基因重组大连蛇岛蝮蛇类凝血酶的制备与性质表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛇毒类凝血酶属于纤维蛋白原裂解酶,是一种丝氨酸蛋白酶。它们降解纤维蛋白原但不激活凝血因子FactorⅩⅢ,形成的纤维蛋白块能被后继的血液纤溶系统清除。由于它们在血浆中能够降低纤维蛋白原,可以作为抗凝剂使用。从珍稀树栖毒蛇——大连蛇岛蝮蛇(Gloydius shedaoensis)毒液中分离制备的蛇毒类凝血酶制品已经在血栓病临床治疗应用了很多年。可是鉴于国家法律法规禁止捕蛇,天然酶生产面临严峻的挑战,因而基因工程方法是解决这一困境的最佳选择之一。本论文内容主要就获得可溶性、活性重组大连蛇岛蝮蛇类凝血酶的制备,尤其是其纤维蛋白原裂解活性开展研究工作。
     (一)在大肠杆菌体系中可溶、活性大连蛇岛蝮蛇类凝血酶的克隆与表达
     使用Wilkinson-Harrison蛋白质可溶性概率模型,对带有不同商业化融合标签的重组大连蛇岛蝮蛇类凝血酶的可溶性趋势进行预测,结果显示在N端融合有NusA、GST和TrxA的重组大连蛇岛蝮蛇类凝血酶具有更高的可溶性。因而选择NusA、GST和TrxA三种标签用于促进大连蛇岛蝮蛇类凝血酶在大肠杆菌中的可溶性表达。相应地,构建了pQYNusA-glo-a、pQYGST-Glo-a和pQYTrxA-Glo-a三种表达质粒,转化获得了相应的大肠杆菌BL21-Gold(DE3)重组菌株。SDS-PAGE分析和Western blotting检测确定pQYNusA-Glo-a的可溶性表达状况最佳。
     (二)重组蛇毒类凝血酶的分离纯化
     1、首次使用人工核酸酶R5对重组大连蛇岛蝮蛇类凝血酶样品预处理:在400 nm紫外光激发条件下,1 mM R5可以高效去除重组大连蛇岛蝮蛇类凝血酶样品中的核酸杂质,而对重组大连蛇岛蝮蛇类凝血酶的活力没有造成损伤。由于合成成本低,人工核酸酶R5在蛋白质/酶的生产中具有很好的应用前景。
     2、采用四步柱层析方法获得高纯度重组大连蛇岛蝮蛇类凝血酶:柱层析依次包括Phenyl Sepharose FF疏水层析、Q Sepharose HP阴离子交换层析、Mono Q高分辨阴离子交换层析和Superdex 200分子排阻层析,最终获得重组蛇岛蝮蛇类凝血酶在SDS-PAGE胶上呈现单一条带,产率为0.1 mg/L。其表观分子量90 kDa,比活力为506 U/mg。
     (三)重组大连蛇岛蝮蛇类凝血酶的生化性质表征:
     1、重组大连蛇岛蝮蛇类凝血酶酶学性质:具有纤维蛋白原凝结活性、纤维蛋白原裂解活性以及酰胺水解活性。以酰胺水解活性底物BApNA为模式底物,该酶催化活性最适温度为40℃,最适pH为8.0。重组酶对纤维蛋白原裂解呈现剂量依赖和时间依赖,其裂解方式为:优先裂解Aα-链,然后裂解Bβ-链,但不裂解γ-链。
     2、抑制剂对酰胺水解酶活力的影响:研究了多种丝氨酸蛋白酶抑制剂、螯合剂、还原剂及凝血酶抑制剂对重组大连蛇岛蝮蛇类凝血酶的影响。丝氨酸蛋白酶抑制剂PMSF(1 mM)和TPCK(1 mM)分别抑制了重组酶100%和77%的酰胺水解活力,表明它属于丝氨酸蛋白酶家族。抑制剂苯脒、3-氨基苯脒、4-氨基苯脒和咪唑只抑制了<15%酶活力。EDTA不影响酰胺水解活力,表明大连蛇岛蝮蛇类凝血酶不是金属依赖型蛋白水解酶。还原剂二硫苏糖醇和β-巯基乙醇对酶活力没有影响,表明重组酶具有高度稳定性。凝血酶天然抑制剂如肝素等,不影响重组酶的酰胺水解活力,表明重组大连蛇岛蝮蛇类凝血酶与凝血酶在结构上存在差异。
     3、抑制剂对纤维蛋白原裂解酶活力的影响:通过SDS-PAGE的方法,研究了丝氨酸蛋白酶抑制剂、螯合剂、还原剂及凝血酶抑制剂对重组酶纤维蛋白原裂解活性的影响。丝氨酸蛋白酶抑制剂中只有PMSF具有抑制作用,表明Ser182既是酰胺水解活性又是纤维蛋白原裂解活性的关键氨基酸催化残基。同源模建预测表明PMSF与Ser182之间形成共价键阻碍了底物分子的趋近。可是TPCK只影响了酰胺水解活力,却对纤维蛋白原裂解活力没有影响。EDTA阻碍了重组酶的纤维蛋白原裂解活力,提示金属离子尤其是过渡金属离子在纤维蛋白原裂解过程发挥了作用。EDTA的抑制作用可能与EDTA螯合去除痕量金属离子从而引起底物纤维蛋白原的构象改变有关。还原剂二硫苏糖醇和β-巯基乙醇不抑制酰胺水解活力,表明重组大连蛇岛蝮蛇类凝血酶的高稳定性。肝素和水蛭素不影响纤维蛋白原裂解活力,提示重组大连蛇岛蝮蛇类凝血酶可与肝素或水蛭素联合应用于肝素相关血小板减少症和心肺血栓疾病的临床治疗。
     4、金属离子对酰胺水解活性和纤维蛋白原裂解活性的影响:1)1 mM过渡金属离子对重组大连蛇岛蝮蛇类凝血酶酰胺水解活力产生抑制的强弱顺序为:Fe~(2+)>Cu~(2+)≈Zn~(2+)>Hg~(2+)>>Ni~(2+),EDTA的引入可以恢复>80%被过渡金属离子抑制的重组大连蛇岛蝮蛇类凝血酶酰胺水解活力:其他金属离子Co~(2+)和Mn~(2+)分别抑制了重组酶酰胺水解活力的38%和25%;2)过渡金属离子抑制重组酶的纤维蛋白原裂解活力的强弱顺序为:Cu~(2+)≈Ni~(2+)>Zn~(2+)>Co~(2+);其他二价金属离子如Ca~(2+)和Mg~(2+)对两种活力都没有影响。根据Irving-Williams晶体场理论,结合同源模建获得的大连蛇岛蝮蛇类凝血酶模型,抑制效应的产生可能和Zn~(2+)与酶催化中心Ser182侧链上O原子、His43咪唑环上N原子以及两分子H_2O中O原子之间形成四对配位键有关。
     综上,本研究通过在目标蛋白N端融合NusA标签的表达策略,获得了重组蛇岛蝮蛇类凝血酶可溶性、活性表达;人工核酸酶R5可以高效地去除重组大连蛇岛蝮蛇类凝血酶粗样品中的核酸杂质,并对重组酶活力没有损伤,表明人工核酸酶R5在生化工程领域中具有很好的应用潜力;利用四步柱层析纯化获得了高纯度的可溶性重组大连蛇岛蝮蛇类凝血酶,表现出高的酰胺水解活性和纤维蛋白原裂解活性;系统研究了丝氨酸蛋白酶抑制剂、螯合剂、还原剂、凝血酶抑制剂及二价金属离子对重组大连蛇岛蝮蛇类凝血酶活力的影响,结合同源模建手段揭示抑制效应的作用机制。本研究可以为蛇毒类凝血酶的重组制备和临床应用提供依据。
Snake venom thrombin-like enzymes belong to the fibrinogenolytic enzyme family and are serine proteases. They do not activate factor VIII and possess the fibrinogenolytic ability to hydrolyze fibrinogen into non-crossing linked fibrin, which are then eliminated by succeeding blood fibrinolytic system. They are applied as anti-coagulates due to their "defibrinogenation" in the blood. Snake venom thrombin-like enzyme preparations, gloshedobin, from the venom of the rare arboreal pit-viper, Gloydius shedaoensis, has been applied in clinic therapy for many years. However, upon the recent domestic decree of forbidding snake capture, production of these enzymes from snake venoms faces big challenge. Therefore, genetic engineering is one of the best alternatives to solve this problem. In this work, the preparation of recombinant gloshedobin in soluble and active form, and its biochemical properties in particular fibrinogenolytic activity was investigated.
     Firstly, cloning and expression of soluble and active gloshedobin in E. coli was investigated. The solubility tendency of recombinant gloshedobin with various commercial fusion proteins was predicted using Wilkinson-Harrison protein solubility predication model, which showed that recombinant gloshedobin fused with NusA, TrxA or GST tags at its N terminus had higher solubility. NusA, TrxA and GST were thus chosen for facilitating the expression of soluble gloshedobin in Escherichia coli. Accordingly, three expression vectors, pQYNusA-Glo-a, pQYGST-Glo-a and pQYTrxA-Glo-a were constructed and then transformed into Escherichia coli BL21-Gold (DE3). pQYNusA-glo-a was determined to be the best by both SDS-PAGE analysis and Western blotting assay.
     Secondly, separation and purification of the recombinant gloshedobin was performed. (1) Removal of nucleic acids contaminants from crude recombinant gloshedobin samples by artificial nuclease R5 was investigated: Under 400nm UV-light, 1 mM of R5 could efficiently eliminate nucleic acids contaminants without impairing the activity of recombinant gloshedobin. Since the cost of synthesis is low, artificial nuclease R5 shows application potentials in the production of protein/enzymes; (2) Four-step column chromatographic purification of the recombinant gloshedobin with high purity: The column chromatographies included hydrophobic interaction chromatography on Phenyl Sepharose FF, ion exchange chromatography on Q Sepharose HP and Mono Q, and size exclusion chromatography on Superdex 200 were used. And the purified recombinant gloshedobin with the activity yield of 0.1mg/L were obtained, which appeared as one single band on SDS-PAGE. Its apparent molecular weight was determined to be 90 kDa and its specific amidolytic activity was 506 U/mg.
     Thirdly, biochemical characterization of recombinant gloshedobin was investigated: (1) Enzymatic properties: The recombinant gloshedobin exhibited fibrinogen clotting, fibrinogenolytic and amidolytic activities. By using N-a-benzoyl-DL-arginine p-nitroanilide (BApNA) as model substrate, its optimum temperature and pH for amidolytic activity were 40℃and pH 8.0, respectively. The recombinant gloshedobin preferentially cleaved bovine fibrinogen's Aα-chain, then Bβ-chain, but did not cleaveγ-chain at all, which was dose-dependent and time-dependent. (2) Effects of serine proteases inhibitors, reducing agents, chelator and thrombin inhibitors, on the amidolytic activity of recombinant gloshedobin were determined. Serine protease inhibitors PMSF (1 mM) and TPCK (1 mM) inhibited the amidolytic activity of recombinant gloshedobin by 100 % and 77 %, respectively, indicating recombinant gloshedobin belongs to serine proteases family. Inhibitors including benzamidine, 3-aminobenzamidine, 4-aminobenzamidine and imidazole inhibited <15 % amidolytic activity of recombinant gloshedobin. EDTA did not affect recombinant gloshedobin, suggesting gloshedobin is not metalloproteinase. Reducing agents dithiothreitol andβ-mercaptoethanol did not affect recombinant gloshedobin, suggesting recombinant gloshedobin is highly stable. Thrombin natural inhibitors such as heparin also did not affect this enzyme's amidolytic activity, suggesting recombinant gloshedobin differs from thrombin in structure; (3) Effects of serine proteases inhibitors, reducing agents, chelator and thrombin inhibitors on the fibrinogenolytic activity of recombinant gloshedobin were determined by using SDS-PAGE analysis: none of the serine protease inhibitors except PMSF had any effect on the fibrinogenolytic activity of recombinant gloshedobin, suggesting Ser182 is a key amino acid catalytic residue for both amidolytic and fibrinogenolytic activities. The convalent bond formed between PMSF and Ser182 was predicted to hamper the approach of substrates according to homology modeling. However, TPCK did not affect the fibrinogenolytic activity but affect amidolytic activity. EDTA hampered the activity, suggesting that metal ion(s), in particular transition metal ions, played a role in the fibrinogenolytic process. The inhibitory effect of EDTA might relate to the removal of divalent metal ions by EDTA causing the configuration change of substrate fibrinogen. Reducing agents dithiothreitol andβ-mercaptoethanol did not affect recombinant gloshedobin, suggesting recombinant gloshedobin is highly stable. The fact that heparin as well as hirudin did not show any effect on the fibrinogenolytic activity of recombinant gloshedobin allowed the combined application of recombinant gloshedobin with heparin or hirudin in the clinical treatment of heparin-associated thrombocytopenia and cardiopulmonary diseases; (4) Effects of metal ions on recombinant gloshedobin were determined by amidolytic activity and SDS-PAGE analysis: Gloshedobin's amidolytic activity toward BApNA was greatly inhibited by 1 mM of transition metal ions in the order: Fe~(2+)>Cu~(2+)≈Zn~(2+)>Hg~(2+)>>Ni~(2+). The addition of EDTA can reverse this inhibitory effect to >80 % of the original amidolytic activity which could be inhibited by transition metal ions. Other ions such as Co~(2+) and Mn~(2+) inhibited the amidolytic activity of recombinant gloshedobin by 38 % and 25 %, respectively. Besides, its fibrinogenolytic activity was inhibited by divalent transition metal ions in the order: Cu~(2+)≈Ni~(2+)>Zn~(2+)>Co~(2+). Other ions such as Ca~(2+) and Mg~(2+) have almost no effect on either activity. According to the Irving-Williams crystal field theory and gloshedobin 3-D structure model generated by homology modeling, the inhibitory effects by metal ions like Zn~(2+) might be due to four intermolecular coordination bonds formed between Zn~(2+) and oxygen atom in the side chain of Ser182, Zn~(2+) and nitrogen atom in the imidazole ring of His43, Zn~(2+) and oxygen atoms in two water molecules.
     In conclusion, the production of recombinant gloshedobin in a soluble and active form was achieved by the strategy of fusing NusA tag at its N-terminal. Artificial nuclease R5 proved to be highly efficient in the removal of nucleic acids contaminants from crude recombinant gloshedobin samples and non-impairment on the recombinant gloshedobin's activity, showing its application potentials in the field of biochemical engineering. The recombinant gloshedobin with high purity was obtained by four-step column chromatographic purification, which exhibited high amidolytic and fibrinogenolytic activities. The effects of serine protease inhibitors, reducing agents, chelator, thrombin inhibitors and divalent metal ions on recombinant gloshedobin were systematically investigated and the inhibitory mechanisms were also proposed using homology modeling techniques. The data obtained in this study might provide essential assistances in the preparation and clinic application of recombinant thrombin-like enzyme.
引文
[1] Doolittle R F, Spraggon G, Everse S J. Three-dimensional structural studies on fragments of fibrinogenand fibrin. Current Opinions in Structural Biology, 1998,8:792-798.
    
