磁流变阻尼器对斜拉索振动控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用MR阻尼器对斜拉索振动的控制进行了试验和理论研究,系统深入地分析了MR阻尼器对斜拉索的减振效果。
     本文以钱江三桥南岸154m长的斜拉索为试验对象,通过施加阶跃荷载的方法获得斜拉索在MR阻尼器施加不同电压情况下前三阶振动的自由衰减信号。采集到的信号采用小波分解进行滤波,并经Hilbert变换识别出系统的等效阻尼比。试验结果表明MR阻尼器作为被动控制器件时存在最优电压;制振效果明显优于试验中的油阻尼器,控制的频域范围比油阻尼器更宽广;当供电失效时系统仍有较大的等效阻尼比,可以满足对索减振的要求;索的各阶共振峰频率在安装MR阻尼器后发生稍许增大,其影响程度比安装油阻尼器时明显。在Hamilton原理基础上应用Galerkin法,改进形函数的选取,建立了斜拉索振动控制的数学模型。对试验索和MR阻尼器组成的系统进行了数值振动计算,由此验证了试验结果。在Spencer现象模型的基础上研究了MR阻尼器的最优参数(型号、安装位置、施加的电压)以及斜拉索基频(张力、索长、质量)、Irvine参数、激励荷载(类型、频率、大小)等各种因素对MR阻尼器制振效果的影响。采用全索位移RMS作为评价MR阻尼器对斜拉索减振效果的指标,并与最优粘性油阻尼器进行了比较。计算结果表明存在合适的MR阻尼器(最优的MF)使斜拉索的减振效果达到最佳,并与粘性油阻尼器的最佳减振效果相当。以斜拉索共振峰频率漂移评价了MR阻尼器对系统提供的附加等效刚度。理论分析进一步丰富完善了试验所取得的成果,为MR阻尼器被动控制的实施提供了优化设计的方法。按照减振效果位移RMS等价的原则提出了用于MR阻尼器被动控制的简化模型。大量计算结果表明简化模型不仅与Spencer现象模型有极为相似的减振效果,能满足MR阻尼器被动控制的要求;而且能更好地揭示MR阻尼器的制振原理。等效粘性阻尼系数和等效刚度系数是表征MR阻尼器力学性能的重要指标。MR阻尼器被动控制的等效阻尼统—曲线表明MR阻尼器与粘性油阻尼器存在共性,均为耗能器件;而施加电压、激振频率、动力响应的幅值对MR阻尼器耗能能力的影响表明MR阻尼器制振效果更易适应外界环境的变化。采用偏最小二乘法误差估计、Chebyshev多项式拟合建立了MR阻尼器简化模型的参数化表达式,为合理选择MR阻尼器提供了便捷的可靠的手段。
     本文提出了基于位移和速度方向的半主动控制算法;并将多种主动控制算法(线性最优控制算法、特征结构配置法、次最优控制法、变结构滑移模态控制法)与施加电压的切换方法(剪切优化控制法、基于阻尼器出力和速度法和基于Lyapunov稳定理论法)有机结合,发展了基于最优控制力的半主动控制算法。
    
    浙江大学博l了学位论文
    磁流变阻尼器对斜拉索振动控制的研究
    考察了MR阻尼器型号、安装位置、斜拉索基频(张力、索长、质量)、激励荷
    载(类型、频率、大小)等各种因素对MR阻尼器半主动制振效果的影响。研究
    表明MR阻尼器型号在合适的范围内对斜拉索半主动控制的减振效果优于最优
    的被动控制、优于最优的粘性油阻尼器,但弱于理想的半主动可变阻尼器减振性
    能。对长索亦能取得较好的减振效果。在基于位移和速度方向的半主动控制算法
    控制下MR阻尼器的最优型号与被动控制的最优型号接近。该算法在现场中只需
    在阻尼器处设置一个观测器就能完成实时控制,算法简单,易于操作,安全可靠,
    鲁棒性好,制振频域宽广。
     在试验和理论研究的基础上开发出斜拉索振动控制分析软件
    MRCONTROL。该软件能完成MR阻尼器作为被动控制和在上述各种半主动控
    制算法下的分析计算,可与粘性油阻尼器的控制效果进行比较。通过MATLAB
    软件转化,可以在控制试验设备DSPACE系统上实现实时现场控制。
Considering an extremely economic design and an aesthetic view to human being, cable-stayed bridges are practiced widely in longer spans. As the most important structural components in cable-supported bridges, stay cables, however, are vulnerable to vibrations with large amplitudes due to relate small mass, low internal structural damping and high flexibility. A number of methods have been proposed to mitigate cable vibrations, such as tying cables together, aerodynamic cable surface modification, passive and semi-active cable control have been used to dampen vibration. However, each has limitations in suppressing the longer cable vibration. As semi-active control devices, magneto-rheological (MR) dampers have significant potential to advance the acceptance of structural control as a viable means for dynamic hazard mitigation. This thesis focuses on the field of control of cable vibration by using MR dampers. Main conclusions are as follows:
    Considering that the field experimental study of bridge stay cables installed MR dampers is lack and different passive vibration controls have not compared in the same experiment, the discrete MR dampers were installed on the 154m-Iong cable near the anchorage in the 3rd QianJiang cable-stayed bridge. Vibration mitigation of the cable using MR dampers in a purely passive mode, where constant levels of current are supplied to the damper, is examined by a series of free vibration tests and compared to that of using oil dampers. The displacement signal is driven by harmonic planar loads, filtered through wavelet decomposition and transformed by Hilbert. The equivalent cable modal damping ratios attributed to MR dampers were measured and the relationship between the equivalent modal damping ratios, the system frequency, the voltage imposed and displacement responses at the point of cable was pursued. It is shown that MR dampers to the cable can more significantly reduce cable vibration than oil dampers do. There
     is optimum voltage on which the maximum modal damping ratio can be achieved.
