脑缺血半暗带界定及无创脑水肿监护的临床研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分磁共振DWI、PWI和MRS量化评定超早期脑梗死缺血半暗带
     目的应用磁共振弥散加权成像(DWI)、灌注加权成像(PWI)以及磁共振波谱技术(MRS)界定超早期脑梗死缺血半暗带,力求提出量化评定标准。方法13例发病时间在2-6h以内的超急性脑梗死患者行MRI检查,包括DWI、PWI及1H-MRS技术,并在2-28d内复查T2WI确定最终梗死范围。对梗死中心区,缺血半暗带及对侧镜像区,测量其扩张变化,血流灌注以及代谢改变。结果(1)梗死中心区与缺血半暗带表观弥散系数(ADC)平均值分别为7.01×10-4mm2/s及9.36×10-4mm2/s,rADC平均值分别为0.63及0.87,梗死中心区ADC及rADC均明显降低,缺血半暗带ADC及rADC轻度下降,二者之间有显著性差异(P<0.05)。(2)PWI显示11例超急性脑梗死存在灌注缺损区或灌注减低区,2例腔隙性脑梗死未见明显异常。(3)超早期脑梗死的MRS改变为乳酸(Lac)浓度升高和N-乙酰天门冬氨酸盐(NAA)水平降低。(4)PWI>DWI者,ADC值轻度降低(<22%)Lac升高且NAA正常或轻度下降(<14%)的区域可能为缺血半暗带;而ADC值明显降低(25%-53%)Lac升高且NAA明显下降的区域(16%-34%)可能为不可逆损伤区。结论DWI、PWI和MRS的综合应用可发现超早期脑梗死,并预测缺血半暗带。
     第二部分脑出血患者微创血肿清除术后磁共振DWI和MRS临床研究
     目的观察脑出血患者保守治疗及微创血肿清除术治疗后DWI和MRS的变化,从影像学方面探讨微创血肿清除术对脑出血患者脑水肿的影响及临床价值。方法20例高血压脑出血患者随机分为两组,微创血肿清除手术组(微创组):10例脑出血患者于发病后6-24h内接受简易立体定向微创血肿清除术治疗;对照组:10例脑出血患者接受内科保守治疗,所有病例均于发病后9-11d行常规MRI及功能性MRI(包括DWI和MRS)检查。结果对照组和微创组血肿周围ADC值与对侧对称区ADC值的差异均有显著性差异(P<0.01),且对照组血肿周围区域ADC值高于微创组(P<0.05)。对磁共振谱线进行分析,对照组血肿周围NAA/Cr与对侧相对应区域的NAA/Cr值有显著性差异(P<0.01),前者较后者降低12.6±7.4%,其中4例可见到明确的乳酸峰。微创组血肿周围NAA/Cr与对侧相对应区域的NAA/Cr值无统计学显著性差异(P>0.05),且乳酸峰显示不明显。结论微创血肿清除术能有效清除血肿,可显著性改善脑出血后脑水肿形成,脑出血患者微创血肿清除术组与对照组DWI和MRS的变化从影像学方面佐证了微创血肿清除术效果。神经影像学不仅提供了形态结构上的依据,还提出了功能上的客观指标。
     第三部分急性脑卒中患者的无创脑水肿动态监护
     [摘要]目的动态监测急性脑卒中患者的脑水肿变化,旨在探讨微创血肿清除术的价值及无创脑水肿动态监护仪对急性脑卒中患者治疗的指导作用。方法43例急性脑卒中患者(均为发病24h内入院者)分为4组:脑出血31例(脑出血组),其中15例内科保守治疗(保守组),16例行微创血肿清除术(微创组);大面积脑梗死患者12例(脑梗死组)。所有病例均于入院后1、3、5、7d采用无创脑水肿动态监护仪动态检测综合扰动系数。结果脑出血组:术前即发病1d内无论是保守组或微创组患侧综合扰动系数均低于健侧,随着病程推移保守组出现患侧扰动系数升高并超过健侧,3d时达到高峰,持续7d以上。微创组则呈现3d时患侧综合扰动系数高于健侧,5d时两侧接近,7d时两侧基本正常。病程第3、5、7d时两组对比有显著性差异(P<0.01)。脑梗死组:入院后即刻检查患侧综合扰动系数即高于健侧,随着病程推移5d时达到高峰,持续7d以上。结论脑出血及大面积脑梗死患者综合扰动系数呈不对称性改变,随病程推移呈现动态变化,反应了水肿形成过程,微创血肿清除术能有效清除血肿,可显著性改善脑出血后脑水肿形成,无创脑水肿动态监护可动态评估患者脑水肿演变过程,对再出血的诊断以及急性脑卒中患者的治疗有一定的指导意义。
Part I Quantitative evaluation on the ischemic penumbra of the hyperacute cerebral infarction by diffusion weighted imaging、perfusion weighted imaging and MR spectroscopy
     [Abstract] Objective To explore the ischemic penumbra of the hyperacute cerebral infarction by diffusion weighted imaging (DWI)、perfusion weighted imaging (PWI) and MR spectroscopy (MRS), trying to produce the quantitative evaluation standards. Methods MRI was performed in 13 patients with clinically diagnosed hyperacute cerebral infarction from 2h to 6h after symptom onset, including DWI, PWI and MRS. All the patients were followed up by T2WI image to determine the final infarct area within 2 to 28 days. Diffusion and perfusion and metabolic changes were measured in the infarct area, ischemic penumbra and control area. Results (1) The average value of apparent diffusion coefficient (ADC) in the infarct center was 7.01×10-4mm2/s and that of rADC was 0.63, as for the ischemic penumbra, the average value of ADC was 9.36×10-4mm2/s, and that of rADC was 0.87. The difference was significan(tP<0.05). (2) PWI demonstrated the regional cerebral blood reduction or absence in 11 patients. However, in two patients with lacunar cerebral infarction, PWI is normal. (3) MRS changes in hyperacute cerebral infarction included elevated Lac peak and decreased NAA peak. (4) If PWI>DWI, the area with slightly decreased ADC value(<22%), elevated Lac and slightly decreased NAA(<14%) might be the ischemic penumbra; while the area with obviously decreased ADC(25%-53%), elevated Lac and obviously decreased NAA (16%-34%)is irreversible infarct area. Conclusion DWI combined with PWI and MRS can diagnose the hyperacute cerebral infarction and evaluate the change of ischemic penumbra.