    [2] Herrick S, Blanc-Brude O, Gray A et al. Fibrinogen. International Journal of Biochemistry and CellBiology, 1999; 31:741-746.
    
    [3] Mosesson M W. Fibrinogen and fibrin structure and functions. Journal of Thrombosis and Haemostasis,2005,3:1894-1904.
    
    [4] Scott E A, Elbert D L. Mass spectrometric mapping of fibrinogen conformations at poly(ethyleneterephthalate) interfaces. Biomaterials 2007,28:3904-3917.
    
    [5] Simsek I, de Mazancourt P, Horellou M H et al. Afibrinogenemia resulting from homozygous nonsensemutation in A alpha chain gene associated with multiple thrombotic episodes. Blood Coagulation andFibrinolysis, 2008,19(3):247-253.
    
    [6] Adams RA, Passino M, Morgelin M et al. Fibrin mechanism and functions in nervous system pathology.Molecular Interview, 2004,4:163-176.
    
    [7] Kamath S, Lip GY. Fibrinogen: Biochemistry, epidemiology and determinants. QJM: An InternationalJournal of Medicine, 2003,96:711-729.
    
    [8] Lowe G D, Rumley A, Mackie I J. Plasma fibrinogen. Annual of Clinical Biochemistry, 2004,41:430-440.
    
    [9] Cheuk, B L Y, Cheung G C Y, Lau S S F et al. Plasma fibrinogen level: an independent risk factor forlong-term survival in Chinese patients with peripheral artery disease? World Journal of Surgery, 2005,29:1263-1267.
    
    [10] Castaman G, Giacomelli S H, Duga S et al. Congenital hypofibrinogenemia associated with novelheterozygous fibrinogen Bβ and γ chain mutations. Haemophilia, 2008,14:630-633.
    
    [11] Mackman N, Tilley R E, Key N S. Role of the extrinsic pathway of blood coagulation in hemostasis and thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology. 2007,27:1687-1693.
    
    [12] Sakakibara H, Fujii C, Naito M. Plasma fibrinogen and its association with cardiovascular risk factors inapparently healthy Japanese subjects. Heart Vessels, 2004,19:144-148.
    
    [13] Danes A F, Cuenca L G, Bueno S R et al. Efficacy and tolerability of human fibrinogen concentrateadministration to patients with acquired fibrinogen deficiency and active or in high-risk severe bleeding.Vox Sanguinis, 2008,94:221-226.
    
    [14] Tracy R P, Arnold A M, Ettinger W et al. The relationship of fibrinogen and factors VII and VIII toincident cardiovascular disease and death in the elderly: results from the cardiovascular health study.Arteriosclerosis, Thrombosis, and Vascular Biology, 1999,19:1776-1783.
    
    [15] Esmon C T, Owen W G, Jackson C M. The conversion of prothrombin to thrombin. V. The activation ofprothrombin by Factor Xa in the presence of phospholipids. Journal of Biological Chemistry, 1974,249(24):7798-7807.
    
    [16] Maroun R C. Molecular basis for the partition of the essential functions of thrombin among snakevenom serine proteinases. Haemostasis, 2001, 31:247-256.
    
    [17] Matsui T, Fujimura Y, Titani K. Snake venom proteases affecting hemostasis and thrombosis.Biochimica et Biophysica Acta, 2000,1477(1-2): 146-156.
    
