非酒精性脂肪性肝病临床特征及其褪黑素防治作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     越来越多的研究证实非酒精性脂肪性肝病(Non-alcoholic fatty liver disease, NAFLD)可进展为终末期肝病及肝细胞癌。NAFLD疾病谱广泛,包括单纯性脂肪变性到由其演变的脂肪性肝炎、脂肪性肝纤维化和肝硬化。NAFLD影响三分之一的一般人群的健康,并涉及到任何年龄和种族,是一般人群第二主要的死亡原因。NAFLD已经显示是重大的公共卫生问题。在中国,NAFLD作为肝硬化的原因之一,也许很快会超过乙型肝炎所致的肝硬化,成为慢性肝病最常见的原因。有效地防治NAFLD可降低终末期肝病的发生率和肝病相关的死亡率,但目前缺乏有效的治疗。因此,探寻有效的治疗NAFLD的药物有非常重要的意义。褪黑素(Melatonin,MEL)主要是松果体合成的吲哚类物质,有许多生理和生化的功能,具有强大的抗氧化特性,能清除活性氧(ROS),能抗衰老、抗癌、抗肝脏损伤和动脉粥样硬化。研究表明MEL对人及实验动物脂质代谢有影响,可降低肝内TG和TC沉积,并对药物性、毒物性、免疫性及胆汁郁积性等急慢肝损害有治疗作用。但迄今为止,未见MEL防治NAFLD的相关报道。考虑到MEL的降血脂、抗氧化和肝脏保护作用,可能对NAFLD有防治作用。因此,设计本课题,在分析大样本体检人群NAFLD易患因素及临床生化参数的基础上,建立高脂饮食诱导的NAFLD大鼠模型,同时观察MEL对其的防治作用及可能机制。
     目的
     (1)了解NAFLD在人群中的发病情况以及其临床特点。
     (2)观察褪黑素对高脂饮食诱导的大鼠NAFLD作用,并对其作用机制进行探讨。
     方法
     (1)2006年7月~2006年8月某单位中老年职工体检人群,进行简单调查问卷,调查内容包括年龄、性别、饮酒史、既往疾病史、药物及毒物接触史、病毒性肝炎病史。清晨空腹状态下测量人体测量学指标,包括身高、体重、坐位安静状态下测收缩压和舒张压,并计算体重指数(BMI)。肝脏超声检查。全自动生化分析仪检测血清丙氨酸氨基转移酶(ALT)、血清天门冬氨酸氨基转移酶(AST)、血清甘油三酯(TG)、总胆固醇(TC)、极低密度脂蛋白(VLDL)、空腹血糖(FPG)。所有诊断为NAFLD的患者中,选取临床资料和血标本较为完整的78例患者,进入NAFLD组。体检人群中,临床、生化及B超检查排除脂肪肝、高血压、高血脂、糖尿病等疾病,按照病例对照研究方法,选取年龄和性别相匹配的78例进入正常对照组。放射免疫法(RIA)测定血浆空腹胰岛素水平,计算胰岛素抵抗指数(IRI)。
     (2)雄性Wistar大鼠50只,随机分成5组,每组10只。正常对照组给予普通饲料,模型组、MEL低剂量组、MEL中剂量组、MEL高剂量组予以高脂饮食12周。各MEL干预组依次给予MEL(含≤1%无水乙醇) 2.5mg·kg-1?d-1,5.0mg·kg-1?d-1和10.0 mg·kg-1?d-1腹腔注射,正常对照组、模型组给予等量生理盐水(含1%无水乙醇)腹腔注射,12周末处死动物,称体重及肝湿重并计算肝指数,进行肝脏病理学检查,生物化学方法测定ALT,AST,TG,TC,FFA水平及血糖和血清胰岛素含量;生物化学方法检测肝匀浆TG,TC,FFA,超氧化物歧化酶(SOD)、谷胱苷肽过氧化物酶(GSH-Px)活性和丙二醛(MDA)含量,采用稳态模型评估(HOMA)法公式“HOMA-IRI=(空腹胰岛素×空腹血糖)/22.5”评估胰岛素抵抗指数(insulin resistance index , IRI);稳态寿命荧光光谱法检测肝脏和小肠微粒体甘油三酯转运蛋白(MTP)活性,Western blot检测肝脏和小肠微粒体MTP蛋白表达。免疫组织化学法和Western blot测定肝脏细胞色素P450 2E1(CYP 2E1)的表达。
     结果
     (1)1277例受检者中,共检出脂肪性肝病453例,现患率为35.47%(453/1277)。其中男性脂肪性肝病236例,占检出总数52.10%,女性脂肪性肝病217例,占检出总数47.90%,男性脂肪性肝病的检出率明显高于女性(P<0.01)。脂肪性肝病检出率最高的年龄组为51~60岁组,检出率为45.34%;男性中脂肪性肝病检出率最高的年龄组为51~60岁组,检出率为55.29%;女性中脂肪性肝病检出率最高的年龄组为61~70岁组,检出率为44.68%;在≤60岁人群中,男性脂肪性肝病的检出率显著高于女性(P<0.01)。453例脂肪性肝病患者中,非酒精性脂肪性肝病占75.72%(343/453)NAFLD组中,合并代谢综合征中高血压、肥胖、高脂血症和2型糖尿病四种组分2项或2项以上者53例(67.95%,53/78),合并代谢代谢综合征者26例(33.33%,26/78)。与正常对照组比较,NAFLD组BMI, Sbp, Dbp, ALT, AST, TG, TC, VLDL, FPG, FINS和IRI值显著升高(P<0.01)。
     (2)12周高脂饮食成功复制大鼠NAFLD模型。与正常对照组比较,血清ALT,FPG,AST,TC, FFA值和HOMA-IRI(P<0.05)明显升高;肝匀浆TG, TC, FFA(P<0.05)值明显升高,肝匀浆SOD,GSH-Px水平明显减低(P <0.01,P<0.05),但MDA值升高(P<0.05);肝脏微粒体CYP2E1的表达和蛋白含量明显增加(P<0.05);肝脏和小肠微粒体的MTP活性和蛋白表达量明显降低(P <0.05);模型组大鼠肝湿重及肝指数明显增高(P<0.01),肝细胞呈中-重度脂肪变性,肝小叶内见灶性炎细胞浸润和点状坏死。药物干预组中以MEL中、高剂量组药理作用明显。与模型组比,各MEL干预组大鼠肝细胞脂肪变性及炎性细胞浸润有不同程度的改善,多呈轻-中度脂肪变性,其中MEL中等剂量(5.0mg/kg)及高剂量(10.0mg/kg)干预显著改善NAFLD大鼠肝脏病理变化(P<0.001),明显减低炎症活动度积分(P<0.05)。与模型组比较,MEL中、高剂量组肝湿重及肝指数明显减低(P<0.05);高剂量MEL干预组血清ALT和AST降低有显著差异(P<0.05);高剂量MEL干预组肝脏TC、TG(P<0.01, P<0.05)和中等剂量干预组肝脏TC﹙P<0.05)降低有显著意义;MEL低、中、高剂量干预组血清FFA以及MEL中、高剂量干预组肝组织FFA降低均有显著差异(P<0.05); MEL中、高剂量干预组肝脏CYP 2E1表达和高剂量组肝脏微粒体CYP 2E1蛋白量降低有显著意义( P<0.05);MEL中、高剂量干预组肝脏微粒体MTP活性升高,但没有显著差异; MEL高剂量干预组大鼠小肠微粒体MTP活性升高有显著差异( P<0.05); MEL高剂量干预组肝脏和小肠微粒体MTP蛋白表达升高有显著差异( P<0.05)。
     结论
     1.本次体检人群中脂肪性肝病检出率为35.47%,其中NAFLD占75.72%。NAFLD发病与肥胖、高脂血症、糖尿病和代谢综合征关系密切。
     2.长期高脂饮食诱导的NAFLD大鼠肝脏和小肠MTP活性及蛋白表达下降。
     3.MEL明显改善高脂饮食诱导的NAFLD大鼠肝组织形态学变化、血清转氨酶以及肝脏脂质,对NAFLD的形成有明显的防治作用,且与剂量呈正相关。其作用机制可能与MEL改善氧应激,抑制脂质过氧化反应,干预肝脏和小肠脂质代谢有关。
Background
     Non-alcoholic fatty liver disease (NAFLD) is an increasingly recognized condition that may progress to end-stage liver disease and hepatocellular carcinoma, which ranges from simple steatosis to steatohepatitis, advanced fibrosis, and cirrhosis. NAFLD is present in up to one-third of the general population and affects any age and ethnic group, making this liver disease the second leading cause of death in the general population. NAFLD has emerged as a substantial public health concern throughout the world. In China, NAFLD may soon be rivaling chronic hepatitis B as a cause of cirrhosis and become the commonest cause of chronic liver disease. To protect and treat NAFLD efficaciously can lower the incidence of end-stage liver disease and the mortality related to liver disease. However, there is lack of effective treatment for NAFLD at present. Therefore, it is of significance to explore the efficaciously pharmacological agents for NAFLD. Melatonin, a lipophilic indoleamine derived from tryptophan, is synthesized chiefly by the pineal gland but has recently been detected in many other tissues as well. It has a variety of important physiological and biochemical functions. It also has been shown to be a powerful antioxidant which scavenges reactive oxygen and reactive nitrogen species. The antioxidant properties of melatonin have been shown experimentally to protect against aging, cancer, liver injury, and atherosclerosis. Melatonin shows marked protective effects against liver injuries in experimental animals induced by a variety of agents and processes. However, there is not any report about preventive and therapeutic effect of melatonin on NAFLD until now. Therefore, we investigate the fatty liver disease incidence and its clinical characters, as well as establish rat model of NAFLD in order to investigate the effects of melatonin on NAFLD and its possible mechanism.