    A theoretical model for the cable damper system is formulated by accounting for the cable inclination and sag effect based on the Hamilton's principle. The motion of the cable was computed by using a finite series approximation with the Galerkin method. A static deflection shape as an addition shape function improved the sine series convergence. The experimental cable is taken as an numerical example. A nonlinear hysteretic biviscous model is identified for MR dampers according to experiment. The results also show the similar phenomenon and conclusions from experiment.
    A stay cable incorporated with MR dampers exhibits pronounced nonlinearity. The dynamic response performances of a cable with MR dampers are explored in
    
    
    detail by using Spencer photometric model. The primary measure of damper performance considered is the root mean square(RMS) cable deflection integrated along the length of the cable and the whole time. A universal estimation approach has been configured to depict the relationship among the equivalent modal damping ratio, RMS cable deflection, the optimal parameter of MR dampers (marker, mounting position and voltage applied), the first frequency of cables (tensile force, length and mass per unit length), Irvine parameter, excited loads (type, frequency and amount). The mitigation effect of the first three modal vibration of the cable was compared to the optimal oil dampers do. Frequency shift also debated. The theoretical studies rich and perfect the experimental results, and supply an optimal method for passive MR damper in practice.
    Based on equivalent RMS cable deflection criteria, the simplifying model is established for MR damper passive control. The calculated results shown that the simplifying model not only has the similar effect of mitigation to the Spencer model but also reveal the laws of energy dissipation criteria for MR dampers much better. The equivalent viscous damping coefficient and the equivalent stiffness coefficient capture the salient features of M
引文
[1] Michel Virlogeux, Recent evolution of cable-stayed bridges[J]. Engineering Structures, 1999,21:737-755.
    [2] 杭州钱塘江大桥通车65周年纪念大会暨两岸三地及海外华人专家“21世纪桥梁技术发展论坛”[M],2002.
    [3] 项海帆,进入21世纪的中国大桥工程及抗风研究[J].中国土木工程学会第八届年会论文集,1998.
    [4] Pacheco BM, Fujino Y. Keeping cables calm. Civil Engineering Magazine, ASCE 1993,63(10)
    [5] Yamaguchi H, Fujino Y. Stayed cable dynamics and its vibration control. In: Larsen A, Esdahl S,editors. Bridge aerodynamics, Rotterdam: Balkema; 1998: 235-53.
    [6] M. Matsumoto, N. Shiraishi, H. Shirato, Rain-wind induced vibration of cables of cable-stayed bridge[J]. J. Wind Eng. And Ind. Aerody., 1992,41 (44):2011-2022.
    [7] 李国豪,桥梁结构稳定与振动(修订版)[M],北京:中国铁道出版社.
    [8] 美国土木工程杂志 1998(8).
    [9] 钱宗渊,任杰明,大跨度斜拉桥拉索减振实践[J].广州:第十二届全国桥梁学术会议,1996,11(21):304-309.
    [10] 易圣涛,斜拉桥拉索防护的现状[J].重庆交通学院学报,2000,19(2):11-14.
    [11] Fujino Y, Warnitchai P, Pacheco B. An experimental and analytical study of auto-parametric resonance in a 3DOF model of cable-stayed-beam. Journal of Nonlinear Dynamics 1993;4:111-38.
    [12] Bossens F, Preumont A. Active tendon control of cable-stayed bridges: a large-scale demonstration[J]. Journal of Earthquake Engineering and Structural Dynamics, 2001,30:961-79.
    [13] M. El-Attar, A. Ghobarah, T.S. Aziz, Non-linear cable response to multiple support periodic excitation[J]. Engineering Structures, 2000(22): 1301-1312.
    [14] Okauchi T, Miyota M, Tatsumi M, Sasaki N. Field vibration test of a long-span cable-stayed bridge by large exciters. J of JSCE 1992,455:75-84.
    [15] Yamaguchi K, Manabei Y, Sasaki N, Morishita K. Field observation and vibration test of the Tatara Bridge. In: Proc. IABSE Conf. on Cable-Stayed Bridge, Malmo. 1999.