    [18] Flick M J, Du X L, Witte D P et al. Leukocyte engagement of fibrin(ogen) via the integrin receptor αMβ2/Mac21 is critical for host inflammatory response in vivo. Journal of Clinical Investigation, 2004, 113:1596-1606.
    [19] Altieri D C. Regulation of leukocyte-endothelium interaction by fibrinogen. Thrombosis and Haemostasis, 1999, 82:781-786.
    [20] Suehiro K, Gailit J, Plow E F. Fibrinogen is a ligand for integrin α5β1 on endothelial cells. Journal of Biological Chemistry, 1997, 272:5360-5366.
    [21] Adams R A, Bauer J, Flick M J et al. The fibrin-derived γ377-395 peptide inhibitsmicroglia activation and suppresses relapsing paralysis in central nervous system autoimmune disease. Journal of Experimental Medicine, 2007, 204:571-582.
    [22] Tang L P, Ugarova T P, Plow E F et al. Molecular determinants of acute inflammatory responses to biomaterials. Journal of Clinical Investigation, 1996,97:1329-1334.
    [23] Busso N, Peclat V, Van Ness K et al. Exacerbation of antigen induced arthritis in urokinase deficient mice. Journal of Clinical Investigation, 1998, 102:41-50.
    [24] Lluis F, Roma J, Suelves M et al. Urokinase-dependent plasminogen activation is required for efficient skeletal muscle regeneration in vivo. Blood, 2001, 97:1703-1711.
    [25] Bugge T H, Kombrinck K W, Flick M J et al. Loss of fibrinogen rescues mice from the pleiotropic effects of plasminogen deficiency. Cell, 1996, 87:709-719.
    [26] Pluskota E, D'Souza S E. Fibrinogen interactions with ICAM-1 (CD54) regulate endothelial cell survival. European Journal of Biochemistry, 2000,267:4693-4704.
    [27] Martinez J, Ferber A, Bach T L et al. Interaction of fibrin with VE cadherin. Annuals of the New York Acadamy of Sciences, 2001, 936:386-405.
    [28] Engvall E, Ruoslahti E, Miller E J. Affinity of fibronectin to collagens of different genetic types and to fibrinogen. Journal of Experimental Medicine, 1978,147:1584-1595.
    [29] Sahni A, Spom L A, Francis C W. Potentiation of endothelial cell proliferation by fibrin(ogen)-bound fibroblast growth factor-2. Journal of Biological Chemistry, 1999,274:14936-14941.
    [30] Claudio L, Raine C S, Brosnan C F. Evidence of persistent blood brain barrier abnormalities in chronic progressive multiple sclerosis. Acta Neuropathology, 1995, 90:228-238.
    [31] Akassoglou K, Adams R A, Bauer J et al. Fibrin depletion decreases inflammation and delays the onset of demyelination in a tumor necrosis factor transgenic mouse model for multip le sclerosis. Proceedings of National Academy of Sciences of the United States of America, 2004, 101:6698-6703.
    [32] Kirk J, Plumb J, Mirakhur M et al. Tight junctional abnormality in multiple sclerosiswhitematter affects all calibres of vessel and is associated with blood-brain barrier leakage and active demyelination. Journal of Pathology, 2003,201:319-327.
    [33] Paul J, Strickland S, Melchor J P. Fibrin deposition accelerates neurovascular damage and neuroinflammation in mouse models of Alzheimer's disease. Journal of Experimental Medine, 2007, 204:1999-2008.
    
    [34] Swenson S, Markland F S. Snake venom fibrin(ogen)olytic enzymes. Toxicon, 2005,45:1021-1039.
    [35] Xiao R, Li Q W, Perrett S et al. Characterisation of the fibrinogenolytic properties of the buccal gland secretion from Lampetrajaponica. Biochimie, 2007, 89:383-392.
    [36] Hahn B S, Cho S Y, Ann M Y et al. Purification and characterization of a plasmin-like protease from Tenodera sinensis (Chinese mantis). Insect Biochemistry and Molecular Biology, 2001,31:573-581.
    
    
    [37] Wang F, Wang C, Li M et al. Crystal structure of earthworm fibrinolytic enzyme component B: A novel,glycosylated two-chained trypsin. Journal of Molecular Biology, 2005,348:671-685.
    
    [38] Larchcr G, Boachara J P, Annaix V et al. Purification and characterization of a fibrinogenolytic serineproteinase from Aspergillus fumigatus culture filtrate. FEBS Letters, 1992, 308:65-69.
    
    [39] Rajesh R, Nataraju A, Gowda C D R et al. Purification and characterization of a 34-kDa, heat stableglycoprotein from Synadenium grqntii latex: Action on human fibrinogen and fibrin clot. Biochimie,2006,88:1313-1322.
    
    [40] Matsubara K, Hori K, Matsuura Y et al. A fbrinolytic enzyme from a marine green alga, Codiunt latum.Photochemistry, 1999, 52:993-999.
    
    [41] Nowak P, Zgirski A. Effects of metal ions on activity of plasmin. Biological Trace Element Research,2007,93(1-3):87-94.
    
    [42] Okamoto U, Nagamatsu Y, Amemiya T. Human spleen insoluble fibrinolytic proteinase acting at neutralpH: its partial purification and characterization. Thrombosis and Haemostasis, 1981, 45(2):180-185.
    
    [43] Markland F S. Snake venoms and the hemostatic system. Toxicon, 1998, 36(12): 1749-1800.
    
    [44] Serrano S M T, Maroun R C. Snake venom serine proteinases: Sequence homology vs. substratespecificity, a paradox to be solved. Toxicon, 2005, 45:1115-1132.
    
    [45] Ramos O H P, Selistre-de-Araujo H S. Snake venom metalloproteases-structure and function of catalyticand disintegrin domains. Comparative Biochemistry and Physiology C, 2006, 142:328-346.
    
    [46] Gutierrez J M, Rucavado A. Snake venom metalloproteinases: their role in the pathogenesis of localtissue damage. Biochimie, 2000, 82:841-850.
    
    [47] Markland Jr F S. Inventory of alpha- and beta-fibrinogenases from snake venoms. For the subcommitteeon nomenclature of exogenous hemostatic factors of the scientific and standardization committee of theinternational society on thrombosis and haemostasis. Thrombosis and Haemostasis, 1991, 65(4):438-443.
    
    [48] Lee J W, Seu J H, Rhee I K et al. Purification and Characterization of brevinase, a heterogeneoustwo-chain fibrinolytic enzyme from the venom of Korean snake, Agkistrodon blomhoffii brevicaudus.Biochemical and Biophysical Research Communications, 1999, 260:665-670.
    
    [49] Jia Y H, Jin Y, Lu Q M et al. Jerdonase, a novel serine protease with kinin-releasing andfibrinogenolytic activity from Trimeresurus jerdonii venom. Acta Biochimica et Biophysica Sinica,2003,35(8):689-694.
    
    [50] Laraba-Djebari F, Martin-Eauclaire M F, Mauco G et al. Afaacytin, an alpha beta-fibrinogenase fromCerastes cerastes (homed viper) venom, activates purified factor X and induces serotonin release fromhuman blood platelets. European Journal of Biochemistry, 1995,233:756-765.
    
    [51] Ouyang C, Huang T F. Alpha and beta-fibrinogenases from Trimeresurus gramineus snake venom.Biochimica et Biophysica Acta, 1979,571:270-283.
    
    [52] Jiao H M, Yang L X, Lu B et al. Shedaoenase, a novel fibrinogenase from the venom of Agkistrodonshedaoenthesis Zhao. Acta Biochimica et Biophysica Sinica, 2005,37(12):835-842.
    
    [53] He J Y, Chen S Y, Gu J. Identification and characterization of harobin, a novel fibrino(geno)lytic serineprotease from a sea snake (Lapemis hardwickii). FEBS Letters, 2007, 581:2965-2973.
    
    [54] Liang X X, Zhou Y N, Chen J S et al. Enzymological characterization of FIIa, a fibrinolytic enzymefrom Agkistrodon acutus venom. Acta Pharmacologica Sinica, 2005,26(12):1474-1478.
    [55] Moll S, Kenyon P, Bertoli L et al. Phase II trial of alfimeprase, a novel-acting fibrin degradation agent, for occluded central venous access devices. Journal of Clinical Oncology, 2006, 24:3056-3060.
    [56] Peichoto M E, Teibler P, Mackessy S P et al. Purification and characterization of patagonfibrase, a metalloproteinase showing a-fibrinogenolytic and hemorrhagic activities, from Philodryas patagoniensis snake venom. Biochimica et Biophysica Acta, 2007,1770:810-819.
    [57] Bernardes C P, Santos-Filhoa N A, Costa T R et al. Isolation and structural characterization of a new fibrin(ogen)olytic metalloproteinase from Bothrops moojeni snake venom. Toxicon, 2008, 51:574-584.
    [58] Mukherjee A K. Characterization of a novel pro-coagulant metalloprotease (RVBCMP) possessing a-fibrinogenase and tissue haemorrhagic activity from venom of Daboia russelli russelli (Russell's viper): Evidence of distinct coagulant and haemorrhagic sites in RVBCMP. Toxicon, 2007, 51(5):923-933.
    [59] Liu Q H, Zhang X W, Yin W et al. A catalog for transcripts in the venom gland of the Agkistrodon acutus: identification of the toxins potentially involved in coagulopathy. Biochemical and Biophysical Research Communications, 2006,341:522-531.
    
