. Kini S,G agner M,C sepel J,et a1.A biodegradable membrane from porcineintestinal submucosa to reinforce the gastrojejunostomy in laparoscopicRouxenYgastric bypass:preliminary report[J].Obes Surg,200l,11:469473.
    103. Badylak S,Kokini K,Tullius B,et a1.Strength over time of a resorbablebioscaffold for body wall repair in a dog mode1[J].J Surg Res,2 00l,9 9(2):282287.
    104. Badylak S,Meurling S,Chen M,et a1.Resorbable bioscaffold foresophageal repair in a dog mode1[J].J Pediatr Surg,2 000,3 5(7):1 097ll03.
    105. Chen MK,Badylak SF.Small bowel tissue engineering using small intestinalsubmucosa as a scaffold[J].J Surg Res,200l,99(2):352358.
    106. Badylak SF,Lantz GC,Coffey A,et a1.Small intestinal submucosa as alarge diameter vascular graft in the dog[J].J Surg Res,1 989,4 7(1):7 484.
    107. RobotinJohnsonMC,Swanson PE,Johnson DC,et a1.An experimentalmodel of small intestinal submucosa as a growing vascular graft[J].J ThoracCardiovasc Surg,1998,116(5):805811.
    108. Kropp BP,Rippy MK,Badylak SF,et al. Regenerative urinary bladderaugmentation using small intestinal submucosa: urodynamic andhistopathologic assessment in longtermcanine bladder augmentations[J]. JUro1,1996,155(6):20982104.
    109. Xie H,Shaffer BS,Wadia Y,et al. Use of reconstructed small intestinesubmucosa for urinary tract replacement[J]. ASAIO J,2 000,4 6(3):2 68272.
    110. Kropp BP,Ludlow JK,Spicer K,et al. Rabbit urethral regeneration usingsmall intestinal submucosa onlay grafts[J]. Urology,1998,52(1):138142
    111. Suckow MA,VoytikHarbinSL,Terril LA,et al. Enhanced boneregeneration using porcine small intestinal submucosa[J]. J Invest Surg,1999,12(5):277287
    112. Cook JL,T omlinson JL,A rnoczky SP,et al.K inetic study of the replacementof porcine small intestinal submucosa grafts and the regeneration ofmeniscalliketissue in large avascular meniscal defects in dogs[J].TissueEng,2001,7(3):321334.
    113. Gastel JA,Muirhead WR,Lifrak JT,et al.Meniscal tissue regenerationusing a collagenous biomaterial derived from porcine small intestinesubmucosa[J]. Arthroscopy,2001,17(2):151159.
    114. Badylak SF,Tullius R,Kokini K,et a1.The use of xenogeneic smallintestinal submucosa as a biomaterial for Achilles tendon repair in a dogmodel[J].J Biomed Mater Res,1995,29(8):977985.
    115. Cobb MA,Badylak SF,Janas W,et al.Porcine small intestinal submucosa as adural substitute[J].Surg Neurol,1999,51(1):99104.
    116. Badylak SF,Kokini K,Tullius B,et al.Strength over time of a resorbablebioscaffold for body wall repair in a dog model[J].J Surg Res,2001,99(2):282~287.
    117. Featherstone HJ, Sansom J, Heinrich CL. The use of porcine Small intestinalsubmucosa in ten cases of feline corneal disease[J]. VetOphthalmol,2001,4(2):147153.
    118. Franklin ME Jr, Gonzalez JJ Jr, Michaelson RP, et al. Preliminary experiencewith new bioactive prosthetic material for repair of hernias in infectedfields[J]. Hernia,2002,6(4):171174.
    119. Gabouev AI, Schultheiss D, Mertsching H et al.In vitro construction ofurinary bladder wall using porcine primary cells reseeded on acellularizedbladder matrix and small intestinal submucosa[J]. Int J Artif Organs,2003,26(10):935942.
    120. Lu SH,C annon TW,C hermanski C,e t al. Musclederivedstem cells seededinto acellular scaffolds develop calciumdependentcontractile activity that ismodulated by nicotinic receptors[J]. Urology,2003.61(6):12851291
    121. Lu SH,Sacks MS,Chung SY,et al. Biaxial mechanical properties ofmusclederivedcell seeded small intestinal submucosa for bladder wallreconstitution[J]. Biomaterials,2005,26(4):443449
    122. Badylak SF,Record R,Lindberg K,et al. Small intestinal submucosa: asubstrate for in vitro cell growth[J]. J Biomater Sci Polym Ed,1998,9(8):863878.
