用户名: 密码: 验证码:
热循环条件下热障涂层断裂韧性和残余应力的测试分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热障涂层(Thermal Barrier Coatings,简称TBCs)具有抗高温氧化和腐蚀的能力,可以有效地降低高温耐热合金基底的使用温度,延长高温部件的使用寿命,从而被广泛应用于航空、航天和大型火力发电等领域。然而,陶瓷涂层内裂纹的萌生、扩展甚至涂层过早的剥落是导致热障涂层失效的重要原因,这一直是研究人员关注的重点问题。在1000°C的热循环条件下,本文首先研究了热障涂层部分材料参数随热氧化时间的变化规律,然后在考虑其演变的影响下,测试分析了热障涂层系统断裂韧性和残余应力的变化规律。主要研究内容如下:第一,用纳米压痕法研究了8wt.% Y_2O_3部分稳定的ZrO_2(8YSZ)热障涂层杨氏模量和硬度随热循环次数增加的演变关系。研究发现:由于受到高温烧结作用的影响,热障涂层的杨氏模量和硬度随热循环次数的不同而出现不同程度的的增长,主要分为两个阶段,当在100次热循环之前,两者随热循环次数的增加而快速增大。当热循环次数超过100次之后,两者随热循环次数的增加而逐渐趋于平缓,甚至保持稳定。热障涂层的杨氏模量和硬度具有明显的各向异性。在测试中,由于陶瓷材料是典型的脆性材料,其压痕测试的实验数据具有一定的分散性。本文采用Weibull分布统计分析方法进行处理,获得了比较满意的结果。
     第二,用Vickers压痕的方法研究了8YSZ热障涂层系统的断裂韧性。分别采用基于半硬币状裂纹系统的传统压痕断裂力学模型和考虑残余应力影响的Lawn-Evans-Marshall(简称LEM)压痕断裂力学模型来分析维氏压痕实验数据。研究表明,在98N的压制载荷下,用传统模型分析得到的热循环条件下热障涂层表面断裂韧性从1.19MPa·m~(1/2)变化到4.4MPa·m~(1/2);其界面断裂韧性从0.54MPa·m~(1/2)变化到2.8MPa·m~(1/2)。在不同的压制载荷下,用LEM模型分析计算得到的热障涂层表面断裂韧性从0.52MPa·m~(1/2)变化到3.06MPa·m~(1/2),相应的表面残余应力从-41MPa变化到-268MPa。热障涂层系统的断裂韧性也呈现出各向异性,且表面断裂韧性整体比界面断裂韧性值要大。
     第三,通过制备长方形的8YSZ陶瓷棒样品,采用微拉曼光谱法标定了8YSZ材料的压电光谱系数(Piezo-spectroscopic Coefficient,简称PSC)随热循环变化的演变关系。结果表明,PSC随热循环次数增加呈现出指数衰减的趋势,且与杨氏模量的变化趋势相反。
     第四,研究了热障涂层杨氏模量的变化对X射线衍射法(XRD)测试其残余应力的影响。实验结果表明,在考虑杨氏模量变化的条件下所测得的结果比未考虑其演变情况下的测试结果更加准确。利用PSC的演变规律,本文用微拉曼光谱法测试了热障涂层残余应力随热循环次数的演变关系,其结果与XRD的测试结果具有很好的一致性。在本文中,我们研究了8YSZ热障涂层系统相关力学性能及残余应力场随热循环次数的变化规律,这些结果对评价热障涂层的可靠性具有重要的参考价值。
Thermal barrier coatings (TBCs) have been wide applied in stationary turbines of power plants and aircraft turbines to protect basic advanced superalloys materials from high temperature and corrosion, and thereby prolong the lives of these components. However, the crack nucleation, propagation and spallation of ceramic coating greatly limit the application and durability of TBCs in service. In this paper, the change characteristics of partial material properties (e.g. Young’s modulus, hardenss and PSC) of 8YSZ with thermal cycles were studied by nanoindentation method and Raman spectroscopy. And then the fracture toughness and residual stress of TBCs were measured. The related conclusions are summarized as follows:
     Firstly, the Young’s modulus and hardness in the top coat of 8 wt.% Y2O3-stabilized ZrO2 (8YSZ) TBCs have been measured by nano-indentation. The evolution of Young’s modulus and hardness exhibits two regimes of stiffening in the increasing stage: an initially rapid rise, followed by a more progressive increase due to the sintering effect. And the results also indicate that the Young’s modulus and hardness are anisotropic. The Weibull analysis has been applied to solve the scatter of experimental data due to the brittle characteristic of the ceramic coating.