     Objective
     (1)To investigate non-alcoholic fatty liver disease incidence and its clinical characters.
     (2)To establish rat model of non-alcoholic fatty liver disease induced by high fat diet in order to observe the effects of melatonin on rat non-alcoholic fatty liver disease and investigate its possible mechanism.
     Methods
     (1)Questionnaire investigation were taken by middle-old employees in a certain enterprise between July and August 2006. It contains age, sex, history of drinking, past medical history, history of taking drugs and poisons, history of viral hepatitis. Authropometry indexes were measured on an empty stomach in early morning, including height, weight, Sbp, Dbp, BMI is calculated out by height and weight. Liver ultrasonic inspection was carried out, serum ALT, AST, TG, TC, VLDL, FPG were detected by automatic biochemistry analyzer. 78 NAFLD patients with intact clinical data and blood sample were choosed to become the NAFLD group. 78 age- and sex- matched normal subjects were choosed from all health examination subjects to become the normal control group, excluded fatty liver disease, hypertension, hyperlipemia, diabetes and other diseases, with case control study method. Fasting insulin were detected by RIA, HOMA-IRI were calculated by“IRI =(FINS×FPG)/22.5”.
     (2)Fifty male Wistar rats were divided into five groups with ten for each randomly. The melatonin in low does, moderate does, high does group and model group were fed with high fat diet while the normal control group with common diet for 12 weeks. Melatonin ( contain≤1%dehydrated alcohol ) was intraperitoneally injected to the rats in various melatonin groups ( 2.5mg/kg, 5.0mg/kg and 10.0mg/kg , respectively ) and equal does of saline ( contain 1%dehydrated alcohol ) to control and model group once a day. After 12 weeks experiment, all rats were sacrificed. Histopathological changes in liver, liver humid weight and liver index were observed. The level of AST, ALT, glucose, insulin in serum; TG, TC, and FFA in serum and liver tissue homogenates; SOD,MDA and GSH-Px in liver tissue homogenates were measured by biochemical methods. IR was assessed by the homeostasis model assessment (HOMA) method using the formula“IRI=(FBG x FINS) /22.5”. MTP activities in liver and small intestine microsome were observed by Fluorescence Lifetime and Steady State Spectrometer, the level of MTP protein in liver and small intestine were determined by western blot. The expression of CYP2E1 in liver was observed by immunohistochemical method and western blot.
     Results
     (1)453 fatty liver disease were detected in 1277 subjects, the prevalence is 35.47%(453/1277). In the total fatty liver disease patients, male is 236, account for 52.10% while female is 217, account for 47.90%. The male prevalence is obviously higher than female (P<0.01). The maximal fatty liver disease prevalence group is between 51~60 in all patients, account for 45.34%. The maximal fatty liver prevalence group is between 51~60 in male, account for 55.29%, while the maximal fatty liver prevalence group is between 61~70 in female, account for 44.68%. The fatty liver disease prevalence in male is obviously higher than female in subjects who’s age≤60(P<0.01). According to etiological factor, nonalcoholic fatty liver disease patients account for 75.72%, alcoholic liver disease patients account for 13.25%, hepatitis fatty liver patients account for 5.30% and other reason caused fatty liver patients account for 5.73% in 453 fatty liver disease patients. In NAFLD group, those who accompany with two or more than two symptoms in metabolism syndrome, such as hypertension, obesity, hyperlipidemia and T2DM, account for 53 (67.95%, 53/78). And there are 26 NAFLD patients accompany with metabolism syndrome (33.33%, 26/78). Compared with the normal control group, BMI, Sbp, Dbp, ALT, AST, TG, TC, VLDL, FBG, FINS, IRI in NAFLD group is significantly increased(P<0.01).