    [16] A.H.奈弗,D.T.穆克,非线性振动[M].高等教育出版社,1990.
    [17] C. S. Hsu, The response of a parametrically excited hanging string in fluid[J]. 1975,39(3):305-316.
    [18] I. Kovacs, Zur frage der seilschwingungen und der seidampfung[J]. Die Bautechnik, 1982,10:325-332(in German).
    [19] K. Takahashi, Dynamic stability of cables subjected to an axial periodic load[J]. Journal of Sound and Vibration, 1991,144(2):322-330.
    [20] N.C. Perkins, Modal interactions in the non-linear response of elastic cables under parametric external excitation, Int. J.Non-Linear Mech. 1992,27(2):233-250.
    [21] R. Uhrig, On kinetic response of cables of cable-stayed bridges due to combined parametric and forced excitation[J]. Journal of Sound and Vibration, 1993,165(1):185-192.
    [22] Y. Fujino, P. Warnitchai, B. M. Pacheco, An experimental and analytical study of auto parametric response in 3DOF model of cable-stayed-beam[J]. Nonlinear Dynamics,
    
    1993(4):111-138.
    [23] J. L. Lilien, Vibration amplitudes caused by parametric excitation of cable stayed structures[J]. Journal of Sound and Vibration, 1994,174(1):69-90.
    [24] C.L. Lee, N.C. Perkins, Experimental investigation of isolated and simultaneous internal resonances in suspended cables[J].ASME J. Vib. Acoust. 1995,117 (4):385-391.
    [25] C.L. Lee, N.C. Perkins, Three-dimensional oscillations of suspended cables involving simultaneous internal resonances[J].Nonlinear Dyn. 1995,8 (1): 45-63.
    [26] F. Benedettini, G. Rega, R. Alaggio, Non-Linear oscillations of a four-degree-of-freedom model of a suspended cable under multiple internal resonance conditions[J]. J. Sound Vib. 1995,182 (5):775-798.
    [27] M. Pakdemirli, S.A. Nayfeh, A.H. Nayfeh, Analysis of one-to-one autoparametric resonances in cables-discretization vs.direct treatment[J]. Nonlinear Dyn. 1995,8 (1):65-83.
    [28] A. Luongo, G. Piccardo, Non-linear galloping of sagged cables in 1: 2 internal resonance[J]. J. Sound Vib. 1998,214 (5):915-940.
    [29] 亢战、钟万勰,斜拉桥参数共振问题的数值研究[J].土木工程学报,1998,31(4):14-22.
    [30] Q. L. Zhang, U. Peil, Dynamic behaviours of cables in parametrically unstable zones[J]. Computers and Structures, 1999,73:437-443.
    [31] 汪至刚,孙炳楠,斜拉桥参数振动引起的拉索大幅振动[J].工程力学,2001,18(1):103-109.
    [32] Blevins, R.D., Flow-induced Vibration[M]., 2nd edn. Van Nostrand-Reinhold, New York. 1990.
    [33] Ogawa K, Matsumoto M, Kitazawa M, Yamasaki T. Aerodynamic stability of the tower of a longspanned cable-stayed bridge (Higashi-Kobe Bridge) [J]. Journal of Wind Engineering, Japan Association for Wind Engineering 1998,37(10):501-10.
    [34] Ohshima K, Nakabayashi M, Ogawa K, Sakai Y. Wind-induced oscillation of cable stayed bridge[J]. Journal of Wind Engineering, Japan Association for Wind Engineering 1998;37(10):655-64.
    [35] C. W. Knisely, Delay time model for tandem cylinders vibrations[J]. Proc. 32nd JSCE Hydraulics Conf. Tokyo. 1988.
    [36] A. Cigada, G. Diana, M. Falco, Votex shedding and wake-induced vibrations in single and bundle cables[J]. J. Wind Eng. And Ind. Aerody. 1997,72:253-263.
    [37] H.道尔,H.C.小柯蒂斯,R.H.斯坎伦,气动弹性力学现代教程[M].宇宙出版社,1991.
    [38] Furuya M, Miyazaki M. Wind induced vibration of parallel hangers in Akashi Kaikyo Bridge and its aerodynamic remedy[J]. In: Proc. of 2nd Cable Dynamics Seminar, Norway. 1998.
    [39] Desai, Y.M., Popplewell, N., Havard, D.G., Shah, A.H., Static and dynamic behavior of mechanical, components associated with electrical transmission lines[J]. Shock Vibration Digest, 1990,22(3):3-10.
    [40] Desai, Y.M., Yu, P., Popplewell, N., Shah, A.H., Finite element modelling of transmission line galloping[J]. Comput. Struct. 1995,57: 407-420.
    [41] P. Yu, A.H. Shah, N. Popplewell, Inertiallycoupled galloping of iced conductors[J]. ASME J. Appl. Mech 1992(59):140-145.