    123. Hodde J,Record R,Tullius R,et al. Fibronectin peptides mediate HMECadhesion to porcinederivedextracellular matrix[J]. Biomaterials,2002,23(8):18411848.
    124. Woods AM,Rodenberg EJ,Hiles MC,et al. Improved biocompatibility ofsmall intestinal submucosa (SIS) following conditioning by humanendothelial cells[J]. Biomaterials,2004,25(3):515525.
    125. Opitz F,S chenkeLaylandK,C ohnert TU,et al. Tissue engineering of aortictissue: dire consequence of suboptimal elastic fiber synthesis in vivo[J].Cardiovasc Res,2004,63(4):719730.
    126. Beatty MW,Ojha AK,Cook JL,et a1.Small intestinal submucosa versussaltextractedpolyglycolic acidpolyLlacticacid: a comparison ofneocartilage formed in two scaffold materials[J]. Tissue eng,2002,8(6):955968.
    127. Hadlock TA,Sundback CA,Hunter DA,et al. A new artificial nerve graftcontaining rolled Schwann cell monolayers[J]. Microsurgery,2001,21(3):96101.
    128. Woods EJ,Walsh CM,Sidner RA,et al. Improved in vitro function of isletsusing small intestinal submucosa[J]. Transplant Proc,2 004,36(4):l1 75l177.
    129.王奎吉,张罗,韩德民等.呼吸道纤毛上皮细胞的组织块法培养[J].中国耳鼻咽喉头颈外科杂志,2006,12:833837.
    130. Badylak SF.The extracellular matrix as a scaffold for tissuereconstruction[J].Semin Cell Dev Biol,2002,l3(5):377383.
    131. Lai JY, Chang PY, Lin JN. Body wall repair using small intestinalsubmucosa seeded with cells [J]. J Pediatr Surg, 2003,38(12):17521755.
    132. Rabah DM, Spiess PE, Begin LR,et al.Tissue reaction of the rabbit urinarybladder to tensionfreevaginal tape and porcine small intestinalsubmucosa[J]. BJU Int.2002,90(6):601606.
    133. Roeder RA, Lantz GC, Geddes LA. Mechanical remodeling ofsmallintestinesubmucosa smalldiametervascular graftsapreliminaryreport [J]. Biomed Instrum Technol,2001,35(2):110120.
    134. De Ugarte DA, Puapong D, Roostaeian J, et al. Surgisis patch tracheoplastyin a rodent model for tracheal stenosis[J]. J Surg Res,2003, 112(1):6569.
    135.宋晓红,张罗,韩德民,鼠尾胶原为底物的人鼻腔纤毛上皮细胞培养模式的建立[J].中国耳鼻咽喉头颈外科,2007,2:107-111.
    136. Yukio Nomoto,Teruhisa Suzuki,Yasuhiro Tada.Tissue engineering forregeneration of the tracheal epithelium[J].Ann Otol Rhinol Laryngol,2006,115(7):501506.
    137. Langer R, Vacanti JP.Tissue engineering[J].Science ,1993,260:920926.
    138. Kojima K, Bonassar LJ, Vacanti CA et al. A composite tissueengineeredtrachea using sheep nasal chondrocyte and epithelial cells[J]. FASEB J.2003,17(8):823828.
    139.张开刚,曾炳芳,张长青.小肠粘膜下层用作组织工程支架材料研究进展[J].国外医学骨科学分册,2004,25(4):200-202.
    140. Schultheiss D,Gabouev AI,Cebotari S,et al.Biological vascularized matrixfor bladder tissue engineering: matrix preparation, reseeding technique andshorttermimplantation in a porcine model[J].J Urol,2005,173(1):276280.
    141. Kojima K,Bonassar LJ,Roy AK,et a1.Autologous tissueengineeredtrachea with sheep nasal chondrocytes[J].J Thorac CardiovascSurg,2002 ,123(6):11771184.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700