     (2) NAFLD rat model was successfully established with high fat diet for twelve weeks. Compared with control group, the model group developed moderate - serious steatosis and focus infiltration of inflammatory cells and punctiform necrosis in hepatic lobules, with significant increasing liver humid weight, liver index, level of serum AST, ALT, TC, FFA, FPG(P<0.05)and TC,TG , MDA and FFA in liver (P<0.05), simultaneously with decreasing hepatic SOD , GSH-Px (P<0.05). The expression and protein level of CYP2E1 in liver was also increased. MTP activities and protein level in liver and small intestine microsome were reduced(P<0.05, P<0.001). Compared with model group, hepatic steatosis , integration of histological activity index (P<0.05), liver index and liver humid weight(P<0.05), MDA level in liver of high dose of MEL group was improved, simultaneously with increasing of SOD and GSH-PX in liver in moderate and high does of MEL group(P<0.05,P<0.01). The level of serum AST, ALT, hepatic TC,TG in high does of MEL group and the level of hepatic TC in moderate does of MEL group were lower significantly than model group(P<0.05). Compared with model group, serum FFA level in melatonin-treated groups and hepatic FFA level in a moderate or high dose of MEL group was reduced( P<0.05, P<0.01 respectively). Expression of CYP2E1 in liver of rats treated with moderate or high dose of MEL and protein level of CYP 2E1 in liver of rats treated with high does of MEL was decreased (P<0.05 ). MTP activities in small intestine microsome in high dose of MEL group , MTP protein level in liver and small intestine microsome in high dose of MEL group were higher than that in model group, respectively(P<0.05,P<0.05, P<0.01).
     Conclusions
     (1)The fatty liver disease prevalence is 35.47% in this health examination crowd, with nonalcoholic fatty liver disease accounting for 75.72%. NAFLD is closely correlated with obesity, hyperlipidemia, diabetes and metabolic syndrome.
     (2)Rat NAFLD induced by chronic feeding of an high fat diet is associated with the decrease of MTP activities and protein level in liver and small intestine microsome.
     (3)Melatonin in a dose dependent manner significantly improved liver morphology, serum transaminase,lipid and antioxidase activity in liver, depressed lipid peroxidation,expression of hepatic CYP2E1 and up-regulated MTP activities and protein level of liver and small intestine microsome in NAFLD rats induced by high fat diet, presenting the markedly protective and therapeutic effect against NAFLD. Melatonin may ameliorate oxidative stress,inhibit lipid peroxidation and interfere in lipid metabolism in liver and small intestine to protect rats treated with high fat diet against NAFLD.
引文
1 Ludwig J, Viggiano TR, McGill DB, et al. Nonalcoholicsteatohepatitis Mayo Clinic experiences with a hitherto unnameddisease. Mayo Clinic Proc, 1980,55:434-38.
    2 Matteoni CA, Younossi ZM, Gramlich T, et al. Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology, 1999,116:1413-9.
    3 Younossi ZM, Diehl AM, Ong JP. Nonalcoholic fatty liver disease: an agenda for clinical research. Hepatology, 2002,35:746-52.
    4 Akbar DH, Kawther AH. Non-alcoholic fatty liver disease and metabolic syndrome: what we know and what we don't know. Med Sci Monit, 2006,12:RA23-6.
    5 Cortez-Pinto, H, Camilo, ME. Non-alcoholic fatty liver disease/non-alcoholic steatohepatitis (NAFLD/NASH): diagnosis and clinical course. Best Pract Res Clin Gastroenterol, 2004:1089-104.
    6 Fan JG, Zhu J, Li XJ, et al. Prevalence of and risk factors for fatty liver in a general population of Shanghai, China. J Hepatol, 2005,43:508-14.
    7 Pagano G, Pacini G, Musso G, et al. Nonalcoholic steatohepatitis, insulin resistance, and metabolic syndrome: further evidence for an etiologic association. Hepatology, 2002,35:367-72.
    8 Quiros-Tejeira RE, Klish W. Clinical and histological characteristics of children with obesity associated steatohepatitis. Hepatology, 2003,38:200-20.
    9 Farrell GC. Non-alcoholic steatohepatitis: what is it, and why is it important in the Asia-Pacific region?. J Gastroenterol Hepatol, 2003,18:124-38.
    10 Caldwell SH, Oelsner DH, Iezzoni JC, et al. Cryptogenic cirrhosis: clinical characterization and risk factors for underlying disease. Hepatology, 1999,29:664-9.
    11 Poonawala A, Nair SP, Thuluvath PJ. Prevalence of obesity and diabetes in patients with cryptogenic cirrhosis: a case-control study. Hepatology, 2000,32:689-92.
    12 Bugianesi E, Leone N, Vanni E, et al. Expanding the natural history of nonalcoholic steatohepatitis: from cryptogenic cirrhosis to hepatocellular carcinoma. Gastroenterology, 2002,123:134-40.
    13 Ratziu V, Bonyhay L, Di Martino V, et al. Survival, liver failure, and hepatocellular carcinoma in obesity-related cryptogenic cirrhosis. Hepatology, 2002,35:1485-93.
    14 Marrero JA, Fontana RJ, Su GL, et al. NAFLD may be a common underlying liver disease in patients with hepatocellular carcinoma in the United States. Hepatology, 2002,36:1349-54.
    15 Shimada M, Hashimoto E, Taniai M, et al. Hepatocellular carcinoma in patients with non-alcoholic steatohepatitis. J Hepatol, 2002,37:154-60.
    16 Bugianesi E, Gastaldelli A, Vanni E, et al. Insulin resistance in non-diabetic patients with non-alcoholic fatty liver disease: sites and mechanisms. Diabetologia, 2005,48:634-42.
    17 Clark JM, Brancati FL, Diehl AM. Nonalcoholic fatty liver disease. Gastroenterology, 2002,122:1649-57.
    18 Day CP, James OF. Steatohepatitis: a tale of two "hits"?. Gastroenterology, 1998,114:842-5.
    19 Browning JD, Horton JD. Molecular mediators of hepatic steatosis and liver injury. J Clin Invest, 2004,114:147-52.
    20 Wetterau JR, Lin MC, Jamil H. Microsomal triglyceride transfer protein. Biochim Biophys Acta, 1997,1345:136-50.
    21 Wetterau JR, Zilversmit DB. Localization of intracellular triacylglycerol and cholesteryl ester transfer activity in rat tissues. Biochim Biophys Acta,1986,875:610-7.
    22 Davidson NO, Shelness GS. APOLIPOPROTEIN B: mRNA editing, lipoprotein assembly, and presecretory degradation. Annu Rev Nutr, 2000,20:169-93.
    23 Kuriyama H, Yamashita S, Shimomura I, et al. Enhanced expression of hepatic acyl-coenzyme A synthetase and microsomal triglyceride transfer protein messenger RNAs in the obese and hypertriglyceridemic rat with visceral fat accumulation. Hepatology, 1998,27:557-62.
    24 Sugimoto T, Yamashita S, Ishigami M, et al. Decreased microsomal triglyceride transfer protein activity contributes to initiation of alcoholic liver steatosis in rats. J Hepatol, 2002,36:157-62.