     Secondly, the fracture toughness of 8YSZ TBCs is evaluated by Vickers indentation method. Two fracture mechanics theoretical models based on the half-penny crack system were used to analysis the experimental data, respectively. One is the traditional fracture mechanics theoretical model, and the other is the Lawn-Evans-Marshall (LEM) fracture mechanics theoretical model which has considered the influence of residual stress in the coating. The results by the traditional fracture mechanics theoretical model indicate that the surface fracture toughness of ceramic coating changes from 1.19MPa·m1/2to 4.4MPa·m1/2. And the interface fracture toughness of the coating varies from 0.54MPa·m1/2to 2.8MPa·m1/2 with thermal cycles under the load of 98N. However, the results by the LEM fracture mechanics theoretical model show that, the surface fracture toughness of ceramic coating changes from 0.52MPa·m1/2to 3.06MPa·m1/2 with thermal cycles with different indent loads. The corresponding surface residual stress varies -41MPa to -268MPa. The fracture toughness also presents anisotropic. It is found that the value of fracture toughness on the coating surface are generally large than that near the interface location.
     Thirdly, the evolution of Piezo-spectroscopic Coefficients (PSCs) of freestanding 8YSZ specimens with thermal cycles has been calibrated by Raman spectroscopy. It is shown that the PSC of 8YSZ is an exponential function of thermal cycle N for a given thermal cycling process, and it is opposite to the evolution of Young’s modulus of 8YSZ with thermal cycles.
     Fourth, the effect of Young’s modulus evolution of 8YSZ on residual stress measurement by X-ray diffraction (XRD) has been studied. When the evolution of Young’s modulus of 8YSZ material is considered, the residual stress derived from the XRD data is more accurate. With the PSCs evolution above, the actual residual stress of 8YSZ TBCs has been determined by the Raman spectroscopy method. The results consist well with that obtained by the XRD.
     In general, the evolutions of mechanical properties and residual stress of 8YSZ TBCs with thermal cycles have been studied. The results would be useful in evaluating the reliability and life of the 8YSZ TBCs in future.
引文
[1]张宝诚.航空发动机试验和测试技术[M].北京:北京航空航天大学出版社, 2005年.
    [2]中国航空材料手册(第二版) [M].北京:中国标准出版社, 2002.
    [3]徐惠彬,宫声凯,刘福顺.航空发动机热障涂层材料体系的研究[J].航空学报, 2000, 21(1):7-12.
    [4]李保岐,段绪海.二氧化锆热障涂层在航空发动机上的应用[J].航空工艺技术, 1999(3):33-34.
    [5]李建保,周益春,林红,杨晓战.新材料科学及其实用技术[M].北京:清华大学出版社, 2004:464-516.
    [6] Miller R A. Thermal barrier coatings for aircraft engines: history and directions [J]. Journal of Thermal Spray Technology, 1997, 6(1):35-42.
    [7] Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications [J]. Science, 2002, 296:280-284.
    [8] Jian C Y. Study on Evaluation Method of Ceramic Coating System for Gas Turbine Rotator Blades [C]. Doctoral thesis, Tohoku University, 1996.
    [9] Meitner P L. Analysis of metal temperature and coolant flow with a thermal barrier coating on a full-coverage-film-cooled turbine vane [R]. 1978, NASA-TP-l310.
    [10] Schulz U, Leyens C, Fritscher K, et al.. Some recent trends in research and technology of advanced thermal barrier coatings [J]. Aerospace Science and Technology, 2003, 7:73–80.