     Part II The clinical research on the intracerebral hemorrhage with micro-damage puncture by diffusion weighted imaging and magnetic resonance spectroscopy
     Objective To observe the changes of the intracerebral hemorrhage (ICH) patient with conservative therapy and micro-damage puncture by diffusion weighted imaging (DWI) and magnetic resonance spectroscopy (MRS), trying to explore the effect of brain edema and clinical value of the ICH patients with micro-damage puncture from the neuroimaging aspect. Methods Twenty patients with ICH were divided into two groups randomly. Micro-damage puncture group (micro-damage puncture group): ten patients accepted the stereo-orientation micro-damage puncture during 6 to 24 hours after symptom onset; control group: ten patients accepted the conservative therapy. All patients did the MRI and functional MRI including DWI and MRS in the 9 to 11 days after the symptom onset. Results The difference of the perihematomal apparent diffusion coefficient (ADC) value between the micro-damage puncture and the control group was significant (P<0.01), and the perihematomal ADC value of the control group was higher than the micro-damage puncture group (P<0.05). The result was analyzed by magnetic resonance spectroscopy. The difference of the perihematomal NAA/Cr value between the focus side and the contralateral corresponding side was significant in the control group(P<0.01), and the focus side decreased 12.6±7.4% as compared with the contralateral corresponding side, four could be seen the obvious Lac peak among all patients. There was no statistically significant difference in the perihematomal NAA/Cr value between the focus side and the contralateral corresponding side in the micro-damage puncture group (P>0.05), no patient showed the Lac peak. Conclusion The micro-damage puncture can clear the hematoma effectively and reduce the formation of brain edema significantly after ICH, the changes of DWI and MRS between the micro-damage puncture group and the control group proved the effect of the micro-damage puncture from the neuroimaging aspect. The neuroimaging not only provided the evidence of the morphostructure but also the objective index of the function.
     Part III Brain edema monitoring by non-invasive dynamic method in acute cerebral stroke
     Objective To monitor the change of brain edema dynamicly in acute cerebral stroke patients, trying to find out the effect of micro-damage puncture, and the guiding role of non-invasive dynamic brain edema monitor for the treatment. Methods 43 cases with acute cerebral stroke(all admission within 24 hours after symptom onset)were divided into four groups randomly. 31 cases with intracerebral hemorrhage (ICH group): 15 cases accepted the conservative therapy(conservation group), 16 cases accepted the micro-damage puncture(micro-damage puncture group); 12 cases with cerebral infarct in large areas (infarct group). The changes of comprehensive disturbance coefficient in all cases were detected by non-invasive dynamic brain edema monitor in the 1st, 3rd, 5th, 7th day. Results ICH group: the comprehensive disturbance coefficient in the focus side was lower than the unaffected side in both groups in the first day before operation. With time going on, in the conservation group, the comprehensive disturbance coefficient in the focus side became higher than the unaffected side, which reached its peak in the 3rd day and continued for more than 7days. However, in the micro-damage puncture group, the coefficient in the focus side was higher than the unaffected side in the 3rd day, and then became approximately equal to the unaffected side in the 5th day and basically normal in the 7th day. The comprehensive disturbance coefficient was significantly different in the 3rd, 5th, 7th day (P<0.01). Infarction group: the comprehensive disturbance coefficient in the focus side was higher than the unaffected side at the time of admission, which reached its peak in the 3rd day and continued for more than 7days. Conclusion The comprehensive disturbance coefficient showed the asymmetric changes in both ICH and cerebral infarction in large areas, and took on the dynamic change, which reflects the course of edema formation. The micro-damage puncture can clear the hematoma effectively and reduce the formation of brain edema significantly after ICH. Non-invasive dynamic brain edema monitoring can evaluate the course of brain edema, and play a guiding role to the detection of recurrent hemorrhage and treatment of the patients with acute cerebral stroke to some degree.
引文
[1] Memezawa H, Smith ML, Siesjo BK. Penumbra, tissues salvaged by reperfusion following middle cerebral artery occlusion in rats. Stroke, 1992,23(4): 552-559.
    [2] Astrup J, Symon L, Branston NM, et al. Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia. Stroke, 1977, 8(1): 51-57.
    [3] Touzani O, Roussel S, MacKenzie ET. The ischaemic penumbra. Curr Opin Neurol, 2001,14(1): 83-88.
    [4] Rohl L, Ostergaard L, Simonsen CZ, et al. Viability thresholds of ischemic penumbra of hyperacute stroke defined by perfusion-weighted MRI and apparent diffusion coefficient. Stroke, 2001, 32(5): 1140-1146.
    [5] 赵天平. 磁共振弥散灌注加权成像对超急性脑梗塞的诊断研究及进展. 中国医学影像学杂志, 2003, 11(5): 382-384.
    [6] Oliveira-Filho J, Koroshetz WJ. Magnetic resonance imaging in acute stroke: clinical perspective. Top Magn Reson Imaging, 2000, 11(5): 246-258.