    25 Letteron P, Sutton A, Mansouri A, et al. Inhibition of microsomal triglyceride transfer protein: another mechanism for drug-induced steatosis in mice. Hepatology, 2003,38:133-40.
    26 Bernard S, Touzet S, Personne I, et al. Association between microsomal triglyceride transfer protein gene polymorphism and the biological features of liver steatosis in patients with type II diabetes. Diabetologia, 2000,43:995-9.
    27 Yamaguchi A, Tazuma S, Nishioka T, et al. Hepatitis C virus core protein modulates fatty acid metabolism and thereby causes lipid accumulation in the liver. Dig Dis Sci, 2005,50:1361-71.
    28 Comar KM, Sterling RK. Review article: Drug therapy for non-alcoholic fatty liver disease. Aliment Pharmacol Ther, 2006,23:207-15.
    29 Adams LA, Angulo P. Treatment of non-alcoholic fatty liver disease. Postgrad Med J, 2006,82:315-22.
    30 Diakou MC, Liberopoulos EN, Mikhailidis DP, et al. Pharmacological treatment of non-alcoholic steatohepatitis: the current evidence. Scand J Gastroenterol, 2007,42:139-47.
    31 Bubenik GA. Gastrointestinal melatonin: localization, function, and clinicalrelevance. Dig Dis Sci, 2002,47:2336-48.
    32 Tan DX, Manchester LC, Hardeland R, et al. Melatonin: a hormone, a tissue factor, an autocoid, a paracoid, and an antioxidant vitamin. J Pineal Res, 2003,34:75-8.
    33 Rindone JP, Achacoso R. Effect of melatonin on serum lipids in patients with hypercholesterolemia: a pilot study. Am J Ther, 1997,4:409-11.
    34 Mauriz JL, Molpeceres V, Garcia-Mediavilla MV, et al. Melatonin prevents oxidative stress and changes in antioxidant enzyme expression and activity in the liver of aging rats. J Pineal Res, 2007,42:222-30.
    35 Pittalis S, Lissoni P, Giani L, et al. Effect of a chronic therapy with the pineal hormone melatonin on cholesterol levels in idiopathic hypercholesterolemic patients. Recenti Prog Med, 1997,88:401-2.
    36 Wakatsuki A, Okatani Y, Ikenoue N, et al. Effects of short-term melatonin administration on lipoprotein metabolism in normolipidemic postmenopausal women. Maturitas, 2001,38:171-7.
    37 Sewerynek E. Melatonin and the cardiovascular system. Neuro Endocrinol Lett, 2002,23 Suppl 1:79-83.
    38 Aoyama H, Mori N, Mori W. Effects of melatonin on genetic hypercholesterolemia in rats. Atherosclerosis, 1988,69:269-72.
    39 Mori N, Aoyama H, Murase T, et al. Anti-hypercholesterolemic effect of melatonin in rats. Acta Pathol Jpn, 1989,39:613-8.
    40 Chan TY, Tang PL. Effect of melatonin on the maintenance of cholesterol homeostasis in the rat. Endocr Res, 1995,21:681-96.
    41 Hoyos M, Guerrero JM, Perez-Cano R, et al. Serum cholesterol and lipid peroxidation are decreased by melatonin in diet-induced hypercholesterolemic rats. J Pineal Res, 2000,28:150-5.
    42 Nieminen P, Kakela R, Mustonen AM, et al. Exogenous melatonin affects lipids and enzyme activities in mink (Mustela vison) liver. Comp Biochem Physiol CToxicol Pharmacol, 2001,128:203-11.
    43 Pita ML, Hoyos M, Martin-Lacave I, et al. Long-term melatonin administration increases polyunsaturated fatty acid percentage in plasma lipids of hypercholesterolemic rats. J Pineal Res, 2002,32:179-86.
    44 Tailleux A, Torpier G, Bonnefont-Rousselot D, et al. Daily melatonin supplementation in mice increases atherosclerosis in proximal aorta. Biochem Biophys Res Commun, 2002,293:1114-23.
    45 Hussain SA. Effect of melatonin on cholesterol absorption in rats. J Pineal Res, 2007,42:267-71.
    46 Bruck R, Aeed H, Avni Y, et al. Melatonin inhibits nuclear factor kappa B activation and oxidative stress and protects against thioacetamide induced liver damage in rats. J Hepatol, 2004,40:86-93.
    47 Sulaiman AA, Al-Shawi NN, Jwaied AH, et al. Protective effect of melatonin against chlorpromazine-induced liver disease in rats. Saudi Med J, 2006,27:1477-82.
    48 赵宗豪,梅俏,吴军,等. 褪黑素保护大鼠慢性肝损伤的动态观察. 安徽医科大学学报, 2003,38:225-7.
    49 Xu J, Sun S, Wei W, et al. Melatonin reduces mortality and oxidatively mediated hepatic and renal damage due to diquat treatment. J Pineal Res, 2007,42:166-71.
    50 Ohta Y, Kongo M, Kishikawa T. Melatonin exerts a therapeutic effect on cholestatic liver injury in rats with bile duct ligation. J Pineal Res, 2003,34:119-26.
    51 Nishida S, Sato R, Murai I, et al. Effect of pinealectomy on plasma levels of insulin and leptin and on hepatic lipids in type 2 diabetic rats. J Pineal Res, 2003,35:251-6.
    52 Alter MJ, Kruszon-Moran D, Nainan OV, et al. The prevalence of hepatitis C virus infection in the United States, 1988 through 1994. N Engl J Med, 1999,341:556-62.
    53 范建高. 非酒精性脂肪肝的临床流行病学研究. 中华消化杂志, 2002,22:106-7.
    54 范建高,朱军,李新建,等. 上海市成人脂肪肝患病率及其危险因素流行病学调查. 中华肝脏病杂志, 2005,13:83-8.
    55 中华医学会肝病学分会脂肪肝和酒精性肝病学组. 非酒精性脂肪性肝病诊疗指南. 中华肝脏病杂志, 2003,11:71.
    56 中华医学会肝病学分会脂肪肝和酒精性肝病学组. 酒精性肝病诊疗指南. 中华肝脏病杂志, 2003,11:72.
    57 范建高,曾民德,王均溶,等. 上海市机关职员脂肪肝流行病学研究. 中华流行病学研究, 1998,19:409-11.
    58 程朝英,王莎,雷鹰,等. 重庆地区机关干部中脂肪肝的调查报告. 重庆医学, 2003,32:1243-4.
    59 王中丽,夏冰,陈向群,等. 武汉地区脂肪肝的流行现状及危险因素分析. 武汉大学学报(医学版), 2006,27:319-22.
    60 孙艳群,朱海萍. 干部体检中脂肪肝年轻化的现状分析与预防. 实用临床医学, 2006,7:48-9.