    [11] Cao X Q, Vassen R, Stoever D. Ceramic materials for thermal barrier coatings [J]. Journal of the European Ceramic Society, 2004, 24:1-10.
    [12] Schulz U, Fritscher K. Two-source jumping beam evaporation for advanced EB-PVD TBC systems [J]. Surface and Coatings Technology, 2000, 40:133-134.
    [13] Taylor R, Brandon J R, Morrell P. Microstructure composition and property relationships of plasma sprayed thermal barrier coatings [J]. Surface and Coatings Technology, 1992, 50:141-149.
    [14]曹学强.热障涂层材料[M].北京:科学出版社, 2007.
    [15]田民波,刘德令.薄膜科学技术手册(下册) [M].北京:机械工业出版社, 1991:117-118.
    [16] Meier S M, Gupta D K. The evolution of thermal barrier coating in gas turbine engine applications [J]. Journal of Engineering for Gas Turbines and Power, 1994, 116:250-257.
    [17]周庆生.等离子喷涂技术[M].江苏:江苏科学出版社, 1982年.
    [18] Funke C. Direction of the development of thermal barrier coatings in energy applications [J]. Journal of Materials Processing Technology, 1999, 93:195-202.
    [19]李晓海,陈贵清等.热障涂层的研究进展[J].宇航材料工艺, 2004, 1:1-6.
    [20] Evans A G, Mumm D R, Hutchinson J W, Meier G H, Pettit F S. Mechanisms controlling the durability of thermal barrier coatings [J]. Progress in Materials Science, 2001, 46(5):505-553.
    [21] Evans A G, He M Y, Hutchinson J W. Mechanics-based scaling laws for the durability of thermal barrier coating [J]. Progress in Materials Science, 2001, 46:249-271
    [22] Mumm D R, Evans A G. On the role of imperfections in the failure of a thermal barrier coating made byelectron beam deposition [J]. Acta Materialia, 2000, 48(8):1815-1827.
    [23] Schulz U. Phase identification in heated thermal barrier coatings using high-temperature XRD [J]. Journal of the American Ceramic Society, 2000, 83:904-910.
    [24] Zhu D M, Robert A M. Determination of creep behavior of thermal barrier coatings under laser Imposed high thermal and stress gradient conditions [J]. Journal of Materials Research, 1999, 14:146–161.
    [25] Jones T N. Coatings for blade and vane applications in gas turbine [J]. Corrsion Science, 1989, 29:623-646.
    [26] Dong Z L, Khor K A. Microstructure formation in plasma sprayed functionally graded NiCoCrA1Y/Yttria-stabilized Zirconia coatings [J]. Surface and Coatings Technology, 1999, 11:181-186.
    [27] Cao X Q. Application of rare earths in thermal barrier coating materials [J]. Journal of Materials Science and Technology, 2007, 23:15-35.
    [28] Ma W, Gong S K, Xu H B. The thermal cycling behavior of lanthanum-cerium oxide thermal barrier coating prepared by EB-PVD [J]. Surface and Coatings Technology, 2006, 200:5113-5118.
    [29] Cao X Q, Vassen R, Tietz F. New double-ceramic-layer thermal barrier coatings based on zirconia-rare earth composite oxides [J]. Journal of the European Ceramics Society, 2006, 26:247-252.
    [30] Cao X Q, Li J Y, Zhong X H. La2(Zr0.7Ce0.3)2O7-A new oxide ceramic material with high sintering-resistance [J]. Materials Letters, 2008, 62:2667-2669.
    [31]牟仁德,许振华,贺世美,何利民,曹学强. La2(Zr0.7Ce0.3)2O7-新型高温热障涂层[J].材料工程, 2009, 7:67-72.
    [32]赖师墨.陶瓷热障涂层存在问题及解决途径[M].航空工业技术, 1999, 3:16-21.
    [33]陈会丽,钟毅.残余应力测试方法的研究进展[J].云南冶金. 2005, 34(3):52-54.
    [34]马维,潘文霞,吴承康.热喷涂涂层中残余应力分析和检测研究进展[J].力学进展, 2002, 32(l):365-381.