    [60] Braud S, Bon C, Wisner A. Snake venom proteins acting on hemostasis. Biochimie, 2000, 82:851-859.
    [61] Lu Q, Clemetson J M, Clemetson K J. Snake venoms and hemostasis. Journal of Thrombosis and Haemostasis, 2005,3:1791-1799.
    [62] Koh D C I, Armugam A, Jeyaseelan K. Snake venom components and their applications in biomedicine. Cellular and Molecular Life Science, 2006,63:3030-3041.
    [63] Ewart M R, Hatton M W C, Basford J M et al. The proteolytic action of arvin on human fibrinogen. Biochemical Journal, 1970,118:603-609.
    [64] Kini R M, Rao V S, Joseph J S. Procoagulant proteins from snake venoms. Haemostasis, 2001, 31:218-224.
    [65] Pirkle H, Theodor I. Thrombin-like venom enzymes: structure and function. Advances in Experimental Medicine and Biology, 1990,281(2): 165-175.
    [66] Reimerdes E H. New aspects of naturally occurring proteases in bovine milk. Journal of Dairy Science, 1983,66:1591-1600.
    [67] Bark N, Blomback B, Fatah K. On the occurrence of thrombin-like enzymes in mosquitoes. Thrombosis Research, 1996, 81 (6):623-634.
    [68] Matsubara K, Hori K, Matsuura Y et al. Purification and characterization of a fibrinolytic enzyme and identification of fibrinogen clotting enzyme in a marine green alga, Codium divarication. Comparative Biochemistry and Physiology B, 2000,125:137-143.
    [69] Rajesh R, Shivaprasad H V, Gowda C D et al. Comparative study on plant latex proteases and their involvement in hemostasis: a special emphasis on clot inducing and dissolving properties. Planta Medicine, 2007, 73(10):1061-1067.
    [70] Senff-Ribeiro A, da Silva P H, Chaim O M et al. Biotechnological applications of brown spider (Loxosceles genus) venom toxins. Biotechnology Advances, 2008,26:210-218.
    [71] Tu A T. Overview of snake venom chemistry. Advances in Experimental Medicine and Biololgy, 1996, 391(1):37-62.
    [72] Marsh N, Williams V. Practical applications of snake venom toxins in haemostasis. Toxicon, 2005, 45:1171-1181.
    
    
    [73] Lee C Y. Cardiovascular effects of snake venoms. In: Lee C Y, ed. Snake venoms handbook ofexperimental pharmacology, v.52. Berlin: Springer Pr., 1979,11-29.
    
    [74] Ouyang C, Teng C M, Huang T F. Characterization of snake venom components acting on bloodcoagulation and platelet function. Toxicon, 1992,30:945-966.
    
    [75] White J. Snake venoms and coagulophaty. Toxicon, 2005,45:951-967.
    
    [76] Hutton R A, Warrell D A. Action of snake venom components on the haemostatic system. BloodReview, 1993,7:176-189.
    
    [77] Deshimaru M, Ogawa T, Nakashima K 1 et al. Accelerated evolution of crotalinae snake venom glandserine proteases. FEBS Letters, 1996,397:83-88.
    
    [78] Eagle H. The coagulation of blood by snake venoms and its physiologic significance. Journal ofExperimental Medicine, 1937, 65:613-639.
    
    [79] Esnouf M P, Tunnah G W. The isolation and properties of the thrombin-like activity from Agkistrodonrhodostoma venom. British Journal of Haematology, 1967,13(4):581-590.
    
    [80] Markland F S, Damus P S. Purification and properties of a thrombin-like enzyme from the venom ofCrotalus adamantens (Eastern diamondback rattlesnake). Journal of Biological Chemistry, 1971,246(21):6460-6473.
    
    [81] Markland F S. Crotalase. Methods in Enzymology, 1976, 45:223-236.
    
    [82] Markland F S, Pirkle H. Thrombin-like enzyme from the venom of Crotalus adamanteus (easterndiamondback rattlesnake). Thrombosis Research, 1977,10(3):487-494.
    
    [83] Pirkle H. Thrombin-like enzymes from snake venoms: An updated inventory. Thrombosis andHaemostasis, 1998, 79:675-683.
    
    [84] Castro H C, Zingali R B, Albuquerque M G et al. Snake venom thrombin-like enzymes: from reptilaseto now. Cellular and Molecular Life Science, 2004,61:843-856.
    
    [85] Castro H C, Rodrigues C R. Current status of snake venom thrombin-like enzymes. Toxin Review, 2006,25(3):291-318.
    
    [86] Laraba-Djebari F, Martin-Eauclaire M F, Marchot P. A fibrinogen-clotting serine proteinase fromCerastes cerastes (horned viper) venom with arginine-esterase and amidase activities. Purification,characterization and kinetic parameter determination. Toxicon, 1992, 30:1399-1410.
    
    [87] Henschen-Edman A H, Theodor I, Edwards B F P et al. Crotalase, a fibrinogen-clotting snake venomenzyme: Primary structure and evidence for a fibrinogen recognition exosite different from thrombin.Thrombosis and Haemostasis, 1999, 81(1):81-88.
    
    [88] Pan H, Du X Y, Yang G Z et al. cDNA cloning and expression of acutin, a thrombin-like enzyme fromAgkistrodon acutus. Biochemical and Biophysical Research Communications, 1999,225(2):412-415.
    
    [89] Pan H, Liu J, Du X et al. cDNA cloning and expression of acutin(2), a native mutant of thrombin-likeenzyme from Agkistrodon acutus. Current Pharmarcetical Research, 2001, 8(6):469-475.
    
    [90] Wang Y M, Wang S R, Tsai I H. Serine protease isoforms of Deinagkistrodon acutus venom: cloning,sequencing and phylogenetic analysis. Biochemical Journal, 2001,354:161-168.
    
    [91] Burkhart W, Smith G F H, Su J L et al. Amino acid sequence determination of ancrod, the thrombin-likealpha fibrinogenase from the venom of Agkistrodon rhodostoma. FEBS Letters, 1992,297:297-301.
    
    [92] Au L C, Lin S B, Chou J S et al. Molecular cloning and sequence analysis of the cDNA for ancrod, athrombin-like enzyme from the venom of Calloselasma rhodostoma. Biochemical Journal, 1993,294:387-390.
    
    [93] Yu X L, Li Z F, Xia X B et al., Expression and purification of ancrod, an anticoagulant drug, in Pichiapastoris. Protein Expression and Purification, 2007, 55(2):257-261.
    
    [94] Smolka M M, Marangoni S, Oliveira B et al. Purification and partial charactarization of a thrombin-likeenzyme, balterobin, from the venom of Bothrops alternatus. Toxicon, 1998, 36(7): 1059-1063.
    
    [95] Itoh N, Tanaka N, Mihashi S. Molecular cloning and sequence analysis of cDNA for batroxobin, athrombin-like snake venom enzyme. Journal of Biological Chemistry, 1987, 262(7):3132-3135.
    
    [96] Itoh N, Tanaka N, Funako I. Organization of the gene for batroxobin, a thrombin-like snake venomenzyme: homology with the trypsin/kallikrein gene family. Journal of Biological Chemistry, 1988,263(16):7628-7631.
    
    [97] Maeda M, Satoh S, Suzuki S et al. Expression of cDNA for batroxobin, a thrombin-like snake venomenzyme. Journal of Biochemistry, 1991,109:632-637.
    
    [98] You W K, Choi W S, Koh Y S et al, Functional characterization of recombinant batroxobin, a snakevenom thrombin-like enzyme, expressed from Pichia pastoris. FEBS Letters, 2004, 571 (1 -3):67-73.
    
    [99] Nikai T, Ohara A, Komori Y et al. Primary structure of a coagulant enzyme, bilineobin, fromAgkistrodon bilineatus venom. Archivements of Biochemistry and Biophysics, 1995, 318:89-96.
    
    [100] Sant'Ana C D, Bernardes C P, Izidoro L F M et al. Molecular characterization of BjussuSP-1, a newthrombin-like enzyme with procoagulant and kallikrein-like activity isolated from Bothrops jararacussusnake venom. Biochimie, 2008, 90(3):500-507.
    
    [101] Sant'Ana C D, Ticli F K, Oliveira L L et al. BjussuSP-I: a new thrombin-like enzyme isolated fromBothrops jararacussu snake venom. Comparative Biochemistry and Physiology A, 2008,doi:10.1016/j.cbpa.2007.02.036
    
    [102] Silva- Junior F P, Guedes HLM, Garvey L C et al. BJ-48, a novel thrombin-like enzyme from theBothrops jararacussu venom with high selectivity for Arg over Lys in PI: Role of N-glycosylation inthermostability and active site accessibility. Toxicon, 2007, 50:18-31.
    
    [103] Guedes H L M, Silva Jr F P, Netto C C et al. Structural characterization and low-resolution model ofBJ-48, a thrombin-like enzyme from Bothrops jararacussu venom. Biophysical Chemistry, 2008,132(2-3): 159-164.
    
    [104] Nishida S, Fujimura Y, Miura S et al. Purification and characterization of bothrombin, afibrinogen-clotting serine protease from the venom of Bothrops jararaca. Biochemistry, 1994,33:1843-1849.
    
    [105] Watanabe L, Vieira D F, Bortoleto R K et al. Crystallization of bothrombin, a fibrinogen-convertingserine protease isolated from the venom of Bothrops jararaca. Acta Crystallographica, 2002,D58:1036-1038.
    