    61 梁立超. 脂肪肝与肥胖、血脂、血糖关系的研究. 中国临床保健杂志, 2004,7:188-9.
    62 Choudhury J, Sanyal AJ. Clinical aspects of fatty liver disease. Semin Liver Dis, 2004,24:349-62.
    63 Amarapurkar A, Ghansar T. Fatty liver: experience from western India. Ann Hepatol, 2007,6:37-40.
    64 范建高,曾民德,陈政绩,等. 265 例脂肪肝患者病因及其特点分析. 上海医学, 1998,21:68-70.
    65 Gu D, Reynolds K, Wu X, et al. Prevalence of the metabolic syndrome and overweight among adults in China. Lancet, 2005,365:1398-405.
    66 Wong VW, Chan HL, Hui AY, et al. Clinical and histological features of non-alcoholic fatty liver disease in Hong Kong Chinese. Aliment Pharmacol Ther,2004,20:45-9.
    67 Tarantino G, Saldalamacchia G, Conca P, et al. Non-alcoholic fatty liver disease: further expression of the metabolic syndrome. J Gastroenterol Hepatol, 2007,22:293-303.
    68 Marceau P, Biron S, Hould FS, et al. Liver pathology and the metabolic syndrome X in severe obesity. J Clin Endocrinol Metab, 1999,84:1513-7.
    69 Gholam PM, Flancbaum L, Machan JT, et al. Nonalcoholic fatty liver disease in severely obese subjects. Am J Gastroenterol, 2007,102:399-408.
    70 Machado M, Marques-Vidal P, Cortez-Pinto H. Hepatic histology in obese patients undergoing bariatric surgery. J Hepatol, 2006,45:600-6.
    71 Papandreou D, Rousso I, Mavromichalis I. Update on non-alcoholic fatty liver disease in children. Clin Nutr, 2007.
    72 Marchesini G, Brizi M, Bianchi G, et al. Nonalcoholic fatty liver disease: a feature of the metabolic syndrome. Diabetes, 2001,50:1844-50.
    73 Chitturi S, Abeygunasekera S, Farrell GC, et al. NASH and insulin resistance: Insulin hypersecretion and specific association with the insulin resistance syndrome. Hepatology, 2002,35:373-9.
    74 Cassader M, Gambino R, Musso G, et al. Postprandial triglyceride-rich lipoprotein metabolism and insulin sensitivity in nonalcoholic steatohepatitis patients. Lipids, 2001,36:1117-24.
    75 Valenti L, Fracanzani AL, Dongiovanni P, et al. Tumor necrosis factor alpha promoter polymorphisms and insulin resistance in nonalcoholic fatty liver disease. Gastroenterology, 2002,122:274-80.
    76 Harrison SA, Diehl AM. Fat and the liver--a molecular overview. Semin Gastrointest Dis, 2002,13:3-16.
    77 Donnelly KL, Smith CI, Schwarzenberg SJ, et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease.J Clin Invest, 2005,115:1343-51.
    78 Yesilova Z, Yaman H, Oktenli C, et al. Systemic markers of lipid peroxidation and antioxidants in patients with nonalcoholic Fatty liver disease. Am J Gastroenterol, 2005,100:850-5.
    79 Mofrad P, Contos MJ, Haque M, et al. Clinical and histologic spectrum of nonalcoholic fatty liver disease associated with normal ALT values. Hepatology, 2003,37:1286-92.
    80 Daniel S, Ben-Menachem T, Vasudevan G, et al. Prospective evaluation of unexplained chronic liver transaminase abnormalities in asymptomatic and symptomatic patients. Am J Gastroenterol, 1999,94:3010-4.
    81 Chen CH, Huang MH, Yang JC, et al. Prevalence and risk factors of nonalcoholic fatty liver disease in an adult population of taiwan: metabolic significance of nonalcoholic fatty liver disease in nonobese adults. J Clin Gastroenterol, 2006,40:745-52.
    82 Chang Y, Ryu S, Sung E, et al. Higher Concentrations of Alanine Aminotransferase within the Reference Interval Predict Nonalcoholic Fatty Liver Disease. Clin Chem, 2007,53:686-92.
    83 Lonardo A. Fatty liver and nonalcoholic steatohepatitis. Where do we stand and where are we going?. Dig Dis, 1999,17:80-9.
    84 范建高 , 曾民德 , 王国良 . 脂肪肝的发病机制 . 世界华人消化杂志 , 1999,7:75-76.
    85 Angulo P, Lindor KD. Insulin resistance and mitochondrial abnormalities in NASH: a cool look into a burning issue. Gastroenterology, 2001,120:1281-5.
    86 Samuel VT, Liu ZX, Qu X, et al. Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J Biol Chem, 2004,279:32345-53.
    87 Rao MS, Reddy JK. Peroxisomal beta-oxidation and steatohepatitis. Semin Liver Dis, 2001,21:43-55.
    88 Leclercq IA, Farrell GC, Field J, et al. CYP2E1 and CYP4A as microsomal catalysts of lipid peroxides in murine nonalcoholic steatohepatitis. J Clin Invest, 2000,105:1067-75.
    89 Sanyal AJ, Campbell-Sargent C, Mirshahi F, et al. Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology, 2001,120:1183-92.
    90 Lieber CS. The discovery of the microsomal ethanol oxidizing system and its physiologic and pathologic role. Drug Metab Rev, 2004,36:511-29.
    91 Costa EJ, Lopes RH, Lamy-Freund MT. Permeability of pure lipid bilayers to melatonin. J Pineal Res, 1995,19:123-6.
    92 Shida CS, Castrucci AM, Lamy-Freund MT. High melatonin solubility in aqueous medium. J Pineal Res, 1994,16:198-201.
    93 Tahan V, Ozaras R, Canbakan B, et al. Melatonin reduces dimethylnitrosamine-induced liver fibrosis in rats. J Pineal Res, 2004,37:78-84.
    94 Abdel-Wahhab MA, Abdel-Galil MM, El-Lithey M. Melatonin counteracts oxidative stress in rats fed an ochratoxin A contaminated diet. J Pineal Res, 2005,38:130-5.
    95 Pal S, Chatterjee AK. Prospective protective role of melatonin against arsenic-induced metabolic toxicity in Wistar rats. Toxicology, 2005,208:25-33.
    96 Sewerynek E, Reiter RJ, Melchiorri D, et al. Oxidative damage in the liver induced by ischemia-reperfusion: protection by melatonin. Hepatogastroenterology, 1996,43:898-905.
    97 Sener G, Balkan J, Cevikbas U, et al. Melatonin reduces cholesterol accumulation and prooxidant state induced by high cholesterol diet in the plasma, the liver and probably in the aorta of C57BL/6J mice. J Pineal Res, 2004,36:212-6.
    98 Sahna E, Parlakpinar H, Vardi N, et al. Efficacy of melatonin as protectant against oxidative stress and structural changes in liver tissue in pinealectomized rats. ActaHistochem, 2004,106:331-6.