    [42] P. Yu, Y.M. Desai, A.H. Shah, N. Popplewell, Three degree-of-freedom model for galloping, Part Ⅰ: Formulation[J]. ASCE J. Eng. Mech. 1993(119):2404-2425.
    [43] P. Yu, Y.M. Desai, N. Popplewell, A.H. Shah, Three degree-of-freedom model for galloping,
    
    Part Ⅱ: Solutions[J]. ASCE J. Eng. Mech. 1993(119) :2426-2448.
    [44] C.G.A. van der Beek, Analysis of a system of two weakly non-linear coupled harmonic oscillators arising from the 9eld of wind-induced vibrations[J]. Int. J. Non-Linear Mech. 1992(27) : 679-704.
    [45] K. Ohshima, M Nanjo, Aerodynamic stability of the cables of a cables of a cable-stayed bridge subject to rain( a case study of the Ajigawa bridge)[J]. Proc. Of US-Japan Joint Seminar on Natural Responces, 1987:324-336.
    [46] M.Matsumoto, N.Shiraishi, H. Shirato, Rain-wind induced vibration of cables of cable-stayed bridges[J]. J. Wind Eng & Industr Aerody, 1992,44:2011-2022.
    [47] N.Shiraish, M. Matsumoto, Wind loads on cable-stayed bridges[J]. Proc. Wind Load on Structures, 1990:123-137.
    [48] M.Matsumoto, Response characteristics of rain-wind induced vibration of cables in cable stayed bridges[J]. J. Wind Eng & Industr Aerody, 1995,57:323-333.
    [49] A. Bosdogianni, Wind and rain-induced oscillations of cables of stayed bridges[J]. J. Wind Eng & Industr Aerody,1996,64:171-185.
    [50] M. Matsumoto., T. Miyata, M. Kitazawa, Response characteristic of rain-wind induced vibration of stay-cables of cable-stayed bridges[J]. Journal of Wind Engineering, 1995,57:322-333.
    [51] Y. Hikami, Rain vibration of cables in cable-stayed bridge[J]. J. WIND ENG JAWE, 1986(27) : 17-28.
    [52] M.Matsumoto, Wind-induced vibration of cables of cable-stayed bridges[J]. J. Wind Eng & Industr Aerody, 1998,74(76) : 1015-1027.
    [53] 周述华,奚绍中,斜拉桥斜索风致振动模型试验研究[J],广州:第十二届全国桥梁学术会 议,1996,11(21) :71-75.
    [54] 刘慈军,斜拉桥拉索风致振动研究[D].同济大学博士论文,1999.
    [55] Y. Hikami, N. Shiraishi, Rain-wind-induced vibration of cables in cable stayed bridges[J]. Proc. 7th ICWE, Aachen/German, 1987,4:293-302.
    [56] H. Yamaguchi, Analytical study on growth mechanism of rain vibration of cables[J]. J. Wind Eng & Industr Aerody, 1990,33:73-80.
    [57] C. Verwiebe, Recent research results concerning the exciting mechanisms of rain-wind-induced vibration[J]. J. Wind Eng & Industr Aerody,1998,74(76) :1005-1013.
    [58] M.Matsumoto, Aerodynamic Behavior of inclined circular cylinders-cable aerodynamics[J]. J. Wind Eng & Industr Aerody, 1990,33:63-72.
    [59] Y. Hikami, N. shiraishi. Rain-wind induced vibrations of cables in cable stayed bridges[J]. J. Wind Eng & Industr Aerody, 1988,29:409-418.
    [60] M.Matsumoto, N. Shiraishi, h. Shirato, Rain-wind induced vibration of cable-stayed bridges[J]. J. Wind Eng & Industr Aerody, 1992,44:2011-2022.
    [61] H. M. Irvine, T. K. Caugfey, The linear theory of free vibrations of a suspended cable[J]. Proceedings ofthe Royal Society London A341, 1974, 299-315.
    [62] Ramberg, S.E., Griffin, O.M., Free vibrations of taut and slack marine cables[J]. Journal of Structural Division, ASCE 103(ST11) , 1977:2079-2092.
    [63] Ko JM, Zheng G, Ni YQ, Periodically forced vibration of nonlinear stay cables[J]. Proceedings of the International Conference on Advanced Problems in Vibration Theory and Applications, Xi'an 2000. Beijing: Science Press,437-443.
    
    
    [64] Ni YQ, Lou WJ, Ko JM, A hybrid pseudo-force/laplace transformation method for non-linear transient response of a suspended cable[J]. Journal of Sound and Vibration, 2000,238:189-214.
    [65] A. Simpson, Wind-induced vibrations of overhead power transmission lines[J]. Sci. Progr. Oxford 1982(68) : 285-308.
    [66] P. Warnitchai, Y. Fujino, T. Susumpow, A non-linear dynamic model for cables and its application to a cable-structure system[J]. J. Sound Vib. 1995,187 (4) :695-712.
    [67] M. Abdel-Rohman, A. Hasan, Control bypassive TMD of wind-induced non-linear vibrations in cable stayed bridges[J]. J. Vib. Control 1996,2 (2) :251-267.