    [106] Hahn B S, Yang K Y, Park E M et al. Purification and molecular cloning of calobin, a thrombin-likeenzyme from Agkistrodon caliginosus (Korean Viper). Journal of Biochemistry, 1996, 119(5):835-843.
    
    [107] Yuan S L, Duan H Q, Liu C J et al. The role of thioredoxin and disulfide isomerase in the expression ofthe snake venom thrombin-like enzyme calobin in Escherichia coli BL21(DE3). Protein Expression andPurification, 2004, 38(l):51-60.
    
    [108] Cho S Y, Hahn B S, Yang K Y et al. Purification and characterization of calobin II, a second type ofthrombin-like enzyme from Agkistrodon caliginosus (Korea viper). Toxicon, 2001, 39(4):499-506.
    
    [109] Pirkle H, Theodor I, Lopez R. Catroxobin, a weakly thrombin-like enzyme from the venom of Crotalusatrax, NH_2-terminal and active site amino acid sequences. Trombosis Research, 1989, 56:159-168.
    
    [110] Farid T M, Tu A T. Characterization of cerastobin, a thrombin-like enzyme from the venom ofCerastes vipera (Sahara Sand Viper). Biochemistry, 1989,28:371-377.
    
    [111] Marrakchi N, Barbouche R, Guermazi S et al. Cerastotin, a serine protease from Cerastes cerastesvenom, with platelet-aggregating and agglutinating properties. European Journal of Biochemistry, 1997,247:121-128.
    
    [112] Markland F S, Kettner C, Schiffman S et al. Kallikrein-like activity of crotalase, a snake venomenzyme that clots fibrinogen. Proceedings of National Academy of Sciences of the United States ofAmerica, 1982,79(6): 1688-1692.
    
    [113] Marrakchi N, Zingali RB, Karoui H et al. Cerastocytin, a new thrombin-like platelet activator from thevenom of the Tunisian viper Cerastes cerastes. Biochimica et Biophysica Acta, 1995, 1244:147-156.
    
    [114] Amicone G, Amoresano A, Boumis G et al. A novel venom B from Agkistrodon contortrix contortrix:evidence for recognition properties in the surface around the primary specificity pocket different fromthrombin. Biochemistry, 2000, 39(33): 10294-10308.
    
    [115] Oyama E, Takahashi H. Amino acid sequence of a thrombin like enzyme, elegaxobin II, from thevenom of Trimeresurus elegans (Sakishima-Habu). Toxicon, 2004,44:711-721.
    
    [116] Oyama E, Takahashi H. Substrate specificity of two thrombin like enzymes (elegaxobin, elegaxobin II)from the venom of Trimeresurus elegans (Sakishima-habu), using neutralizing antibody. Toxicon, 2006,48:601-610.
    
    [117] Shieh T C, Kawabata S, Kihara H et al. Purification and characterization of a coagulant enzyme,flavoxobin, from Timeresurus flavoviridis venom. Journal of Biochemistry, 1988,103:596-605.
    
    [118] Komory I, Tatematsu R, Tanida S et al. Thrombin-like enzyme, flavorilase, with kinin-releasingactivity from Trimeresurus flavoridis (habu) venom. Journal of Natural Toxins, 2001,10(3):239-248.
    
    [119] Tatematsu R, Komori Y, Nikai T. A new thrombin-like enzyme, flavoviridiobin from the venom ofTrimeresurus flavoviridis (habu). Journal of Natural Toxins, 2000, 9:327-339.
    
    [120] Yang Q, Xu X M, Li M et al. Cloning and expression of defibrase cDNA from the venom of Gloydiusshedaoensis. Biotechnology Letters, 2002, 24:135-138.
    
    [121] Yang Q, Hu X J, Xu X M et al. Cloning, expression and purification of gussurobin, a thrombin-likeenzyme from the snake venom of Gloydius ussuriensis. Acta Biochemie et Biophysica Sinica, 2002,34(1):6-10.
    
    [122] Pirkle H, Theodor I, Miyada D et al. Thrombin-like enzyme from the venom of Bitis gabonica,purification, properties and coagulant actions. Journal of Biological Chemistry, 1986,261(19):8830-8835.
    
    [123] Chang M C, Huang T F. Charactarization of a thrombin-like enzyme, grambin, from the venom ofTimeresurus gramineus and its in vivo antithrombotic effect. Toxicon, 1995,33(8): 1087-1098.
    
    [124] Alexander G, Grthusen J, Zepeda H. Gyroxin, a toxin from the venom of Crotalus durissus terrificus,is a thrombin-like enzyme. Toxicon, 1988,26(10):953-960.
    
    [125] Camillo M A P, Arruda Paes P C, Troncone L R P et al. Gyroxin fails to modify in vitro release oflabelled dopamine and acetylcholine from rat and mouse striatal tissue. Toxicon, 2001, 39:843-853.
    
    [126] Magalh(?)es A, Fonseca B C, Diniz C R et al. The complete amino acid sequence of a thrombin-likeenzyme/gyroxin analogue from venom of the bushmaster snake (Lachesis muta muta). FEBS Letters,1993,329:116-120.
    
    [127] Magalh(?)es A, Monteiro M R. Thrombin-like enzyme from Lachesis muta muta venom: isolation andtopographical analysis of its active site structure by means of the binding of amindines and guanidinesas competitive inhibitors. Toxicon, 1997, 35(10): 1549-1559.
    
    [128] Aguiar A S, Alves C R, Melgarejo A et al. Purification and partial characterization of a thrombin-like/gyroxin enzyme from bushmaster (Lachesis muta muta) venom. Toxicon, 1996, 34(5):555-565.
    
    [129] Matsui T, Sakurai Y, Fujimura Y et al. Purification and amino acid sequence of halystase from snakevenom of Agkistrodon halys blomhoffii, a serine protease that cleaves specifically fibrinogen andkininogen. European Journal of Biochemistry, 1998, 252(3):569-575.
    
    [130] Sunagawa M, Hanashiro K, Nakamura M et al. Habutobin releases plasminogen activators (u-PA) frombovine pulmonary artery endothelial cells. Toxicon, 1996, 34(6):691-699.
    
    [131] Tokeshi Y, Nakamura M, Jinjoh K et al. Inhibition of habutobin activityes by habu antivenom. Toxicon,1998, 36(1):53-62.
    
    [132] Nejime T, Kinjoh K, Nakamura M et al. Habutobin recognizes Thr(7) in the sequence of fibrinopeptideA of rabbit fibrinogen. Toxicon, 2000,38(8):1029-1039.
    
    [133] Sunagawa M, Nakamura M, Kosugi T. Cloning of habutobin cDNA and antithrombotic activity ofrecombinant protein. Biochemical and Biophysical Research Communications, 2007, 362:899-904.
    
    [134] Braga MDM, Martins A M C, de Menezes D B et al. Purification and biological activity of thethrombin-like substance isolated from Bothrops insularis venom. Toxicon, 2007, 49(3):329-338.
    
    [135] Lu Q M, Jin Y, Li D S et al. Characterization of a thrombin-like enzyme from the venom ofTrimeresurusjerdonii. Toxicon, 2000, 38:1225-1236.
    
    [136] Jin Y, Lu Q M, Chen R Q et al. Molecular characterization of a weak fibrinogen-clotting enzyme fromTrimeresurusjerdonii venom. Toxicon, 2005,45:353-360.
    
    [137] Vieira D F, Watanabe L, Sant'ana C D et al. Purification and characterization of jararassin-I, athrombin-like enzyme from Bothrops jararaca snake venom. Acta Biochimica et Biophysica Sinica,2004,36(12):798-802.
    
    [138] Bortoleto R K, Murakami M T, Watanabe L et al. Purification, characterization and crystallization ofjararacussin-I, a fibrinogen-clotting enzyme isolated from the venom of Bothrops jar aracussu. Toxicon,2002,40:1307-1312.
    
    [139] Sakai J, Zhang S J, Chen H M et al. Primary structure of a thrombin-like serine protease,kangshuanmei, from the venom of Agkistrodon halys brevicaudus stejneger. Toxicon, 2006,48(3):313-322.
    
    [140] Magalh(?)es A, Magalh(?)es H P B, Richardson M et al. Purification and properties of a coagulantthrombin-like enzyme from the venom of Bothrops leucurus. Comparative Biochemistry andPhysiology Part A, 2007, 146(4):565-575.
    
    [141] Guo Y W, Chang T Y, Lin K T et al. Cloning and functional expression of the mucrosobin protein, aβ-fibrinogenase of Trimeresurus mucrosquamatus (Taiwan Habu). Protein Expression and Purification,2001,23(3):483-490.
    
    [142] Iwasaki A, Shieh T C, Shimohigashi Y et al. Purification and characterization of a coagulant enzyme,okinaxobin 1, from the venom of Trimeresums okinavensis (Himehabu snake) which releasesfibrinopeptide B. Journal of Biochemistry, 1990,108(5):822-828.
    
    [143] Nose T, Shimohigashi Y, Hattori S et al. Purification and characterization of a coagulant enzyme,okinaxobin II, from Trimeresurus okinavensis (Himehabu snake) venom which releases fibrinopeptidesA and B. Toxicon, 1994,32(12):1509-1520.
    