    [35] Mathr J. Detemination of initial stresses by measuring the deformation around drilled holes [J]. Transactions of the ASME, 1934, 56(4):234-239.
    [36] Hamacha R, Dionnet B, Grimaud A, Nardou F. Residual stress evolution during the thermal cycling of plasma-sprayed zirconia coatings [J]. Surface and Coatings Technology, 1996, 80: 295-303.
    [37] Zhao X, Xiao P. Residual stresses in thermal barrier coatings measured by photoluminescence piezospectroscopy and indentation technique [J]. Surface and Coatings Technology, 2006, 201(3):1124-1131.
    [38] Tomimatsu T, Kagawa Y, Zhu S J. Residual stress distribution in electron beam–physical vapor deposited ZrO2 thermal barrier coating layer by Raman spectroscopy [J]. Metallurgical and Materials Transactions A, 2003, 34A:1739-1741.
    [39] Jordan D W, Faber K T. X-ray residual stress analysis of a ceramic thermal barrier coating undergoing thermal cycling [J]. Thin Solid Films, 1993, 235:137-141.
    [40] Teixeira V, Andritschky M, Fischer W, Buchkremer H P, St?ver D. Analysis of residual stress in thermal barrier coatings [J]. Journal of Materials Processing Technology, 1999, 92-93:209-216.
    [41] Wolf I D. Topical review: Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits [J]. Semiconductor Science Technology, 1996, 11:139-154.
    [42] Anastassakis E, Pinczuk A, Burstein E, et al.. Effect of static uniaxial stress on the raman spectrum ofsilicon [J]. Solid State Communications, 1970, 8(2):133-138.
    [43] Tanaka M, Hasegawa M. Measurement of residual stress in air plasma-sprayed Y2O3-ZrO2 thermal barrier coating system using Micro-Raman spectroscopy [J], Materials Science and Engineering A, 2006, 419:262-268.
    [44] Cai J, Raptis Y S, Anastassakis E. Stabilized cubic zirconia: Raman study under uniaxial stress [J]. Applied Physics Letters, 1993, 62:2781-2783.
    [45] Wang X, Lee G, Atkinson A. Investigation of TBCs on turbine blades by photoluminescence piezospectroscopy [J]. Acta Materialia, 2009, 57(1):182-195.
    [46] Taylor C A, Wanyne M F, Chiu W K S. Residual stress measurement in thin carbon films by Raman spectroscopy and nanoindentation [J]. Thin Solid Films, 2003, 429:190-200.
    [47] Timoshenko S. Analysis of bi-metal thermostats [J]. Journal of the Optical Society of America B: Optical Physics, 1925, 11:233-255.
    [48] Mao W G, Zhou Y C, Yang L, Yu X H. Modeling of residual stresses variation with thermal cycling in thermal barrier coatings [J]. Mechanics of Materials, 2006, 38: 1118-1127.
    [49] Ju D Y, Nishida M, Hanabusa T. Simulatioan of the thermo-mechanical behavior and residual stresses in the spray coating process [J]. Journal of Materials Processing Technology, 1999, 93(30):243-250.
    [50] Sarikaya O, Celik E. Effects of residual stress on thickness and interlayer of thermal barrier ceramic MgO-ZrO2 coatings on Ni and AlSi substrates using finite element method [J]. Materials and Design, 2002, 23: 645-650.
    [51]王洪,张坤,陈光南.界面形貌对热障涂层界面残余应力影响的数值模拟[J].金属热处理, 2001, 26(9):44-46.
    [52]龚江宏,关振铎.陶瓷材料断裂韧性测试技术在中国的研究进展[J].硅酸盐通报, 1996, 1:53-57.
    [53] He M Y, Hutchinson J W, Evans A G. Large deformation simulations of cyclic displacement instabilities in thermal barrier systems [J]. Acta Materialia, 2002, 50:1063-1073.
    [54] Chen X, Hutchinson J W, He M Y, Evans A G. On the propagation and coalescence of delamination cracks in compressed coatings: with application to thermal barrier systems [J]. Acta Materialia, 2003, 51(7): 2017-2030.