    [68] A. Pinto da Costa, J. A. C. Martins, F. Branco, Oscillations of bridge stay cables induced by periodic motions of deck and/or towers[J]. Journal of Engineering Mechanics, 1996(6) :613-621.
    [69] V. Gattulli, M. Pasca, F. Vestroni, Nonlinear oscillations of a nonresonant cable under in-plane excitation with a longitudinal control[J]. Nonlinear Dyn. 1997,14 (2) : 139-156.
    [70] G. Rega, R. Alaggio, F. Benedettini, Experimental investigation of the non-linear response of a hanging cable: Part Ⅰ: local analysis, Part Ⅱ: global analysis[J]. Nonlinear Dyn. 1997,14(2) :89-117, 119-138.
    [71] G. Rega, W. Lacarbonara, A.H. Nayfeh, C.M. Chin, Multiple resonances in suspended cables: direct versus reduced-order models, Int. J. Non-Linear Mech. 1999,34:901-924.
    [72] J.S. WU, C. C. CHEN, The dynamic analysis of a suspended cable due to a moving load[J]. International Journal for Numerical Methods in Engineering, 1989,28:2361-2381.
    [73] P. H.WANG, R. F. FUNG,M. Finite element analysis of a three-dimensional underwater cable with time-dependent length[J]. Journal of Sound and Vibration, 1998, 209:223-249. .
    [74] C. G. KOH, Y. ZHANG , S. T. QUEK, Low-tension cable dynamics: numerical and experimental studies[J]. ASCE Journal of Engineering Mechanics , 1999 125:347-354.
    [75] Perkins, N. C., Modal interactions in the nonlinear response of elastic cables under parametric/external excitation[J]. International Journal of NonLinear Mechanics, 1992, 27: 233-250.
    [76] Lee, C. L.,Perkins, N. C., Experimental investigation of isolated and simultaneous internal resonances in suspended cables[J]. Nonlinear Vibrations, ASME DE54,1993: 21-31.
    [77] Benedettini, F. ,Moon, F. C., Experimental dynamics of a mass cable suspension system[J]. International Journal of Bifurcation and Chaos 5, 1995:145-157.
    [78] Cusumano, J. P., Sharkady, M. T., An experimental study of bifurcation, chaos and dimensionality in a system forced through a bifurcation parameter[J]. Nonlinear Dynamics ,1995,(8) : 467-489.
    [79] O' Reilly, O. , Holmes, P. J., Nonlinear, nonplanar and nonperiodic vibrations of a string[J]. Journal of Sound and Vibration, 1992,153: 413-435.
    [80] Nayfeh,A.H., Nayfeh, S.A., Anderson, T. A., Balachandran, B.,Transfer of energy from high frequency to low frequency modes[J]. Nonlinearity and Chaos in Engineering Dynamics, J. M. T. Thompson and S.R. Bishop (eds.), Wiley, New York, 1994:39-58.
    [81] De Zoysa, A.P.K., Steady-state analysis of undersea cables[J]. Ocean Engineering , 1978,5 (3) : 209-223.
    [82] Wang, C.M., Cheong, H.F., Chucheepsakul, S., Static analysis of marine cables via shooting-optimization technique[J]. Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE , 1993,119 (4) : 450-457.
    [83] Friswell, M.I., Steady-state analysis of underwater cables[J]. Journal of Waterway, Port,
    
    Coastal and Ocean Engineering, ASCE, 1995,121 (2): 98-104.
    [84] Vaz, M.A., Patel, M.H., Three-dimensional behaviour of elastic marine cables in sheared currents[J].Applied Ocean Research, 2000.22: 45-53.
    [85] Vassalos, D., Huang, S., Dynamics of small-sagged taut-slack marine cables[J]. Computers and Structures, 1996.58 (3):557-562.
    [86] Sun, Y., Leonard, J.W., Dynamics of ocean cables with local low tension regions[J]. Ocean Engineering, 1998, 25 (6): 443-463.
    [87] Yao J.T.R, Concept of structural control[J]. J. Struct. Div. ASCE, 1972(98): 1567-1574.
    [88] G. W. Housner, L. A. Bergman, T. K. Caughey, Structural control: past, present, and future[J]. Journal of Engineering Mechanics, 1997,123(9):897-958.
    [89] Michael D. Symans, Michael C. Constantinou, Semi-active control systems for seismic protection of structures: a state-of-the art review[J]. Engineering Structures, 1999(21):469-487.
    [90] T.T. Soong, B.F. Spencer Jr, Supplemental energy dissipation: state-of-the-art and state-of-the practice[J]. Engineering Structures,2002, 24:243-259
    [91] 陈国兴,金永彬,宰金珉,结构主动减震控制研究进展[J].地震工程与工程振动,1999,19(1):113-19.
    [92] 张微敬,欧进萍,智能控制算法及其在结构振动控制中的应用[J].世界地震工程,2002,18(2):32-38.