    [7] Desmond PM, Lovell AC, Rawlinson AA, et al. The value of apparent diffusion coefficient maps in early cerebral ischemia. AJNR Am J Neuroradiol, 2001,22(7): 1260-1267.
    [8] Liu KF, Li F, Tatlisumak T, et al. Regional variations in the apparent diffusion coefficient and the intracellular distribution of water in rat brain during acute focal ischemia. Stroke, 2001, 32(8): 1897-1905.
    [9] Hasegawa Y, Fisher M, Latour LL, et al. MRI diffusion mapping of reversible and irreversible ischemic injury in focal brain ischemia. Neurology, 1994, 44(8): 1484-90.
    [10] Albers GW. Expanding the window for thrombolytic therapy in acute stroke. The potential role of acute MRI for patient selection. Stroke, 1999, 30(10): 2230-2237.
    [11] Schellinger PD, Jansen O, Fiebach JB, et al. Monitoring intravenous recombinant tissue plasminogen activator thrombolysis for acute ischemic stroke with diffusion and perfusion MRI. Stroke, 2000, 31(6): 1318-1328.
    [12] Sobesky J, Weber OZ, Lehnhardt FG, et al. Does the mismatch match the penumbra? Magnetic resonance imaging and positron emission tomography in early ischemic stroke. Stroke, 2005, 36(5): 980-985.
    [13] Wild JM, Wardlaw JM, Marshall I, et al. N-acetylaspartate distribution in proton spectroscopic image of ischemic stroke: relationship to infarct appearance on T2-weighted magnetic resonance imaging. Stroke, 2000,31(12): 3008-3014.
    [14] Barker PB, Gillard JH, van Zijl PC, et al. Acute stroke: evaluation with serial proton MR spectroscopic imaging. Radiology, 1994, 192(3): 723-732.
    [1] Montes JM, Wong JH, Fayad PB, et al. Stereotactic computed tomographic-guided aspiration and thrombolysis of intracerebral hematoma: protocol and preliminary experience. Stroke, 2000, 31(4): 834-840.
    [2] 贾保祥,孙仁泉,顾征,等. 穿刺射流及液化技术治疗高血压脑出血的初步报告.中国神经精神病杂志, 1996,22(4): 233.
    [3] Qureshi AI, Tuhrim S, Broderick JP, et al. Spontaneous intracerebral hemorrhage. N Engl J Med, 2001, 344(19): 1450-1460.
    [4] Wagner KR, Xi G, Hua Y, et al. Ultra-early clot aspiration after lysis with tissue plasminogen activator in a porcine model of intracerebral hemorrhage: edema reduction and blood-brain barrier protection. J Neurosurg, 1999, 90(3): 491-498.
    [5] Deinsberger W, Vogel J, Fuchs C, et al. Fibrinolysis and aspiration of experimental intracerebral hematoma reduces the volume of ischemic brain in rats. Neurol Res, 1999, 21(5): 517-523.
    [6] Lee KR, Colon GP, Betz AL, et al. Edema from intracerebral hemorrhage: the role of thrombin. J Neurosurg, 1996, 84: 91-96.
    [7] Sotak CH. Nuclear magnetic resonance measurement of the apparent diffusion coefficient of tissue water and its relationship to cell volume changes in pathological states. Neurochem Int, 2004, 45(4): 569-582.
    [8] 张新江, 殷小平, 王苇, 等. 脑出血超早期灶周水肿性质的磁共振研究. 中华神经科杂志, 2003, 36(3): 227.
    [9] 姜亚平, 殷小平, 张新江, 等. 脑出血患者微创治疗中动态TCD监测的临床意义. 中华神经科杂志, 2002, 35(5): 264-267.
    [10] Le Roux P, Gilles RJ, McKinnon GC, et al. Optimized outer volume suppression for single-shot fast spin-echo cardiac imaging. J Magn Reson Imaging, 1998, 8 (5): 1022-1032.
    [11] Cecil KM, Hills EC, Sandel ME, et al. Proton magnetic resonance spectroscopy for detection of axonal injury in the splenium of the corpus callosum of brain-injured patients. J Neurosurg, 1998, 88(5): 795-801.
    [12] Altumbabic M, Peeling J, Del Bigio MR. Intracerebral hemorrhage in the rat: effects of hematoma aspiration. Stroke, 1998, 29(9): 1917-1922.
    [13] Kobayashi M, Takayama H, Suga S, et al. Longitudinal changes of metabolites in frontal lobes after hemorrhagic stroke of basal ganglia: a proton magnetic resonance spectroscopy study. Stroke, 2001, 32(10): 2237-2245.
    [14] Beauchamp NJ Jr, Barker PB, Wang PY, et al. Imaging of acute cerebral ischemia. Radiology, 1999, 212(2): 307-324.
    [15] Zazulia AR, DiringerMN, Videen TO, et al. Hypoperfusion without ischemia surrounding acute intracerebral hemorrhage. J CerebBlood Flow Metab, 2001, 21(7): 804- 810.
    [16] Carhuapoma JR, Wang PY, Beauchamp NJ, et al. Diffusion-weighted MRI and proton magnetic resonance spectroscopic imaging in the study of secondary neuronal injury after intracerebral hemorrhage. Stroke, 2000,31(3): 726-732.
    [17] Kidwell CS, Saver JL, Mattiello J, et al. Diffusion-perfusion MR evaluation of perihematomal injury in hyperacute intracerebral hemorrhage. Neurology, 2001, 57(9): 1611-1617.