    [55] Zhou Y C, Hashida T. Determination of interface fracture toughness in thermal barrier coating system by blister tests [J]. Transaction of the ASME, 2003, 125:176-182.
    [56] Arai M, Okajima Y, Kishimoto K. Mixed-mode interfacial fracture toughness for thermal barrier coating [J]. Engineering Fracture Mechnics, 2007, 74:2055-2069.
    [57] Yamazaki Y, Schmidt A, Scholz A. The determination of the delamination resistance in thermal barrier coating system by four-point bending tests [J]. Surface and Coatings Technology, 2006, 201(3): 744-754.
    [58] Choi S R, Zhu D, Miller R A. Fracture behavior under mixed-mode loading of ceramic plasma-sprayed thermal barrier coatings at ambient and elevated temperatures [J]. Engineering Fracture Mechanics, 2005, 72: 2144-2158.
    [59] Shaw L L, Barber B, Jordan E H, Gell M. Measurements of the interfacial fracture energy of thermal barrier coatings [J]. Scripta Materialia, 1998, 39:1427-1434.
    [60] Qian G, Nakamura T, Berndt C C, Leigh S H. Tensile toughness test and high temperature fracture analysis of thermal barrier coatings [J]. Acta Materialia, 1997, 45(4):1767-1784.
    [61] Nair S V, Eaton H E, Sun E Y. Measurements of interface strength and toughness in shear of environmental barrier coatings on ceramic substrates at ambient and at elevated temperature [J]. Surface and Coatings Technology, 2006, 200:5175– 5180.
    [62] Lawn B R, Fuller E R. Equilibrium penny-like cracks in indentation fracture [J]. Journal of Materials Science, 1975, 10:2016-2024.
    [63] Marshall D B, Lawn B R. Residual stress effects in sharp contact cracking: I, indentation fracture mechanics [J]. Journal of Materials Science, 1979, 14:2001-2011.
    [64] Evans A G, Charles A E. Fracture toughness determination by indentation [J]. Journal of American Ceramic Society, 1976, 59:371-372.
    [65] Anstis G R, Chantikul P, Lawn B R, Marshall D B. A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurement [J]. Journal of American Ceramic Society, 1981, 64:533-538.
    [66] Chantikul P, Anstis G R, Lawn B R, Marshall D B. A critical evaluation of indentation techniques for measuring fracture toughness:Ⅱ, strength method [J]. Journal of American Ceramic Society, 1981, 64:539-543.
    [67] Lesage J, Chicot D. Role of residual stress on interface toughness of thermally sprayed coating [J]. Thin Solid Films, 2002, 415:143-150.
    [68] Malzbender J. Comparison of surface and cross-section indentation in a coating [J]. Surface and Coatings Technology, 2006, 201:3797-3801.
    [69] Zhang T Y, Chen L Q, Fu R. Measurements of residual stresses in thin films deposited on silicon wafers by indentation fracture [J]. Acta Materialia, 1999, 47:3869-3878.
    [70] Gong J H, Wang J Q, Guan. Z D. Indentation toughness of ceramics: a modified approach [J]. Journal of Materials Science, 2002, 37:865-869.
    [71] Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments [J]. Journal of Materials Research, 1992, 7:1564-1583.
    [72] Sneddon I N. The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile [J]. International Journal of Engineering Science, 1965, 3(1):47-57.
    [73] Stillwell N A, Tabor D. Elastic recovery of conical indentations [J]. Proceedings of the Physical Society, 1961, 78(2):169-179.
    [74]周上祺. X射线衍射分析原理、方法、应用[M].重庆大学出版社, 1991, 29-55
    [75]丘利,胡玉和. X射线衍射技术及设备[M].北京:冶金工业出版社, 1998, 233-260.
    [76]王丹,徐滨士,董世运.涂层残余应力实用检测技术的研究进展[J].金属热处理, 2006, 31(5):48-53.
    [77]李美栓,辛丽等.喇曼光谱法测量金属表面氧化膜的残余应力[J].中国腐蚀与防护学报. 1999, 19(3):185-188.