    [93] 张顺宝,程文禳,李爱群,南京电视塔风振的神经网络预测控制[J].特种结构,2002,19:31-33.
    [94] Inaudi J. A., Kelly J. M., Experiments on tuned mass dampers using viscoelastic, frictional and shape-memory alloy materials[J]. Proc., 1st World Conf. on Struct. Control, Univ. of Southern California, Los Angeles, 1994,2:127-136.
    [95] Akbay Z., Aktan H. M., Intelligent energy dissipation devices[J]. Proc. 4th U.S. Nat. Conf. on Earthquake Engrg., 1990,3(4):427-435.
    [96] Akbay Z., Aktan H. M., Actively regulated friction slip devices[J]. Proc. 6th Can. Conf. on Earthquake Engrg., 1991:367-374.
    [97] Dowdell D. J., Cherry S., Semi-active friction dampers for seismic response control of structures[J]. Proc., 5th U.S. Nat. Conf. on Earthquake Engrg., 1994(1):819-828.
    [98] Shinozuka M., Constantinou M. C., Ghanem R., Passive and active fluid dampers in structural applications[J]. U.S/China/Japan Workshop on struct. Control, 1992:507-516.
    [99] J. David Carlson, Mark R. Jolly, MR fluid, foam and elastomer devices[J]. Mechatronics, 2000,10:555-569.
    [100] Seval Genc, Pradeep P Phul'e. Rheological properties of magnetorheological fluids[J].Smart Mater. Struct.,2002,11 : 140-146.
    [101] 欧进萍,关新春,磁流变耗能器性能的试验研究[J].地震工程与工程振动,1999,19(4):76-81.
    [102] Ali K.El Wahed, John L.Spr oston, Graham K.Schleyer, Electrorheological and magnetorheological fluids in blast resistant design applications[J]. Materials and Design,2002,23:391-404.
    [103] Melek Yalcintas,Heming Dai, Magnetorheological and electrorheological materials in adaptive structures and their performance comparison[J].Smart Mater. Struct. 1999,8:560-573.
    [104] 瞿伟廉,王军武,徐幼磷,ER/MR智能阻尼器稳联的带裙房高层建筑结构地震反应的半主动控制[J].地震工程与工程振动,2000,20(4):87-95.
    [105] Baris Erkus, Masato Abe, Yozo, Investigation of semi-active control for seismic
    
    protection of elevated highway bridges[J]. Engineering Structures, 2002, 24:281-293.
    [106] W.L. Qu , Y.L. Xu, M.Y. Lv , Seismic response control of large-span machinery building on top of ship lift towers using ER/MR moment controllersfJ]. Engineering Structures,2002, 24:517-527.
    [107] Farhan Gandhi,KWWang and Liba Xia, Magnetorheological fluid damper feedback linearization control for helicopter rotor application[J]. Smart Mater. Struct., 2001,10:96-103.
    [108] Kyle C Schurter,Paul N Roschke, Neuro-fuzzy control of structures using acceleration feedback[J]. Smart Mater. Struct. 2001,10:770-779.
    [109] Hyun-Ung Oh, Junjiro Onoda, An experimental study of a semiactive magneto-rheological fluid variable damper for vibration suppression of truss structures[J]. Smart Mater. Struct. 2002,11:156-162.
    [110] W H Liao,C Y Lai, Harmonic analysis of a magnetorheological damper for vibration control[J]. Smart Mater. Struct. 2002,11: 288-296.
    [111] Dyke SJ, Spencer BF Jr, Sain MK, Carlson JD. Modeling and control of magnetorheological dampers for seismic response reduction[J]. Smart Mater Struct 1996;5:565-75.
    [112] Dyke SJ, Spencer BF Jr, Sain M, Carlson JD. Seismic response reduction using magnetorheological dampers[J]. In: Proc. IFAC World Congress, San Francisco, CA; 1996.
    [113] Yamaguchi H, Fujino Y. Stayed cable dynamics and its vibration control[M]. In: Larsen A, Esdahl S,editors. Bridge aerodynamics, Rotterdam: Balkema; 1998: 235-53.
    [114] Hiroki Yamaguchi, Harsha D. Nagahawatta, Damping effects of cable cross ties in cable-stayed bridges[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1995,54/55:35-43.
    [115] Swan R. Vibrations damped[J]. Bridge Design Eng 1997;9:44-5.
    [116] Xu YL, Zhan S, Ko JM, Yu Z. Experimental study of vibration mitigation of bridge stay cables[J]. J Struct Eng, ASCE 1999; 125:977-86.
    [117] A. NakamuraU, A. Kasuga, H. Arai,The effects of mechanical dampers on stay cables with high-damping rubber[J]. Construction and Building Materials, 1998(12) : 115-123.
    [118] Gimsing, N.J. cable-supported bridgesfM]. John Wiley & Sons, Chichester,England.1983.
    [119] Watson, S.C., and Stafford, D., Cables in Trouble[J]. Civil Engineering, ASCE, 1988,58(4) :38-41.