    [18] Schellinger PD, Fiebach JB, Hoffmann K, et al. Stroke MRI in intracerebral hemorrhage: is there a perihemorrhagic penumbra? Stroke, 2003,34(7): 1674-1679.
    [19] Chu WJ, Mason GF, Pan JW, et al. Regional cerebral blood flow and magnetic resonance spectroscopic imaging findings in diaschisis from stroke. Stroke, 2002, 33(5): 1243-1248.
    [20] Warach S. Editorial comment-Is there a perihematomal ischemic penumbra? More questions and an overlooked clue. Stroke, 2003,34(7): 1680.
    [21] Forbes KP, Pipe JG, Heiserman JE. Diffusion-weighted imaging provides support for secondary neuronal damage from intraparenchymal hematoma. Neuroradiology, 2003, 45(6): 363-367.
    [1] Montes JM, Wong JH, Fayad PB, et al. Stereotactic computed tomographic-guided aspiration and thrombolysis of intracerebral hematoma: protocol and preliminary experience. Stroke, 2000, 31(4): 834-840.
    [2] 贾保祥, 孙仁泉, 顾征, 等. 穿刺射流及液化技术治疗高血压脑出血的初步报告. 中国神经精神疾病杂志, 1996,22(4): 233-235.
    [3] Miller JD, Becker DP, Ward JD, et al. Significance of intracranial hypertension in severe head injury. J Neurosurg, 1977,47(4): 503-516.
    [4] Cruz J. Head injury management in the United States. Crit Care Med. 1996,24(5): 897-898.
    [5] Shields CB, Mcgraw CP, Garretson HD, et al. Accurate intracranial pressure monitoring: technical note. Neurosurgey, 1984,14(5): 592-593.
    [6] Reod A, Marchbanks RJ, Bateman DE, et al. Mean intracranial pressure monitoring by non-invasive audiological technique: a pilot study. J Neurol Neurosurg Psychiatry, 1989, 52(5): 610-612.
    [7] Brown BH. Electrical impedance tomography (EIT): a review. J Med Engl Technol, 2003, 27 (3): 97-108.
    [8] 何为, 姚德贵, 田海燕. 电流场扰动方法和它在颅内异物成像中的应用. 中国医学物理学杂志, 2001,18(1): 20-22.
    [9] Grasso G, Alafaci C, Passalacqua M, et al. Assessment of human brain water content by cerebral bioelectrical impedance analysis: a new technique and its application to cerebral pathological conditions. Neurosurgery, 2002,50(5): 1064-1074.
    [10] 王健, 杨浩, 王平, 等. 高血压性脑出血及血肿周围组织水肿的无创性检测. 中华医学杂志, 2003, 83 (6): 471-474.
    [11] Broderick JP, Brott TG, Tomsick T, et al. Ultra-eraly evaluation of intracerebral hemorrhage. J Neurosurg, 1990,72 (2): 195-199.
    [12] Brott T, Broderick J, Kothari R, et al. Early hemorrhage growth in patients with intracerebral hemorrhage. Stroke, 1997, 28(1): 1-5.
    [13] Kazui S, Naritomi H, Yamamoto H, et al. Enlargement of spontaneous intracerebral hemorrhage. Incidence and time course. Stroke, 1996,27(10): 1783-1787.
    [14] Xi G, Keep RF, Hoff JT. Erythrocytes and delayed brain edema formation following intracerebral hemorrhage in rats. J Neurosurg, 1998,89(6): 991-996.
    [15] Haring HP, Dilitz E, Pallua A, et al. Attenuated corticomedullary contrast: An early cerebral computed tomography sign indicating malignant middle cerebral arteryinfarction. A case-control study. Stroke. 1999,30(5): 1076-1082.
    [16] Schwab S, Aschoff A, Spranger M, et al. The value of intracranial pressure monitoring in acute hemispheric stroke. Neurology, 1996, 47 (2): 393-398.
    [17] Ropper AH, James DE, Steger RM, et al. The symptoms and intracranial pressure of brain edema after stroke. Arch Neurol,1984, 41: 26.
    [18] Kliot M. Treatment of increased intracranial pressure using combined albumin and furosemide. ICP - 8, 1988, 240.
    [1] Rohl L, Ostergaard L, Simonsen CZ, et al. Viability thresholds of ischemic penumbra of hyperacute stroke defined by perfusion-weighted MRI and apparent diffusion coefficient. Stroke, 2001,32(5): 1140-1146.
    [2] Heiss WD, Kracht LW, Thiel A, et al. Penumbral probability thresholds of cortical flumazenil binging and blood flow predicting tissue outcome in patients with cerebral ischaemia. Brain, 2001,124(pt 1): 20-29.
    [3] Astrup J, Symon L, Branston NM, et al. Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia. Stroke, 1977, 8(1): 51-57.
    [4] Hakim AM. Ischemic penumbra: the therapeutic window. Neurology, 1998,51(3 Suppl 3): s44-s46.
    [5] Baron JC. Mapping the ischaemic penumbra with PET: implications for acute
    [17] Franke C, Brinker G, Pillekamp F, et al. Probability of metabolic tissue recovery after thrombolytic treatment of experimental stroke: a magnetic resonance spectroscopic imaging study in rat brain. J Cerebral Blood Flow Metab, 2000,20(3): 583-591.
    [18] Warach S, Gaa J, Siewert B, et al. Acute human stroke studied by whole brain echo planar diffusion-weighted magnetic resonance imaging. Ann Neurol, 1995:37(2):231-241.
    [19] Wang Y, Hu W, Perez-Trepichio AD. Brain tissue sodium is a ticking clock telling time after arterial occlusion in rat focal cerebral ischemia. Stroke 2000,31(6): 1386-1392.