    [144] Pan H, Zhou Y C, Yang G Z et al. Clonging and expression of cDNA for thrombin-like enzyme fromAgkistrodon halys pallets Snake venom. Acta Biochimica et Biophysica Sinica, 1999,31:79-82.
    
    [145] Fan C Y, Qian Y C, Yang S Y et al. Cloning, sequence analysis and expression in E. coli of the cDNAof the thrombin-like enzyme (pallabin) from the venom of Agkistrodon halys pallas. Biochemistry andBiology International, 1999,47(2):217-225.
    
    [146] Jeong H S, Yoo S K, Kim E J. Cell surface display of salmobin, a thrombin-like enzyme fromAgkistrodon halys venom on Escherichia coli using ice nucleation protein. Enzyme and MicrobialTechnology, 2001,28:155-160.
    
    [147] Koh Y S, Chung K H, Kim D S. Biochemical characterization of a thrombin-like enzyme and afibrinolytic serine protease from snake (Agkistrodon saxatilis) venom. Toxicon, 2001,39:555-560.
    
    [148] Wei W, Zhao W, Wang X et al. Purification, crystallization and preliminary X-ray diffraction analysisof saxthrombin, a thrombin-like enzyme from Gloydius saxatilis venom. Acta Crystallographica, 2007,F63:704-707.
    
    [149] Aragon-Ortiz F, Gubensek F. A thrombin-like enzyme from bushmaster (Lachesis muta stenophrys).Toxicon, 1993,31:1435-1443.
    
    [150] Zhang Y, Gao R, Lee W H et al. Characterization of a fibrinogen-clotting enzyme from Trimeresurusstejnegeri venom and comparative study with other venom proteases. Toxicon, 1998,36(1):131-142.
    
    [151] Parry M A, Jacob U, Huber R et al. The crystal structure of the noval snake venom plasminogenactivator TSV-PA: prototype structure for snake venom serine proteases. Structure, 1998, 6:1195-1206.
    
    [152] Murakami M T, Ami R K. Thrombomodulin-independent activation of protein C and specificity ofhemostatically active snake venom serine proteinases: Crystal structures of native and inhibitedAgkistrodon contortrix contortrix protein C activator. Journal of Biological Chemistry, 2005,280(47):39309-39315.
    
    [153] Di Cera E, Dang Q D, Ayala Y M. Molecular mechanism of thrombin function. Cellular and MolecularLife Science, 1997, 53:701-730.
    
    [154] Lochnit G, Geyer R. Carbohydrate structure analysis of batroxobin, a thrombin-like serine proteasefrom Bothrops moojeni venom. European Journal of Biochemistry, 1995,228:800-816.
    
    [155] Geyer H, Jacobi I, Linder D et al. Glycosylation of recombinant ancrod from Agkistrodon rhodostomaafter expression in mouse epithelial cells. European Journal of Biochemistry, 1996, 237:113-127.
    
    [156] de Lima D C, Abreu P A, de Freitas C C et al. Snake venom: any clue for antibiotics and CAM?Evidence-based Complementary and Alternative Medicine, 2005,2(1):39-47.
    
    [157] Niewiarowski S, Stewart G J, Nath N et al. ADP, thrombin, and Bothrops atrox thrombin-like enzymein platelet-dependent fibrin retraction. American Journal of Physiology, 1975,229:737-745.
    
    [158] Caprini J A, Kwaan H C, Zuckerman L et al. Thrombelastographic patterns of ancrod and thrombinfibrin formation and dissolution. Thrombosis Research, 1974,4:199-217.
    
    [159] Marufiak S L, Acosta O C, Leiva L C et al. Mice plasma fibrinogen consumption by thrombin-likeenzyme in rattlesnake venom from the north-east region of Argentina. Medicina (Buenos Aires), 2004;64:509-517.
    
    [160] Illig K A, Ouriel K. Ancrod: understanding the agent, semin. Vascular Surgery, 1996, 9:303-314.
    
    [161] Markland Jr F S. Snake venoms. Drugs, 1997, 54:1-10.
    
    [162] Kosugi T, Ariga Y, Nakamura M et al. Purification and some chemical properties of thrombin-likeenzyme from Trimeresurus flavoviridis venom. Thrombosis and Haemostasis, 1986, 55:24-30.
    
    [163] Kinjoh K, Nakamura M, Kosugi T. Application of a monoclonal antibody to estimate rabbitfibrinopeptide A released by habutobin, Toxicon, 1994, 32:1413-1423.
    
    [164] Wang D S, Hanamoto M, Fang F et al. Defibrinogenating effect of batroxobin (Defibrase(?)) in rats andinhibition of migration of human vascular smooth muscle cells by the plasma of batroxobin-treated ratsin vitro. Atherosclerosis, 2001, 156:73-80.
    
    [165] Lutsep H L. Current status of hemorrhagic stroke and acute nonthrombolytic ischemic stroke treatment.Stroke. 2004, 35:2746-2747.
    
    [166] Barrie W W, Wood E H, Crumlish P. Low-dosage ancrod for prevention of thrombotic complicationsafter surgery for fractured neck of femur. British Medical Journal, 1974,4(5937): 130-133.
    
    [167] Kakkar V V, Howe C T, Flanc C et al. Natural history of postoperative deep-vein thrombosis. Lancet,1969,2:230-232.
    
    [168] Kakkar V V, Field E S, Nicolaides A N et al. Low doses of heparin in prevention of deep-veinthrombosis. Lancet, 1971, 2:669-671.
    
    [169] Dempfle C E, Alesci S, Kucher K et al. Plasminogen activation without changes in tPA and PAI-1 inresponse to subcutaneous administration of ancrod. Thrombosis Research, 2001,104:433-438.
    
    [170] Mayberg M R, Furlan A. Ancrod-Is snake venom an antidote for stroke? Journal of the AmericanMedical Association, 2000,283:2440-2442.
    
    [171] Sherman D G, Atkinson R P. Chippendale T et al. Stroke: the STAT study-a randomized controlledtrial intravenous ancrod for treatment of acute ischemic. Journal of the American Medical Association,2000,283(18):2395-2403.
    
    [172] Orbach D, Levine D, Orgogozo J M et al. Outcomes of ancrod in acute ischemic stroke. Journal of theAmerican Medical Association, 2000,284:1926-1927.
    
    [173] Hennerici M G, Kay R, Bogousslavsky J et al. Intravenous ancrod for acute ischaemic stroke in theEuropean stroke treatment with ancrod trial: a randomised controlled trial. Lancet, 2006,368:1871-1878.
    
    [174] Slade C L, Taylor L M, Wechsler A S et al. Postsurgical hemorrhage in dogs anticoagulated withancrod (Arvin). Annuals of Surgery, 1973,721-726.
    
    [175] Demers C, Ginsberg J S, Brill-Edwards P et al. Rapid anticoagulation using ancrod for heparin-inducedthrombocytopenia. Blood, 1991, 78:2194-2197.
    
    [176] Lubenow N, Warkentin T E, Greinacher A et al. Results of a systematic evaluation of treatmentoutcomes for heparin-induced thrombocytopenia in patients receiving danaparoid, ancrod, and/orcoumarin explain the rapid shift in clinical practice during the 1990s. Thrombosis Research, 2006,117:507-515.
    
    [177] Tibbutt D A, Williams E W, Walker M W et al. Controlled trial of ancrod and streptokinase in thetreatment of deep vein thrombosis of lower limb. British Journal of Haematology, 1974,27(3):407-414.
    
    [178] Petretski J H, Kanashiro M, Silva C P et al. Two related thrombin-like enzymes present in Bothropsatrox venom. Brazilian Journal of Medical and Biological Research, 2000,33(11):1293-1300.
    
    [179] Nian R, Tan L H, Choi W S. Effective reduction of truncated expression of gloshedobin in Escherichiacoli using molecular chaperone ClpB. Chemical Engineering Science, 2008,63:2875-2880.
    [180] S(?)rensen H P, Mortensen K K. Advanced genetic strategies for recombinant expression in Escherichia coli. Journal of Biotechnology, 2005, 115:113-128.
    [181] Makrides S C. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiology Review, 1996,60:512-538.
    [182] Hanning G, Makrides S C. Strategies for optimizing heterologous protein expression in Escherichia coli. Trends in Biotechnology, 1998,18:54-60.
    [183] Baneyx F. Recombinant protein expression in Escherichia coli. Current Opinions in Biotechnology, 1999,10:411-421.
    [184] Carrio M M, Cubarsi R, Villaverde A. Fine architecture of bacterial inclusion bodies. FEBS Letters, 2000,471:7-11.
    [185] Lilie H, Schwarz E, Rudolph R. Advances in refolding of proteins produced in E. coli. Current Opinions in Biotechnology, 1998, 9:497-501.
    