    99 Zhang L, Wei W, Xu J, et al. Inhibitory effect of melatonin on diquat-induced lipid peroxidation in vivo as assessed by the measurement of F2-isoprostanes. J Pineal Res, 2006,40:326-31.
    100 El-Missiry MA, Fayed TA, El-Sawy MR, et al. Ameliorative effect of melatonin against gamma-irradiation-induced oxidative stress and tissue injury. Ecotoxicol Environ Saf, 2007,66:278-86.
    101 Catala A, Zvara A, Puskas LG, et al. Melatonin-induced gene expression changes and its preventive effects on adriamycin-induced lipid peroxidation in rat liver. J Pineal Res, 2007,42:43-9.
    102 许建明,徐叔云,梅悄,等. 褪黑素对小鼠免疫性肝损伤的保护作用. 中国药理学通报, 1998,14:452-454.
    103 Ohashi K, Ishibashi S, Osuga J, et al. Novel mutations in the microsomal triglyceride transfer protein gene causing abetalipoproteinemia. J Lipid Res, 2000,41:1199-204.
    104 Tran K, Thorne-Tjomsland G, DeLong CJ, et al. Intracellular assembly of very low density lipoproteins containing apolipoprotein B100 in rat hepatoma McA-RH7777 cells. J Biol Chem, 2002,277:31187-200.
    105 Hussain MM, Iqbal J, Anwar K, et al. Microsomal triglyceride transfer protein: a multifunctional protein. Front Biosci, 2003,8:s500-6.
    106 Wetterau JR, Aggerbeck LP, Bouma ME, et al. Absence of microsomal triglyceride transfer protein in individuals with abetalipoproteinemia. Science, 1992,258:999-1001.
    107 Tietge UJ, Bakillah A, Maugeais C, et al. Hepatic overexpression of microsomal triglyceride transfer protein (MTP) results in increased in vivo secretion of VLDL triglycerides and apolipoprotein B. J Lipid Res, 1999,40:2134-9.
    108 Raabe M, Flynn LM, Zlot CH, et al. Knockout of the abetalipoproteinemia gene inmice: reduced lipoprotein secretion in heterozygotes and embryonic lethality in homozygotes. Proc Natl Acad Sci U S A, 1998,95:8686-91.
    109 Venkatesan S, Ward RJ, Peters TJ. Effect of chronic ethanol feeding on the hepatic secretion of very-low-density lipoproteins. Biochim Biophys Acta, 1988,960:61-6.
    110 Day CP, Yeaman SJ. The biochemistry of alcohol-induced fatty liver. Biochim Biophys Acta, 1994,1215:33-48.
    111 FOLCH J, LEES M, SLOANE STANLEY GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem, 1957,226:497-509.
    112 Brunt EM, Janney CG, Di Bisceglie AM, et al. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol, 1999,94:2467-74.
    113 中华医学会肝病学分会脂肪肝和酒精性肝病学组. 非酒精性脂肪肝诊断标准(草案). 中华肝脏病杂志, 2001,9:325.
    114 王泰龄,刘霞,周之平, 等. 慢性肝炎炎症活动度及纤维化程度积分方案. 中华肝脏病杂志, 1998,6:195-197.
    115 Athar H, Iqbal J, Jiang XC, et al. A simple, rapid, and sensitive fluorescence assay for microsomal triglyceride transfer protein. J Lipid Res, 2004,45:764-72.
    116 魏艳华,王道斌. 石蜡切片中的组织内源性过氧化物酶活性剂消除方法. 临床与实验病理学杂志, 1992,8:231-2.
    117 Tsutsumi M, Lasker JM, Shimizu M, et al. The intralobular distribution of ethanol-inducible P450IIE1 in rat and human liver. Hepatology, 1989,10:437-46.
    118 Ikeda Y, Suehiro T, Nakamura T, et al. Clinical significance of the insulin resistance index as assessed by homeostasis model assessment. Endocr J, 2001,48:81-6.
    119 Alfire ME, Treem WR. Nonalcoholic Fatty Liver Disease. Pediatr Ann, 2006,35:290-299.
    120 Sheth SG, Gordon FD, Chopra S. Nonalcoholic steatohepatitis. Ann Intern Med, 1997,126:137-45.
    121 West DB, York B. Dietary fat, genetic predisposition, and obesity: lessons from animal models. Am J Clin Nutr, 1998,67:505S-512S.
    122 Lieber CS, Leo MA, Mak KM, et al. Model of nonalcoholic steatohepatitis. Am J Clin Nutr, 2004,79:502-9.
    123 Savage DB, Choi CS, Samuel VT, et al. Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2. J Clin Invest, 2006,116:817-24.
    124 Corbett SW, Stern JS, Keesey RE. Energy expenditure in rats with diet-induced obesity. Am J Clin Nutr, 1986,44:173-80.
    125 Watarai T, Kobayashi M, Takata Y, et al. Alteration of insulin-receptor kinase activity by high-fat feeding. Diabetes, 1988,37:1397-404.
    126 Harris RB. Factors influencing energy intake of rats fed either a high-fat or a fat mimetic diet. Int J Obes Relat Metab Disord, 1994,18:632-640.
    127 陈世清,刘杞,孙航,等. 脂肪肝胰岛素抵抗大鼠模型的建立. 中华肝脏病杂志, 2005,13:105-108.
    128 Hill JO, Fried SK, DiGirolamo M. Effects of a high-fat diet on energy intake and expenditure in rats. Life Sci, 1983,33:141-9.
    129 Zou Y, Li J, Lu C, et al. High-fat emulsion-induced rat model of nonalcoholic steatohepatitis. Life Sci, 2006,79:1100-7.
    130 Charbonneau A, Melancon A, Lavoie C, et al. Alterations in hepatic glucagon receptor density and in Gsalpha and Gialpha2 protein content with diet-induced hepatic steatosis: effects of acute exercise. Am J Physiol Endocrinol Metab, 2005,289:E8-14.
    131 Lonardo A, Lombardini S, Ricchi M, et al. Review article: hepatic steatosis and insulin resistance. Aliment Pharmacol Ther, 2005,22 Suppl 2:64-70.
    132 Bugianesi E, Manzini P, D'Antico S, et al. Relative contribution of iron burden, HFE mutations, and insulin resistance to fibrosis in nonalcoholic fatty liver. Hepatology, 2004,39:179-87.
    133 Choudhury J, Sanyal AJ. Insulin resistance and the pathogenesis of nonalcoholic fatty liver disease. Clin Liver Dis, 2004,8:575-94, ix.
    134 Loria P, Lonardo A, Carulli N. Relative contribution of iron burden, HFE mutations, and insulin resistance to fibrosis in nonalcoholic fatty liver. Hepatology, 2004,39:1748; author reply 1749.