    [20] Nighoghossian N, Hermier M, Berthezene Y, et al. Early diagnosis of hemorrhagic transformation: diffusion/perfusion-weighted MRI versus CT scan. Cerebrovasc Dis, 2001,11(3): 151-156.
    [21] Desmond PM, Lovell AC, Rawlinson AA, et al. The value of apparent diffusion coefficient maps in early cerebral ischemia. AJNR Am J Neuroradiol, 2001,22(7): 1260-1267.
    [22] Liu KF, Li F, Tatlisumak T, et al. Regional variations in the apparent diffusion coefficient and the intracellular distribution of water in rat brain during acute focal ischemia. Stroke, 2001, 32(8): 1897-1905.
    [23] Karonen JO, Liu Y, Vanninen RL, et al. Combined perfusion and diffusion-weighted MR imaging in acute ischemic stroke during the 1st week: a longitudinal study. Radiology, 2000,217(3): 866-894.
    [24] Fiehler J, Fiebach JB, Gass A, et al. Diffusion-weighted imaging in acute stroke- a tool of uncertain value? Cerebrovasc Dis, 2002, 14(3-4): 187-196.
    [25] Parsons MW, Barber PA, Chalk J, et al. Diffusion and perfusion-weighted MRI response to thrombolysis in stroke. Ann Neurol, 2002,51(1): 28-37.
    [26] Abe O, Aoki S, Shirouzu I, et al. MR imaging of ischemic penumbra. Eur J Radiol, 2003,46(1): 67-78.
    [27] Carano RA, Li F, Irie K, et al. Multispectral analysis of the temporal evolution ofcerebral ischemia in the rat brain. J Magn Reson Imaging, 2000, 12(6): 842-858.
    [28] Thijs VN, Adami A, Neumann-Haefelin T, et al. Relationship between severity of MR perfusion deficit and DWI lesion evolution. Neurology, 2001, 57(7): 1205-1211.
    [29] Jacobs MA, Zhang ZG, Knight RA, et al. A model for multiparametertric MRI tissue characterization in experimental cerebral ischemia with histological validation in rat. Stroke, 2001,32(4): 943-949.
    [30] Wu O, Koroshetz WJ, Ostergaard L, et al. Predicting tissue outcome in acute human cerebral ischemia using combined diffusion-and perfusion-weighted MR imaging. Stroke, 2001,32(4): 933-942.
    [31] Keir SL, Wardlaw JM. Systematic review of diffusion and perfusion imaging in acute ischemic stroke. Stroke, 2000, 31(11): 2723-2731.
    [32] Maton B, Londono A, Sawrie S, et al. Postictal stability of proton magnetic resonance spectroscopy imaging ratios in temporal lobe epilepsy. Neurology, 2001,56(2): 251-253.
    [33] Rosenbery GA, White J, Gasparovic C, et al. Effect of hypoxia on cerebral measured by proton nuclear magnetic resonance spectroscopy in rats. Stroke, 1991,22(1): 73-79.
    [34] Barker PB, Gillard JH, van Zijl PC, et al. Acute stroke: evaluation with serial proton MR spectroscopic imaging. Radiology, 1994, 192(3): 723-732.
    [35] Rother J, Jonetz-mentzel L, Fiala A, et al. Hemodynamic assessment of acute stroke using dynamic single-slice computed tomographic perfusion imaging. Arch Neurol, 2000, 57(8): 1161-1166.
    [36] Koenig M, Kraus M, Theek C, et al. Quantitative assessment of the ischemic brain by means of perfusion-related parameters derived from perfusion CT. Stroke, 2001, 32 (2): 431-437.
    [37] Nabavi DG, Cenic A, Henderson S, et al. Perfusion mapping using computed tomography allows accurate prediction of cerebral infarction in experimental brain ischemia. Stroke, 2001, 32 (1): 175-183.
    [38] Kaufmann AM, Firlik AD, Fukui MB, et al. Ischemic core and penumbra in brain stroke. Stroke, 1999, 30(1): 93-99.
    [39] Hatazawa J, Shimosegawa E, Toyashima H, et al. Cerebral blood volume in acute brain infarction: A combined study with dynamic susceptibility contrast MRI and 99mTc-HMPAP-SPECT. Stroke, 1999, 30(4): 800-806.
    [1] Singhal A, Lucas A. Early origins of cardiovascular disease: is there a unifying hypothesis? Lancet, 2004, 15, 363(9421): 1642-1645.
    [2] Zazulia AR, Diringer MN, Derdeyn CP, et al. Progression of mass effect after intracerebral hemorrhage. Stroke, 1999,30(6): 1167-1173.
    [3] Lee KR, Kawai N, Kim S, et al. Mechanisms of edema formation after intracerebral hemorrhage: effects of thrombin on cerebral blood flow, blood-brain barrier permeability, and cell survival in rat model. J Neurosurg, 1997,86(2): 272-278.
    [4] Gebel JM, Broderick JP. Intracerebral hemorrhage. Neurol Clinics, 2000,18(2):419-438.
    [5] Fujii Y, Takeuchi S, Sasaki O, et al. Multivariate analysis of predictors of hemotoma enlargement in spontaneous intracerebral hemorrhage. Stroke, 1998,29(5): 1160-1166.
    [6] Fujii Y, Takeuchi S, Harada A, et al. Hemostatic activation in spontaneous intracerebral hemorrhage. Stroke, 2001,32(4): 883-890.
    [7] Heiss WD, Kracht LW, Thiel A, et al. Penumbral probability thresholds of cortical flumazenil binding and blood flow predicting tissue outcome in patients with cerebral ischemia. Brain, 2001,124(1): 20-29.