    [186] Clark E D B. Refolding of recombinant proteins. Current Opinions in Biotechnology, 1998, 9:157-163.
    [187] Christendat D, Yee A, Dharamsi A et al. Structural proteomics: prospects for high throughput sample preparation. Progress in Biophysics and Molecular Biology, 2000, 73:339-345.
    [188] Braun P, Hu Y, Shen B et al. Proteome-scale purification of human proteins from bacteria. Proccedings of National Acadamy of Sciences of the United States of America, 2002,99:2654-2659.
    [189] Waugh D S. Making the most of affinity tags. Trends in Biotechnology, 2005,23:316-320.
    [199] Terpe K. Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Applied Microbiology and Biotechnology, 2003, 60:523-533.
    [200] Esposito D, Chatterjee D K. Enhancement of soluble protein expression through the use of fusion tags. Current Opinion in Biotechnology, 2006,17:1-6.
    [201] Hunt I. Form gene to protein: a review of new and enabling technologies for multi-parallel protein expression. Protein Expression and Purification, 2005,40:1-22.
    [202] Maina C V, Riggs P D, Grandea A G et al. An Escherichia coli vector to express and purify foreign proteins by fusion to and separation from maltose-binding protein. Gene, 1988, 74:365-373.
    [203] Kapust R B, Waugh D S. Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Science, 1999, 8:1668-1674.
    [204] Fox J D, Routzahn K M, Bucher M H et al. Maltodextrin-binding proteins from diverse bacteria and archaea are potent solubility enhancers. FEBS Letters, 2003, 26985:1-5.
    [205] Smith D B, Johnson K S. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene, 1988,67:31-40.
    [206] Smith D B. Purification of glutathione S-transferase fusion proteins. Methods in Molecular and Cell Biology, 1993,4:220-229.
    [207] LaVallie E R, Diblasio E A, Kovacic S et al. A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Bio/Technology, 1993,11(2):187-193.
    [208] LaVallie E R, Lu Z, Diblasio-Smith E A et al. Thioredoxin as a fusion partner for production of soluble recombinant proteins in Escherichia coli. Methods in Enzymology, 2000, 326:322-340.
    [209] Yasukawa T, Mackawa T, Mackawa T. Increase of solubility of foreign proteins in Escherichia coli by coproduction of the bacterial thioredoxin. Journal of Biochemistry, 1995,270:25328-25331.
    [210] Stewart E J, Beckwith J, Beckwith J. Disulfide bond formation in the Escherichia coli cytoplasm: An in vivo role reversal for the thiredoxins. EMBO Journal, 1998,17:5543-5550.
    [211] Zhang Y, Olsen D R, Nguyen K B et al. Expression of eukaryotic proteins in soluble form in Escherichia coli. Protein Expression and Purification, 1998,12:159-165.
    [212] Zhang Z, Li Z H, Wang F et al. Overexpression of DsbC and DsbG markedly improves soluble and functional expression of single-chain Fv antibodies in Escherichia coli. Protein Expression and Purification, 2002,26:218-228.
    [213] Marblestone J G, Edavettal S C, Lim Y et al. Comparison of SUMO fusion technology with traditional gene fusion system: Enhanced expression and solubility with SUMO, Protein Science, 2006, 15:182-189.
    [214] Gusarov 1, Nudler E. Control of intrinsic transcription termination by N end NusA: The basic mechanisms. Cell, 2001,107:437-449.
    [215] Davis G D, Elisee C, Newham D M et al. New fusion protein systems designed to give soluble expression in Escherichia coli. Biotechnology and Bioengineering, 1999, 65:382-388.
    [216] Marco V D, Stier G, Blandin S et al. The solubility and stability of recombinant proteins are increased by their fusion to NusA. Biochemical and Biophysical Research Communications, 2004, 322:766-771.
    [217] Wilkinson D L, Harrison R G. Predicting the solubility of recombinant proteins in Escherichia coli. Bio/Technology, 1991, 9:443-448.
    [218] Nallamsetty S, Waugh D S. Solubility-enhancing proteins MBP and NusA play a passive role in the folding of their fusion partners. Protein Expression and Purification, 2006, 45:175-182.
    [219] Xu X X, Jin F L, Yu X Q et al. High-level expression of the recombinant hybrid peptide cecropinA(1-8)-magainin2(1-12) with an ubiquitin fusion partner in Escherichia coli. Protein Expression and Purification, 2007, 55:175-182.
    [220] Forrer P, Jaussi R. High-level expression of soluble heterologous proteins in the cytoplasm of Escherichia coli by fusion to the bacteriophage lambda head protein D. Gene, 1998, 224:45-52.
    [221] Park J S, Han K Y, Lee J H et al. Solubility enhancement of aggregation-prone heterologous proteins by fusion expression using stress-responsive Escherichia coli protein, RpoS. BMC Biotechnology, 2008, 8:15.
    [222] Lichty J J, Malecki J L, Agnew H D et al. Comparison of affinity tags for protein purification. Protein Expression and Purification, 2005,41:98-105.
    [223] Wang C, Castro A F, Wilkes D M et al. Expression and purification of the first nucleotide-binding domain and linker region of human multidrug resistance gene product: comparison of fusions to glutathione S-transferase, thioredoxin and maltose-binding protein. Biochemical Journal, 1999, 338:77-81.
    [224] Hammarstrom M, Hellgren N, van Den Berg S et al. Rapid screening for improved solubility of small human proteins produced as fusion proteins in Escherichia coli. Protein Science, 2002, 11:313-321.
    [225] S(?)rensen H P, Sperling-Petersen H U, Mortensen K K. A favorable solubility partner for the recombinant expression of streptavidin. Protein Expression and Purification, 2003,32:252-259.
    [226] S(?)rensen H P, Mortensen K K. Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microbial Cell Factories, 2005, 4(1): 1-5.
    [227] Dummler A, Lawrence A M, Macro A D. Simplified screening for the detection of soluble fusion constructs expressed in E.coli using a modular set vectors. Microbial Cell Factories. 2005, 4:34-43.
    [228] Cabrita L D, Dai W W, Bottomley S P. A family of E.coli expression vectors for laboratory scale and high throughput soluble protein production. BMC Biotechnology, 2006, 6:12-19.
    
    
    [229] Yang Q, Hu X J, Xu X M et al. Expression, purification and partial characterization of recombinantgloshedobin, a thrombin-like enzyme from the venom of Gloydius shedaoensis. Progress inBiochemistry and Biophysics, 2002,29(3):390-393.
    
    [230] Yang Q, Li M, Xu J Q et al. Expression of gloshedobin, a thrombin-like enzyme from the venom ofGloydius shedaoensis, in Escherichia coli. Biotechnology Letters, 2003,25(2): 101-104.
    
    [231] Yang Q, Xu J Q, Li M et al. High-level soluble expression in E. coli of a snake venom thrombin-likeenzyme in the presence of metal ions. Biotechnology Letters, 2003,25:607-610.
    
    [232] Yang Q, Lei X Y, Xu J Q et al. Purification of a recombinant thrombin-like enzyme, gloshedobin, byegg yolk antibody-coupled adsorbents. American Journal of Biochemistry and Biotechnology, 2005,1:17-21.
    
    [233] Klein J, Altenbuchner J, Mattes R. Nucleic acid and protein elimination during the sugarmanufacturing process of conventional and transgenic sugar beets. Journal of Biotechnology, 1998,60:145-153.
    
    [234] Zylicz-Stachula A, Harasimowicz-Slowinska R I, Sobolewski I et al. Tsp GW1, a thermophilicclass-IIS restriction endonuclease from Thermos sp., recognizes novel asymmetric sequence5-ACGGA(N11/9)-3. Nucleic Acids Research, 2002, 30:7e33.
    
    [235] Jiang C Z, Yee J, Mitchell D L et al. Photorepair mutants of Arabidopsis. Proceedings of NationalAcademy of Sciences of the United States of America, 1997, 94:7441-7445.
    
    [236] Bellamy S R W, Baldwin G S. A kinetic analysis of substrate recognition by uracil-DNA glycosylasefrom herpes simplex virus type 1. Nucleic Acids Research, 2001, 29:3857-3863.
    
    [237] Goulas E, Dily F L, Simon J C et al., Morphological pattern of development affects the contribution ofnitrogen reserves to regrowth of defoliated white clover (Trifolium repens L). Journal of ExperimentalBotony, 2002, 53:1941-1948.
    
    [238] Famulski K S, Macdonald D, Paterson M C et al. Activation of a low pH-dependent nuclease byapoptotic agents. Cell Death and Differentiaion, 1999,6:281-289.
    
    [239] Kramer R. Bioinorganic models for the catalytic cooperation of metal ions and functional groups innuclease and peptidase enzymes. Coordination Chemistry Reviews, 1999, 182:243-261.
    
    [240] Franke I, Meiss G, Blecher D et al. Genetic engineering, production and characterisation of monomericvariants of the dimeric Serratia marcescens endonuclease. FEBS Letters, 1998, 425:517-522.
    
    [241]Rokita S E, Romero-Fredes L. The ensemble reactions of hydroxyl radical exhibit no specificity forprimary or secondary structure of DNA, Nucleic Acids Research, 1992, 20(12):3069-3072.
    
    [242] Yang Q, Xu J Q, Qian X H et al. Eliminating nucleic acids contaminants by hydrogenperoxide-induced free radicals during the preparation of proteins. Biochemical Engineering Journal,2006,29(1-2):23-26.
    
    [243] Armitage B. Photocleavage of nucleic acids. Chemical Review, 1998,98:1171-1200.
    
    [244] Franklin S J. Lanthanide-mediated DNA hydrolysis. Current Opinion in Chemical Biology, 2001,5:201-208.
    
    [245] Cowan J A. Chemical nucleases. Current Opinion in Chemical Biology, 2001, 5:634-642.
    
    [246] Wilcox D E. Binuclear metallohydrolases. Chemical Review, 1996, 96:2435-2458.
    