    [78] Dapkunas S J. Measurement methods and standards for processing and application of thermal barrier coatings [J]. Journal of Thermal Spray Technology, 1997, 6(1):67- 76.
    [79] Joslin D L, Oliver W C. A new method for analyzing data from continuous depth-sensing microindentation tests [J]. Journal of Materials Research, 1990, 5(1):123-126.
    [80] Pharr G M, Oliver W C. On the generality of the relationship among stiffness, contact area, and elastic modulus during indentation [J]. Journal of Materials Research, 1992, 7(3):613-617.
    [81] Martin M, Troyon M. Fundamental relations used in nanoindentation: critical examination based on experimental measurements [J]. Journal of Materials Research, 2002, 17(9):2227-2234.
    [82]谭昌瑶,王钧石.实用表面工程技术[M].重庆:新时代出版社, 1998, 68-80.
    [83]李剑锋,周明霞,丁传贤.等离子喷涂Cr_3C_2-NiCr涂层的气孔率统计分析[J].航空材料学报, 2000, 3(20):33-39.
    [84] Li H, Bradt R C. The indentation load/size effect and the measurement of the hardness of vitreous silica [J]. Journal of Non-Crystalline Solids, 1992, 146:197-212.
    [85] Zhou Y C, Hashida T. Coupled effects of temperature gradient and oxidation on thermal stress in thermal barrier coating system [J]. International Journal of Solids and Structures, 2001, 38:4253-4264.
    [86] Artigas R, Pinto A, Laguarta A. Three-dimensional micro-measurement on smooth and rough surfaces with a new confocal optical profiler [J]. Proceedings the SPIE-The International Society for Optical Engineering, 1999, 3824:93-104.
    [87] Guo S Q, Kagawa Y. Effect of thermal exposure on hardness and Young’s modulus of EB-PVD yttria-partially-stabilized zirconia thermal barrier coatings [J]. Ceramics International, 2006, 32:263-270.
    [88] Gong J H. Indentation toughness of ceramics: a statistical analysis [J]. Ceramics International, 2002, 28:767-772.
    [89] Thompson J A, Clyne T W. The effect of heat treatment on the stiffness of zirconia top coats in plasma-sprayed TBCs [J]. Acta Materialia, 2001, 49:1565-1575.
    [90] Guo S Q, Kagawa Y. Young’s moduli of zirconia top-coat and thermally grown oxide in a plasma-sprayed thermal barrier coating system [J]. Scripta Materialia, 2004, 50:1401-1406.
    [91] Griffith A A. The phenomena of rupture and flow in solids [M]. Philosophical Transactions of the Royal Society of London, 1921, A221:163.
    [92] Irwin G R. Fracture. in Handbuck der Physik 6. Edited by Fluegge S (Springer-Verleg, Berlin) [M], 1958, 551.
    [93]龚江宏.陶瓷材料断裂力学[M].北京:清华大学出版社, 2001.
    [94] Lawn B R, Evans A G, Marshall D B. Elastic/Plastic indentation damage in ceramics: the median/radial crack system [J]. Journal of the American Ceramic Society, 1980, 63:574-581.
    [95] Yoffe E H. Elastic stress fields caused by indenting brittle materials [J]. Philosophical Magazine A, 46:617-628.
    [96] Chiang S S, Marshall D B, Evans A G. The response of solids to elastic/plastic indentation: I, stresses and residual stresses [J]. Journal of Applied Physics, 1982, 53:298-312.
    [97] Lawn B R, Fuller E R. Measurement of thin-layer surface stresses by indentation fracture [J]. Journal of Materials Science, 1984, 19:4061-4067.
    [98] Wen M, Jordan E H, Gell M. Remaining life prediction of thermal barrier coatings based on photoluminescence piezospectroscopy measurements [J]. Journal of Engineering Gas Turbine Power, 2006: 128:610-616.
    [99] Gell M, Sridharan S, Wen M, Jordan E H. Photoluminescence piezospectroscopy: a multi-purpose quality control and NDI technique for thermal barrier coatings [J]. Internationa of Journal Applied Ceramics Technology, 2004, 1:316-329.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700