    [8] Mayer SA, Lignelli A, Fink ME, et al. Perilesional blood flow and edema formation in acute intracerebral hemorrhage: a SPECT study. Stroke, 1998,29(9): 1791-1798.
    [9] Nath FP, Kellgh PT, Jenkins A, et al. Effects of experimental intracerebral hemorrhage on blood folw, capallar permeability and histochemisty. J Neurosurg, 1987,66 (5): 555-562.
    [10] Kobari M, Goton F, Tomita M, et al. Bilateral hemispheric reduction of cerebral blood volume and blood flow immediately after experimental cerebral hemorrhage in cats. Stroke, 1988,19 (4): 991-996.
    [11] Yang GY, Betz AL, Chenevert TL, et al. Experimental intracerebral hemorrhage: relationship between brain edema, blood flow and blood-brain barrier permeability in rats. J Neurosurg, 1994,81(1): 93-102.
    [12] Zazulia AR, DiringerMN, Videen TO, et al. Hypoperfusion without ischemia surrounding acute intracerebral hemorrhage. J CerebBlood Flow Metab, 2001, 21(7): 804- 810.
    [13] Carhuapoma JR, Wang PY, Beauchamp NJ, et al. Diffusion-weighted MRI and proton magnetic resonance spectroscopic imaging in the study of secondary neuronal injury after intracerebral hemorrhage. Stroke, 2000,31(3): 726-732.
    [14] Kidwell CS, Saver JL, Mattiello J, et al. Diffusion-perfusion MR evaluation of perihematomal injury in hyperacute intracerebral hemorrhage. Neurology, 2001,57(9): 1611-1617.
    [15] Schellinger PD, Fiebach JB, Hoffmann K, et al. Stroke MRI in intracerebral hemorrhage: is there a perihemorrhagic penumbra? Stroke, 2003,34(7): 1674-1679.
    [16] Hirano T, Read SJ, Abbott DF, et al. No evidence of hypoxic tissue on 18F-fluoromisonidazole PET after intracerebral hemorrhage. Neurology, 1999, 53(9): 2179-2182.
    [17] Chu WJ, Mason GF, Pan JW, et al. Regional cerebral blood flow and magnetic resonance spectroscopic imaging findings in diaschisis from stroke. Stroke, 2002, 33(5): 1243-1248.
    [18] Warach S. Editorial comment-Is there a perihematomal ischemic penumbra? More questions and an overlooked clue. Stroke, 2003,34(7): 1680.
    [19] Forbes KP, Pipe JG, Heiserman JE. Diffusion-weighted imaging provides support for secondary neuronal damage from intraparenchymal hematoma. Neuroradiology, 2003, 45(6): 363-367.
    [20] Belloni PN, Carney DH, Nicolson GL, et al. Organ–derived microvessel endothelial cell exibit different responsiveness to thrombin and other growth factors. Microvasc Res, 1993,43:20-45.
    [21] Lee KR, Colon GP, Betz AL, et al. Edema from intracerebral hemorrhage: the role of thrombin. J neurosurg, 1996,84(1): 91-96.
    [22] Xi G, Keep RF, Hua Y, et al. Attenuation of thrombin-induced brain edema by cerebral thrombin preconditioning. Stroke, 1999,30(6): 1247-1255.
    [23] Striggow F, Riek M, Breder J, et al. The protease thrombin is an endogenous mediator of hippocampal neuroprotection against ischemia at low concentrations but causes degeneration at high concentrations. Proceedings of the National Academy of Sciences of the United States of America, 2000,97:2264-2269.
    [24] Xi G, Reiser G, Keep RF. The role of thrombin and thrombin receptors in ischemic, hemorrhagic and traumatic brain injury: deleterious or protective? J Neurochem, 2003, 84(1): 3-9.
    [25] Lee KR, Drury I, et al. Seizures induced by intracerebral injection of thrombin: a model of intracerebral hemorrhage. J Neurosurg, 1997,87(1): 73-78.
    [26] Xi G, Keep RF, Hoff JT. Erythrocytes and delayed brain edema formation following intracerebral hemorrhage in rats. J Neurosurg, 1998,89(6): 991-996.
    [27] Xi G, Hua Y, Bhasin R, et al. Mechanisms of edema formation after intracerebral hemorrhage: effects of extravasated red blood cells on blood flow and blood-brain barrier integrity. Stroke, 2001,32(12): 2932-2938.
    [28] Huang F, Xi G, Keep RF, et al. Brain edema after intracerebral hemorrhage: the role of hemoglobin breakdown products. Soc Neurosci, 2000,26: 2071.
    [29] Huang F, Xi G, Keep RF, et al. Brain edma after experimental intracerebral hemorrhage: role of hemoglobin degradation products. J Neurosurg, 2002,96(2): 287-293.
    [30] Suttner DM, Dennery PA. Reversal of HO-1 related cytoprotection with increased expression is due to reactive iron. FASEB J, 1999,13:1800-1809.
    [31] Wu J, Hua Y, Keep RF, et al. Oxidative brain injury from extravasated erythrocytes after intracerebral hemorrhage. Brain Res, 2002, 953: 45-52.
    [32] Connor JR, Menzies SL, Burdo JR, et al. Iron and iron management proteins in neurobiology. Pediatr Neurol, 2001, 25(2): 118-129.
    [33] Wu J, Hua Y, Keep RF, et al. Iron and iron-handling proteins in the brain after intracerebral hemorrhage. Stroke, 2003, 34(12): 2964-2969.
    [34] Wagner KR, Sharp FR, Ardizzone TD, et al. Heme and iron metabolism: role in cerebral hemorrhage. J Cereb Blood Flow Metab, 2003,23(6): 629-652.