    [247] Sigman D S, Mazumder A, Perrin D M. Chemical nucleases. Chemical Review, 1993,93:2295-2316.
    [248] Qian X H, Li Y G, Xu Y F et al. Highly-efficient DNA photocleavers with long wavelength absorptions: thio-heterocyclic fused naphthalimides containing aminoalkyl side chains. Bioorganic and Medicinal Chemistry Letters, 2004,14(10):2665-2668.
    [249] Yang Q, Qian X H, Xu J Q et al. Thio-heterocylic naphthalimides with aminoalkyl side chains: novel alternative tools for photodegradation of genomic DNA without impairment on bioactivities of proteins. Bioorganic and Medical Chemistry, 2005, 13:1615-1622.
    
    [250] Goh C S, Lan N, Douglas S M et al. Mining the structural genomics pipeline: identification of protein properties that affect high-throughput experimental analysis. Journal of Molecular Biology, 2004, 336:115-130.
    [251] Smialowski P, Martin-Galiano A J, Mikolajka A et al. Protein solubility: sequence based prediction and experimental verification. Bioinformatics, 2007,23(19):2536-2542.
    [252] Pedelacq J D, Piltch E, Liong E C et al. Engineering soluble proteins for structural genomics. Nature Biotechnology, 2002, 20:927-932.
    [253] Wigley W C, Stidham R D, Smith N M et al. Protein solubility and folding monitored in vivo by structural complementation of a genetic marker protein. Nature Biotechnology, 2001,19:131-136.
    [254] Georgiou G, Valax P. Expression of correctly folded proteins in Escherichia coli. Current Opinions in Biotechnology, 1996,7:190-197.
    [255] Kramer R. Bioinorganic models for the catalytic cooperation of metal ions and functional groups in nuclease and peptidease enzymes. Coordination Chemistry Reviews, 1999, 182:243-261.
    [256] Chin J. Artificial dinuclear phosphoesterases. Current Opinion in Chemical Biology, 1997,1:514-521;
    [257] Komiyama M, Sumaoka J. Progress towards synthetic enzymes for phosphoester hydrolysis. Current Opinion in Chemical Biology, 1998, 2:751-757;
    [258] Branum M, Que L. Double-strand DNA hydrolysis by dilanthanide complexes. Journal of Biology and Inorganic Chemistry, 1999,4:593-600.
    [259] Vijayalakshmi R, Kanthimathi M, Subramanian V et al, DNA cleavage by a chromium(III) complex. Biochemical and Biophysical Research Communications, 2000, 271:731-734.
    [260] Chen W, Kitamura Y, Zhou J M et al. Site-selective DNA hydrolysis by combining Ce(IV)/EDTA with monophosphate-bearing oligonucleotides and enzymatic ligation of the scission fragments, Journal of American Chemical Society, 2004, 126:10285-10291.
    [261] Kovacic R T, Welch J T, Franklin S J. Sequence-selective DNA cleavage by a chimeric metallopeptide, Journal of American Chemical Society, 2003,125:6656-6662.
    [262] Boseggia E, Gatos M, Lucatello L et al, Toward efficient Zn(II)-Based artificial nucleases, Journal of American Chemical Society, 2004,126:4543-4549.
    [263] Xu Y F, Qu B Y, Qian X H et al. Five-member thio-heterocyclic fused naphthalimides with aminoalkyl side chains: intercalation and photocleavage to DNA. Bioorganic and Medicinal Chemistry Letters, 2005,15(4): 1139-1142.
    [264] Li Y G, Xu Y F, Qian X H et al, Thiadiazole: a new family of intercalative photonuclease with electron transfer and radical mechanisms. Bioorganic and Medical Chemistry Letters, 2003,13(20):3513-3515.
    [265] Li Y G, Xu Y F, Qian X H et al. Naphthalimide-thiazoles as novel photonucleases: molecular design, synthesis, and evaluation. Tetrahedron Letters, 2004,45(6): 1247-1251.
    
    
    [266] Xu Y F, Qian X H, Yao W et al. Novel naphthalimide hydroperoxide photonucleases: the role ofthiocyclic-fused area and the difference in spectra, photochemistry and photobiologica) activity.Bioorganic and Medicinal Chemistry, 2003, 11 (24):5427-5433.
    
    [267] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of proteinutilizing the principle of protein-dye binding. Analytical Biochemistry, 1976,72:248-254.
    
    [268] Ruiz de Torrent R M, Bongiovanni B, Leiva L C et al. Neurotoxicological effects of a thrombin-likeenzyme isolated from Crotalus durissus terrificus venom (preliminary study). Toxicon, 2007,50:144-152.
    
    [269] Pérez A V, Saravia P, Rucavado A et al. Local and systemic pathophysiological alterations induced bya serine proteinase from the venom of the snake Bothrops jararacussu. Toxicon, 2007,49(7): 1063-1069.
    
    [270] Wei J N, Wang Q C, Liu G F et al. Reduction of brain injury by antithrombotic agent acutobin aftermiddle cerebral artery ischemia/reperfusion in the hyperglycemic rat. Brain Research, 2004,1022:234-243.
    
    [271] Altschul S F, Madden T L, Schaffer A A et al. Gapped blast and psi-blast: A new generation of proteindatabase search programs. Nucleic Acids Research, 1997,25(17):3389-3402.
    
    [272] Karplus K, Karchin R, Draper J et al. Combining local-structure, fold-recognition, and new foldmethods for protein structure prediction. Proteins, 2003, 53(6):491-496.
    
    [273] Thompson J D, Higgins D G, Gibson T J. Clustal W: improving the sensitivity of progressive multiplesequence alignment through sequence weighting, position-specific gap penalties and weight matrixchoice. Nucleic Acids Research, 1994, 22(22):4673-4680.
    
    [274] Berman H M, Westbrook J, Feng Z et al. The Protein Data Bank. Nucleic Acids Research, 2000,28(1):235-242.
    
    [275] Jones T A, Zou J Y, Cowan S W et al. Improved methods for building protein models in electrondensity maps and the location of errors in these models. Acta Crystallography A, 1991,47(2): 110-119.
    
    [276] Kleywegt G J. Use of non-crystallographic symmetry in protein structure refinement. ActaCrystallography D, 1996,52:842-857.
    
    [277] Kleywegt G J, Zou J Y, Kjeldgaard M et al. Around O. International tables for crystallography. In:Rossmann M G & Arnold E. vol. F. Crystallography of Biological Macromolecules, Dordrecht:Kluwer Academic Pr., 2001,353-356, 366-367.
    
    [278] Amiconi G, Amoresano A, Boumis G et al. A novel venombin B from Agkistrodon contortrixcontortrix: evidence for recognition properties in the surface around the primary specificity pocketdifferent from thrombin. Biochemistry, 2000, 39:10294-10308.
    
    [279] Hirsh J. Heparin. New England Journal of Medicine, 1991,324:757-763.
    
    [280] Schwienhorst A. Direct thrombin inhibitors-a survey of recent developments. Cellular and MolecularLife Science, 2006,63:2773-2791.
    
    [281] Serruys P W, Herrman J P R, Simon R et al. A comparison of hirudin with heparin in the prevention ofrestenosis after coronary angioplasty. New England Journal of Medicine, 1995, 333:757-763.
    
    [282] Hirsh J, O'Donnell M, Weitz J I. New anticoagulants. Blood, 2005, 105:453-463.
    
    [283] Schirmeister T. Metal ions as co-inhibitors of serine proteases: a new approach in the search forspecific high-affinity ligands. Angewandte Chemie International Edition, 1998, 37:1830-1832.
    [284] Wang C T, Ji B P, Li B et al. Enzymatic properties and identification of a fibrinolytic serine protease purified from Bacillus subtilis DC33. World Journal of Microbiology and Biotechnology, 2006, 22:1365-1371.
    [285] Neves-Ferreira A G C, Perales J, Fox J W et al. Structural and functional analyses of DM43, a snake venom metalloproteinase inhibitor from Didelphis marsupialis serum. Journal of Biological Chemistry, 2002,277(15):13129-13137.
    [286] Guo X X, Zeng L, Lee W H et al. Isolation and cloning of a metalloproteinase from king cobra snake venom. Toxicon, 2007,49:954-965.
    [287] Rosenfeld G, Janszky B. The acceleration effect of calcium on the fibrinogen-fibrin transformation. Science, 1952,116:36-37.
    [288] Zucker M B, Borrelli J. Some effects of divalent cations on the clotting mechanism and the platelets of EDTA blood. Journal of Applied Physiology, 1958,12:453-460.
    [289] Bithell T C. A study of the inhibitory effect of ethylenediaminetetra-acetic acid on the thrombin-fibrinogen reaction. Biochemical Journal, 1964,93:431-439.
    [290] Jensen T, Halvorsen S, Godal H C et al. The viscosity of fibrinogen subtractions and of EDTA denatured fibrinogen do not differ from that of native fibrinogen. Thrombosis Research, 2004, 113:51-56.
    [291] Katz B A, Luong C. Recruiting Zn2+ to mediate potent, specific inhibition of serine proteases. Journal Molecular Biology, 1999,292:669-684.
    [292] Katz B A, Clark J M, Finer-Moore J S et al. Design of potent selective zinc-mediated serine protease inhibitors. Nature, 1998,39:608-612.
    [293] Louie A Y, Meade T J. Metal complexes as enzyme inhibitors. Chemical Review, 1999, 99:2711-2734.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700