    135 Reiter RJ, Tan DX, Kim SJ, et al. Melatonin as a pharmacological agent against oxidative damage to lipids and DNA. Proc West Pharmacol Soc, 1998,41:229-36.
    136 Cruz A, Padillo FJ, Torres E, et al. Melatonin prevents experimental liver cirrhosis induced by thioacetamide in rats. J Pineal Res, 2005,39:143-50.
    137 Wang H, Wei W, Wang NP, et al. Melatonin ameliorates carbon tetrachloride-induced hepatic fibrogenesis in rats via inhibition of oxidative stress. Life Sci, 2005,77:1902-15.
    138 Xu DX, Wei W, Sun MF, et al. Melatonin attenuates lipopolysaccharide-induced down-regulation of pregnane X receptor and its target gene CYP3A in mouse liver. J Pineal Res, 2005,38:27-34.
    139 Sutken E, Aral E, Ozdemir F, et al. Protective role of melatonin and coenzyme Q10 in ochratoxin A toxicity in rat liver and kidney. Int J Toxicol, 2007,26:81-7.
    140 Farrell GC, Larter CZ. Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatology, 2006,43:S99-S112.
    141 Petersen KF, Dufour S, Befroy D, et al. Reversal of nonalcoholic hepatic steatosis, hepatic insulin resistance, and hyperglycemia by moderate weight reduction in patients with type 2 diabetes. Diabetes, 2005,54:603-8.
    142 Nobili V, Manco M, Devito R, et al. Effect of vitamin E on aminotransferase levels and insulin resistance in children with non-alcoholic fatty liver disease. AlimentPharmacol Ther, 2006,24:1553-61.
    143 Hickman IJ, Jonsson JR, Prins JB, et al. Modest weight loss and physical activity in overweight patients with chronic liver disease results in sustained improvements in alanine aminotransferase, fasting insulin, and quality of life. Gut, 2004,53:413-9.
    144 Clark JM, Alkhuraishi AR, Solga SF, et al. Roux-en-Y gastric bypass improves liver histology in patients with non-alcoholic fatty liver disease. Obes Res, 2005,13:1180-6.
    145 Luyckx FH, Lefebvre PJ, Scheen AJ. Non-alcoholic steatohepatitis: association with obesity and insulin resistance, and influence of weight loss. Diabetes Metab, 2000,26:98-106.
    146 Luyckx FH, Desaive C, Thiry A, et al. Liver abnormalities in severely obese subjects: effect of drastic weight loss after gastroplasty. Int J Obes Relat Metab Disord, 1998,22:222-6.
    147 Andersen T, Gluud C, Franzmann MB, et al. Hepatic effects of dietary weight loss in morbidly obese subjects. J Hepatol, 1991,12:224-9.
    148 Prunet-Marcassus B, Desbazeille M, Bros A, et al. Melatonin reduces body weight gain in Sprague Dawley rats with diet-induced obesity. Endocrinology, 2003,144:5347-52.
    149 Rasmussen DD, Boldt BM, Wilkinson CW, et al. Daily melatonin administration at middle age suppresses male rat visceral fat, plasma leptin, and plasma insulin to youthful levels. Endocrinology, 1999,140:1009-12.
    150 Wolden-Hanson T, Mitton DR, McCants RL, et al. Daily melatonin administration to middle-aged male rats suppresses body weight, intraabdominal adiposity, and plasma leptin and insulin independent of food intake and total body fat. Endocrinology, 2000,141:487-97.
    151 Puchalski SS, Green JN, Rasmussen DD. Melatonin effect on rat body weightregulation in response to high-fat diet at middle age. Endocrine, 2003,21:163-7.
    152 Larkin LM, Moore BJ, Stern JS, et al. Effect of photoperiod on body weight and food intake of obese and lean Zucker rats. Life Sci, 1991,49:735-45.
    153 Mustonen AM, Nieminen P, Hyvarinen H. Effects of continuous light and melatonin treatment on energy metabolism of the rat. J Endocrinol Invest, 2002,25:716-23.
    154 Marková M, E. Adámeková, P. Kubatka. Effect of Prolonged Melatonin Administration on Metabolic Parameters and Organ Weights in Young Male and Female Sprague-Dawley Rats. Acta Vet. Brno 2003, 72: 163-173.
    155 Alfire ME, Treem WR. Nonalcoholic fatty liver disease. Pediatr Ann, 2006,35:290-4, 297-9.
    156 Burgert TS, Taksali SE, Dziura J, et al. Alanine aminotransferase levels and fatty liver in childhood obesity: associations with insulin resistance, adiponectin, and visceral fat. J Clin Endocrinol Metab, 2006,91:4287-94.
    157 Munteanu M, Messous D, Thabut D, et al. Intra-individual fasting versus postprandial variation of biochemical markers of liver fibrosis (FibroTest) and activity (ActiTest). Comp Hepatol, 2004,3:3.
    158 Dixon JB, Bhathal PS, Hughes NR, et al. Nonalcoholic fatty liver disease: Improvement in liver histological analysis with weight loss. Hepatology, 2004,39:1647-54.
    159 Suzuki A, Lymp J, Sauver JS, et al. Values and limitations of serum aminotransferases in clinical trials of nonalcoholic steatohepatitis. Liver Int, 2006,26:1209-16.
    160 Markova M, Adamekova E, Kubatka P. Effect of prolonged melatonin administration on metabolic parameters and organ weights in young male and female Sprague-Dawley rats. Acta Veterinaria, 2003,72:163-173.
    161 Muller-Wieland D, Behnke B, Koopmann K, et al. Melatonin inhibits LDLreceptor activity and cholesterol synthesis in freshly isolated human mononuclear leukocytes. Biochem Biophys Res Commun, 1994,203:416-21.
    162 Brydon L, Petit L, Delagrange P, et al. Functional expression of MT2 (Mel1b) melatonin receptors in human PAZ6 adipocytes. Endocrinology, 2001,142:4264-71.
    163 Alonso-Vale MI, Andreotti S, Peres SB, et al. Melatonin enhances leptin expression by rat adipocytes in the presence of insulin. Am J Physiol Endocrinol Metab, 2005,288:E805-12.
    164 Hubscher SG. Histological assessment of non-alcoholic fatty liver disease. Histopathology, 2006,49:450-65.
    165 Saadeh S, Younossi ZM, Remer EM, et al. The utility of radiological imaging in nonalcoholic fatty liver disease. Gastroenterology, 2002,123:745-50.
    166 Joy D, Thava VR, Scott BB. Diagnosis of fatty liver disease: is biopsy necessary?. Eur J Gastroenterol Hepatol, 2003,15:539-43.
    167 Angulo P, Keach JC, Batts KP, et al. Independent predictors of liver fibrosis in patients with nonalcoholic steatohepatitis. Hepatology, 1999,30:1356-62.