    [120] Haruo Takano, Masafumi Ogasawara, Noboru Ito, Vibration damper for cables of the Tsurumi Tsubasa Bridge[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1997,69-71:807-818.
    [121] Pacheco Benito M., Fujino Yozo, Sulekh Ajai, Estimation Curve for Modal Damping in Stay Cables with Viscous Damper[J]. Journal of Structural Engineering, 1993,119(6) .
    [122] Xu L., Yu Z. Mitigation of Three-Dimensional Vibration of Inclined Sag Cable Using Discrete Oil Dampers-Ⅰ. Formation[J]. Journal of Sound and Vibration, 1998,214(4) ,659-673.
    [123] Yu Z., Xu Y. L., Mitigation of Three-Dimensional Vibration of Inclined Sag Cable Using Discrete Oil Dampers-Ⅱ. application[J]. Journal of Sound and Vibration, 1998,214(4) ,675-693.
    [124] Tabatabai Habib, Mehrabi Armin B.,Design of viscous dampers for stay cables[J], J. of Bridge Engineering, ASCE, 2000,114-123. .
    [125] Yamaguchi H, Dung NN. Active wave control of sagged-cable vibration. In:
    
    Proceedings of the 1st International Conference on Motion and Vibration Control, Yokohama, Japan, 1992:134-9.
    [126] Fujino Y, Warnitchai P, Pacheco BM. Active stiffness control of cable vibration[J]. J Appl Mech, ASME 1993;60:948-53.
    [127] Achkire Y, Preumont A. Active tendon control of cable-stayed bridges[J]. Earthquake Eng Struct Dyn 1996;25:585-97.
    [128] Gattulli V, Pasca M, Vestroni F. Nonlinear oscillations of a nonresonant cable under in-plane excitation with a longitudinal control[J]. Nonlinear Dyn 1997;14:139-56.
    [129] Johnson EA, Spencer BF Jr., Fujino Y. Semiactive damping of stay cables: a preliminary study[J]. In: Proceedings of the 17th International Modal Analysis Conference, Kissimmee, USA, 1999. Bethell (CT): Society for Experimental Mechanics, 1999:417-23.
    [130] Chen Y, Ko JM, Ni YQ. Experimental investigation of cable vibration control using electro-rheological (ER) damper[J]. In: Proceedings of the International Symposium on Smart Structures and Microsystems, Hong Kong, 2000. Hong Kong: The Chinese University of Hong Kong, 2000, (in CD format).
    [131] Johnson EA, Baker GA, Spencer BF Jr., Fujino Y. Mitigating stay cable oscillation using semiactive damping[J]. In: Liu SC, editor. Smart structures and materials 2000: smart systems for bridges, structures, and highways. Bellingham (WA): The International Society for Optical Engineering, 2000:207-16.
    [132] Lou WJ, Ni YQ, Ko JM. Modal damping and stepping-switch control of stay cables with magnetorheological fluid dampers[J]. In:Liu SC, editor. Smart structures and materials 2001: smart systems for bridges, structures, and highways. Bellingham (WA):The International Society for Optical Engineering, 2001:354-65.
    [133] YQ. Ni, Y. Chen, J.M. Ko,Neuro-control of cable vibration using semi-active magnetorheological dampers[J]. Engineering Structures, 2002, 24: 295-307.
    [134] Rabinow J, The magnetic fluid clutch. AIEE Trans. 1948,671308.
    [135] Jolly M R, Bender J W, Carlson J D, Properties and applications of commercial MR fluids[J]. SPIT 5th Int. Symp. Smart Structures and Materials(San Diego, CA,15 March),1998.
    [136] G. Yang a, B.F. Spencer Jr, J.D. Carlson .Large-scale MR fluid dampers: modeling and dynamic performance considerations[J]. Engineering Structures, 2002,24:309-323.
    [137] Ehrgott R C, Masri S. F., Modelling the oscillatory dynamic behavior of the ER materials[J]. Smart Mater. Struc., 1992,1275.
    [138] McClamroch N. H., Gavin H. P., Closed loop structural control using electrorheological dampers[J]. Proc. American Control Conf. Seattle, Washington, USA, 1995(695CH35736) :4173-4177.
    [139] Spencer B. F., Dyke D. J., Sain M. K., Phenomenological model of a magnetorheological damper[J]. J. Eng. Mech., 1997,123:230.
    [140] Makris N., Burton S. A., Hill D., Analysis and design of ER damper for seismic protection of structures[J]. J. Eng. Mech., 1996,122:1003.
    [141] Kamath G. M., Wereley N., A nonlinear viscoelastic-plastic model for electrorheolgical fluids[J]. Smart Mater. Struct., 1997,6:351.
    [142] W. H. Li, G. Z. Yao, G. Chen, Testing and steady state modeling of a linear MR damper under sinusoidal loading[J]. Smart Mater. Struct., 2000,9:95-102.