    [35] Goldstein L, Teng ZP, Zeserson E, et al. Hemin induces an iron-dependent, oxidative injury to human neuron-like cells. J Neurosci Res, 2003, 73(1): 113-121.
    [36] Wang X, Mori T, Sumii T, et al. Hemoglobin-induced cytotoxicity in rat cerebral cortical neurons: caspase activation and oxidative stress. Stroke, 2002, 33(7): 1882-1888.
    [37] Greenberg JH, Uematsu PD, Araki N, et al. Cytosolic free calcium during focal cerebral ischemia and the effects of nimodipine on calcium and histologic damage.Stroke, 1990,21[12 Suppl]: IV722-IV77.
    [38] Lysko PG, Lysko KA, Webb CL, et al. Neuroprotective effects of carvediol, a new antihypertensive, at the Nmethyl-D-aspartate receptor. Neurosci Lett, 1992,148(1): 34-38.
    [39] Wagner KR, Xi G, Kleinholz M, et al. Lobar intracerebral hemorrhage model in pigs: rapid edema development in perihematomal white matter. Stroke, 1996,27(3): 490-497.
    [40] Wagner KR, Xi G,Hua Y, et al. Early metabolic alterations in edematous perihematomal brain regions following experimental intracerebral hemorrhage. J Neurosurg, 1998,88(6): 1058-1065.
    [41] Xue M, Del Bigio MR. Intracortical hemorrhage injury in rats: relationship between fractions and brain cell death. Stroke, 2000,31(7): 1721-1727.
    [42] Del Bigio R, Yan HJ, Baist R, et al. Experimental hemorrhage in rats. Magnetic reing and histopathological correlates. Stroke, 1996, 27(11): 2312-2320.
    [43] Ott L, Mcclain CJ, Gillespie M, et al. Cytokines and metabolic dysfunction after severe head injury. J Neurotrauma, 1994,11(5): 447-472.
    [44] Gong C, Hoff JT, Keep RF. Acute inflammatory reaction following experimental intracerebral hemorrhage in rat. Brain Res, 2000,871(1): 57-65.
    [45] Xi G, Hua Y, Richard F, et al. Systemic Complement Depletion Diminishes Perihematomal Brain Edema in Rats. Stroke, 2001, 32 (1): 162-167.
    [46] Hua Y, Xi G, Keep RF, et al. Complement activation in the brain after experimental intracerebral hemorrhage. J Neurosurg, 2000,92(6): 1016-1022.
    [47] Hua Y, Xi G, Keep RF, et al. N-acetylheparin, a non-anticoagulant, diminishes brain edema after experimental intracerebral hemorrhage. Stroke, 2000,31(1): 339.
    [1] Yang GY, Betz AL, Chenevert TL, et al. Experimental intracerebral hemorrhage: relationship between brain edema, blood flow and blood-brain barrier permeability in rats. J Neurosurg, 1994,81(1): 93-102.
    [2] Xi G, Keep RF, Hoff JT. Pathophysiology of brain edema formation. Neurosurg Clin N Am, 2002, 13(3): 371-383.
    [3] Hoff JT, Xi G. Brain edema from intracerebral hemorrhage. Acta Neurochir Suppl, 2003, 86: 11-15.
    [4] Hoff JT. Intracerebral hemorrhage: clinical and experimental aspects. Clin J Nerv Ment Dis, 1999,25(1): 3.
    [5] Fernandes HM, Gregson B, Siddique S, et al. Surgery in ICH: The Uncertainty Continues. Stroke, 2000, 31(10): 2511-2516.
    [6] Mendelow AD, Gregson BA, Fernandes HM, et al. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial intracerebralhematomas in the International Surgical Trial in Intracerebral Hemorrhage (STICH): a randomised trial. Lancet, 2005,365(9457): 387-397.
    [7] Teernstra OP, Evers SM, Lodder J, et al. Stereotactic treatment of ICH by means of a plasminogen activator: a multicenter randomized controlled trial (SICHPA). Stroke, 2003, 34(4): 968-974.
    [8] Nguyen JP, Decq P, Brugieres P,et al. A technique for stereotactic aspiration of deep intracerebral hematomas under CT control using a new device. Neurosurgery, 1992,31(2): 330-334.
    [9] Montes JM, Wong JH, Fayad PB, et al. Stereotactic computed tomographic- guided aspiration and thrombolysis of intracerebral hematoma: protocol and preliminary experience. Stroke, 2000,31(4): 834-840.
    [10] Tyler D, Mandybur G.. Interventional MRI-guided stereotactic aspiration of acute/subacute intracerebral hematomas. Stereotact Funct Neurosurg, 1999, 72(2-4): 129-135.
    [11] Broccard AF, Vannay C, Feihl F, et al. Impact of low pulmonary vascular p ressure on ventilator-induced lung injury. Crit Care Med, 2002, 30(10): 2183-2190.
    [12] Wagner KR, Xi G, Hua Y, et al. Ultra-early clot aspiration after lysis with tissue plasminogen activator in a porcine model of intracerebral hemorrhage: edema reduction and blood-brain barrier protection. J Neurosurg, 1999,90(3): 491-498.
    [13] Wagner KR, Dwyer BE. Hematoma removal, heme, and heme oxygenase following hemorrhagic stroke. Ann NY Acad Sci, 2004, 1012: 237-251.
    [14] Deinsberger W, Vogel J, Fuchs C, et al. Fibrinolysis and aspiration of experimental intracerebral hematoma reduces the volume of ischemic brain in rats. Neurol Res, 1999,21(5): 517-523.
    [15] Fujii Y, Tanaka R, Takeuchi S, et al. Hematoma enlargement in spontaneous intracerebral hemorrhage. J Neurosurg, 1994,80(1): 51-57.