    [143] Spencer,B.F.Jr.,Carlson,J.D.,Sain,M.K.,On the current status of maganetorheological
    
    dampers:seismic protection of full-scale structures[J].Proc.,Am.Control Conf.,1997.
    [144] 陈勇,.采用MR/ER阻尼器作斜拉索振动的半主动控制[D],杭州:浙江大学博士论 文,2001
    [145] Xu,Y.L.,Ko,J.M.,Yu,Z.,Modal damping estimation of cable-damper systems.The second international symposium on structures and foundations in civil engineering, 1997,96-102
    [146] 程正兴,小波分析算法与应用,西安交通大学出版社,1998
    [147] 张贤达,现代信号处理,清华大学出版社,1995
    [148] Johnson. E.A., Spencer, B.F., Jr., Fujino, Y., Semiactive damping of stay cables: a preliminary study, Proceedings of the 17th International Modal Analysis Conference (IMAC XVII), Society for Experimental Mechanics, Bethel, Connecticut, 1999,417-423.
    [149] H. Max Irvine, Cable structure[M]. England: The MIT Press, 1981.
    [150] Richard E. Christenson, B.S. SEMIACTIVE CONTROL OF CIVIL STRUCTURES FOR NATURAL HAZARD MITIGATION:ANALYTICAL AND EXPERIMENTAL STUDIES[D]. the University of Notre Dame,2001.
    [151] Y.Q.Ni, Experimental study and modeling of magnetorheological damper, Hong Kong Polytechnic University,2001
    [152] Stanway,R.,Sproston, J. L., Stevens,N.G.,Nonlinear modeling of an electro-rheological vibration damper[J]. J. Electrostatics, 1985(20) :167-184.
    [153] Gamota, D.R., Filisko, F.E., Dynamic mechanical studies of electrorheological materials: moderate frequencies.[J]. J. Rheology, 1991(35) :399-425.
    [154] Ehrogott,R.C.,Masri,S.E, Structural control applications of an electrorheological device[J]. Proc., Int. Workshop on Struct. Control, USC Publ. No. CE-9311, Univ. of Southern California, Los Angeles, 1994:115-129
    [155] Wen, Y.K., Method of random vibration of hysteretic systems[J]. J. Engrg. Mech. Div., ASCE, 1976:102(2) ,249-263.
    [156] Xu, Y.L., and Yu, Z., Vibration of Inclined Sag Cables with Oil Dampers in Cable-Stayed Bridges, Journal of Bridge Engineering, 1998:3(4) , 194-203.
    [157] Tunstall, M.J., Wind-Induced Vibrations of Overhead Transmission Lines: An Overview, Proceedings of the International Seminar on Cable Dynamics, Tokyo, Japan, October 13, 1997, 13-26.
    [158] Zhou, D., Cheung, Y.K., Au, F.T.K., Three-dimensional vibration analysis of thick rectangular plates using Chebyshev polynomial and Ritz method[J]. International Journal of Solids and Structures,2002,39(26) : 6339-6353.
    [159] Nath, Y.; Kumar, Sandeep, Chebyshev series solution to non-linear boundary value problems in rectangular domain[J]. Computer Methods in Applied Mechanics and Engineering,1995,125(1-4) :41-52.
    [160] Wang, X.D., Meguid, S.A., Modelling and analysis of the dynamic behaviour of piezoelectric materials containing interacting cracks[J]. Mechanics of Materials,2000,32(12) :723-737
    [161] 王惠文,偏最小二乘法同归方法及其应用[M].国防工业出版社,北京,1999.
    [162] Blanco, M.; Coello, J.; Gonzalez, F.; Application of partial least-squares regression to the resolution of highly correlated spectra. Simultaneous spectrofluorimetric determination of A13+, Ga3+ and In3+[J]. Talanta, 1996,43(9) : 1489-1496.
    [163] Patten, W.N., Sack, R.L., Yen, W., Mo, C., Seismic motion control using semi-active
    
    hydraulic force actuators[J]. Proc., ATC-17-I Seminar on seismic Isolation, Passive Energy Dissipation, and Active Control, Calif., 1993:727-735.
    [164] Patten, W.N., Kuo, C. C., He, Q., Liu, L., Seismic structural control via hydraulic semi-active vibration dampers(SAVD)[J]. Proc., 1st World Conf. on Struct. Control. Int. Assoc, for Structural Control, Los Angeles, Calif., FA1/30-FA1/38.
    [165] Yang, J.N., Akbarpour, A., New optimal control algorithms for structural control[J]. J. Engrg. Mech., ASCE, 1987,113(9) : 1369-1386.
    [166] Yang, J.N., Li, Z., Wu, J. C., Aseismic hybrid control of bridge structures[J]. Proc., U.S.. 5th Nat. Conf. Earthquake Engrg., Earthquake Engrg. Research Inst, EI Cerrito, Calif., 1994,861-870.
    [167] 埃米尔.希穆著,刘尚培,项海帆译,风对工程结构的作用-风工程导轮[M].上海: 同济大学出版社,1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700