    [16] Chen ST, Chen SD, Hsu CY, et al. Progression of hypertensive intracerebral hemorrhage. Neurology, 1989,39(11): 1509-1514.
    [17] Qureshi AI, Mohammad YM, Yahia AM, et al. A prospective multicenter study to evaluate the feasibility and safety of aggressive antihypertensive treatment in patients with acute ICH. J Intensive Care Med, 2005, 20(1): 34-42.
    [18] Nau R. Osmotherapy for elevated intracranial pressure: a critical reappraisal. Clin Pharmacokinet, 2000,38 (1): 23-40.
    [19] Goldstein M, Sartorius N. Recommendations on Stroke Prevention, Diagnosis and Therapy: report of the WHO task force on stroke and other cerebrovascular disorders. Stroke, 1989,20(10): 1407-1431.
    [20] Belayev L, Liu YT, Zhau WZ. Human albumin therapy of acute ischemic stroke marked neuroprotective efficacy at moderate doses and with broad therapy window. Stroke, 2001,32 (2) : 553-560.
    [21] Lema PP, Girard C, Vachon P. Evaluation of dexamethasone for the treatment of ICH using a collagenase-induced intracerebral hematoma model in rats. J Vet Pharmacol Ther, 2004, 27(5): 321-328.
    [22] Villalona-Calero MA, Eckardt J, Burris H, et al. A phase I trial of human corticotropin-releasing factor (hCRF) in patients with peritumoral brain edema. Ann Oncol, 1998,9(1): 71-77.
    [23] Homeister JW, Lucchesi BR. Complement activation and inhibition in myocardial ischemia and reperfusion injury. Annu Rev Pharmacol Toxicol,1994,34:17-40.
    [24] Amsterdam EA, Stahl GL, Pan HL, et al. Limitation of reperfusion injury by a monoclonal antibody to C5a during myocardial infarction in pigs. Am J Physiol,1995,(1Pt2): H448-H457.
    [25] Hua Y, Xi G, Keep RF, et al. Complement activation in the brain after experimental intracerebral hemorrhage. J Neurosurg, 2000, 92(6): 1016-1022.
    [26] Hua Y, Xi G, Keep RF, et al. N-acetylheparin, a nonanticoagulant, diminishes brain edema after experimental intracerebral hemorrhage. Stroke, 2000, 31(1): 339.
    [27] Xi G, Hua Y, Keep RF, et al. Systemic complement depletion diminishes perihematomal brain edema in rats. Stroke, 2001, 32(1): 162-167.
    [28] Wang X, Mori T, Sumii T, et al. Hemoglobin-induced cytotoxicity in rat cerebralcortical neurons caspase activation and oxidative stress. Stroke, 2002, 33(7): 1882-1888.
    [29] Gong C, Boulis N, Qian J, et al. Intracerebral hemorrhage-induced neuronal death. Neurosurgery, 2001, 48(4): 875-882.
    [30] Eckman MH, Rosand J, Knudsen KA, et al. Can patients be anticoagulated after ICH? A decision analysis. Stroke, 2003, 34(7): 1710-1716.
    [31] Mayer SA, Brun NC, Broderick J, et al. Safety and Feasibility of Recombinant Factor VIIa for Acute ICH. Stroke, 2005, 36(1): 74-79.
    [32] Lee CZ, Xu B, Hashimoto T, et al. Doxycycline suppresses cerebral matrix metalloproteinase-9 and angiogenesis induced by focal hyperstimulation of vascular endothelial growth factor in a mouse model. Stroke, 2004, 35(7): 1715-1719.
    [33] Montaner J, Fernandez-Cadenas I, Molina CA, et al. Safety profile of tissue plasminogen activator treatment among stroke patients carrying a common polymorphism (C-1562T) in the promoter region of the matrix metalloproteinase-9 gene. Stroke, 2003, 34(12): 2851-2855.
    [34] Rosenberg GA, Navratil M. Metalloproteinase inhibition blocks edema in intracerebral hemorrhage in the rat. Neurology, 1997, 48(4): 921-926.
    [35] Gary A, Edward Y. Atrial natriuretic peptide blocks hemorrhagic brain edema after 4-hour delay in rats. Stroke, 1995, 26(5): 874-877.
    [36] Ardizzone TD, Lu A, Wagner KR, et al. Glutamate receptor blockade attenuates glucose hypermetabolism in perihematomal brain after experimental ICH in rat. Stroke, 2004, 35(11): 2587-2591.
    [37] Wagner KR, Hua Y, de Courten-Myers GM, et al. Tin-mesoporphyrin, a potent heme oxygenase inhibitor, for treatment of intracerebral hemorrhage: in vivo and in vitro studies. Cell Mol Biol, 2000, 46(3): 597-608.
    [38] Lamb NJ, Quinlan GJ, Mumby S, et al. Haemoxygenase shows pro-oxidant activity in microsomal and cellular systems: implications for the release of low-molecular-mass iron. Biochem J, 1999, 344(pt 1): 153-158.
    [39] Nakamura T, Keep RF, Hua Y, et al. Deferoxamine-induced attenuation of brain edema and neurological deficits in a rat model of ICH. J Neurosurg, 2004, 100(4): 672-678.
    [40] Hamada R, Matsuoka H. Antithrombin therapy for intracerebral hemorrhage. Stroke, 2000, 31(3): 794-795.
    [41] Masada T, Hua Y, Xi G, et al. Attenuation of intracerebral hemorrhage and thrombin-induced brain edema by overexpression of interleukin-1 receptor antagonist. J Neurosurg, 2001, 95(4): 680-686.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700