    168 Tan DX, Chen LD, Pueggeler B. Melatonin: a potent endogenous hydroxyl radical scavenger. J Endocrinol, 1993,1:57-60.
    169 Tan DX, Poeggeler B, Reiter RJ, et al. The pineal hormone melatonin inhibits DNA-adduct formation induced by the chemical carcinogen safrole in vivo. Cancer Lett, 1993,70:65-71.
    170 Steinhilber D, Brungs M, Werz O, et al. The nuclear receptor for melatonin represses 5-lipoxygenase gene expression in human B lymphocytes. J Biol Chem, 1995,270:7037-40.
    171 Robertson G, Leclercq I, Farrell GC. Nonalcoholic steatosis and steatohepatitis. II. Cytochrome P-450 enzymes and oxidative stress. Am J Physiol Gastrointest Liver Physiol, 2001,281:G1135-9.
    172 Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med, 1991,11:81-128.
    173 Chitturi S, Farrell GC. Etiopathogenesis of nonalcoholic steatohepatitis. Semin Liver Dis, 2001,21:27-41.
    174 Nieto N, Friedman SL, Cederbaum AI. Stimulation and proliferation of primary rat hepatic stellate cells by cytochrome P450 2E1-derived reactive oxygen species. Hepatology, 2002,35:62-73.
    175 Le TH, Caldwell SH, Redick JA, et al. The zonal distribution of megamitochondria with crystalline inclusions in nonalcoholic steatohepatitis. Hepatology, 2004,39:1423-9.
    176 Albano E, Mottaran E, Vidali M, et al. Immune response towards lipid peroxidation products as a predictor of progression of non-alcoholic fatty liver disease to advanced fibrosis. Gut, 2005,54:987-93.
    177 Madan K, Bhardwaj P, Thareja S, et al. Oxidant stress and antioxidant status among patients with nonalcoholic fatty liver disease (NAFLD). J Clin Gastroenterol, 2006,40:930-5.
    178 Siebler J, Galle PR. Treatment of nonalcoholic fatty liver disease. World J Gastroenterol, 2006,12:2161-7.
    179 Polavarapu R, Spitz DR, Sim JE, et al. Increased lipid peroxidation and impaired antioxidant enzyme function is associated with pathological liver injury in experimental alcoholic liver disease in rats fed diets high in corn oil and fish oil. Hepatology, 1998,27:1317-23.
    180 Koruk M, Taysi S, Savas MC, et al. Oxidative stress and enzymatic antioxidant status in patients with nonalcoholic steatohepatitis. Ann Clin Lab Sci, 2004,34:57-62.
    181 Hasegawa T, Yoneda M, Nakamura K, et al. Plasma transforming growthfactor-beta1 level and efficacy of alpha-tocopherol in patients with non-alcoholic steatohepatitis: a pilot study. Aliment Pharmacol Ther, 2001,15:1667-72.
    182 Harrison SA, Torgerson S, Hayashi P, et al. Vitamin E and vitamin C treatment improves fibrosis in patients with nonalcoholic steatohepatitis. Am J Gastroenterol, 2003,98:2485-90.
    183 Lavine JE. Vitamin E treatment of nonalcoholic steatohepatitis in children: a pilot study. J Pediatr, 2000,136:734-8.
    184 Abdelmalek MF, Angulo P, Jorgensen RA, et al. Betaine, a promising new agent for patients with nonalcoholic steatohepatitis: results of a pilot study. Am J Gastroenterol, 2001,96:2711-7.
    185 Pamuk GE, Sonsuz A. N-acetylcysteine in the treatment of non-alcoholic steatohepatitis. J Gastroenterol Hepatol, 2003,18:1220-1.
    186 Hussein MR, Ahmed OG, Hassan AF, et al. Intake of melatonin is associated with amelioration of physiological changes, both metabolic and morphological pathologies associated with obesity: an animal model. Int J Exp Pathol, 2007,88:19-29.
    187 Leon J, Acuna-Castroviejo D, Escames G, et al. Melatonin mitigates mitochondrial malfunction. J Pineal Res, 2005,38:1-9.
    188 Lieber CS. Cytochrome P-4502E1: its physiological and pathological role. Physiol Rev, 1997,77:517-44.
    189 Pessayre D, Fromenty B. NASH: a mitochondrial disease. J Hepatol, 2005,42:928-40.
    190 Anstee QM, Goldin RD. Mouse models in non-alcoholic fatty liver disease and steatohepatitis research. Int J Exp Pathol, 2006,87:1-16.
    191 Rouach H, Fataccioli V, Gentil M, et al. Effect of chronic ethanol feeding on lipid peroxidation and protein oxidation in relation to liver pathology. Hepatology, 1997,25:351-5.
    192 胡辂,陈东风,史洪涛. 肝细胞色素 P450 2E1 在大鼠非酒精性脂肪肝发病中的作用. 第三军医大学学报, 2004,26:1561-1563.
    193 Matsura T, Nishida T, Togawa A, et al. Mechanisms of protection by melatonin against acetaminophen-induced liver injury in mice. J Pineal Res, 2006,41:211-9.
    194 Farese RV Jr, Yost TJ, Eckel RH. Tissue-specific regulation of lipoprotein lipase activity by insulin/glucose in normal-weight humans. Metabolism, 1991,40:214-6.
    195 Shepherd PR, Kahn BB. Glucose transporters and insulin action--implications for insulin resistance and diabetes mellitus. N Engl J Med, 1999,341:248-57.
    196 Gauthier MS, Couturier K, Latour JG, et al. Concurrent exercise prevents high-fat-diet-induced macrovesicular hepatic steatosis. J Appl Physiol, 2003,94:2127-34.
    197 范建高, 钟岚,王国良,等. 大鼠非酒精性脂肪性肝炎发病中游离脂肪酸的作用. 世界华人消化杂志, 2001,9:721-722.
    198 Chalasani N, Deeg MA, Persohn S, et al. Metabolic and anthropometric evaluation of insulin resistance in nondiabetic patients with nonalcoholic steatohepatitis. Am J Gastroenterol, 2003,98:1849-55.
    199 Day C P, Leathart J B, Daly A K. Genetic evidence that fatty liver is involved in the pathogenesis of advanced alcoholic liver disease. J Hepatol, 2002,36:16.
    200 Diehl AM. Nonalcoholic steatohepatitis. Semin Liver Dis, 1999,19:221-9.
    201 Boden G. Fatty acid-induced inflammation and insulin resistance in skeletal muscle and liver. Curr Diab Rep, 2006,6:177-81.
    202 Feldstein AE, Werneburg NW, Canbay A, et al. Free fatty acids promote hepatic lipotoxicity by stimulating TNF-alpha expression via a lysosomal pathway. Hepatology, 2004,40:185-94.
    203 Malhi H, Bronk SF, Werneburg NW, et al. Free fatty acids induce JNK-dependent hepatocyte lipoapoptosis. J Biol Chem, 2006,281:12093-101.
    204 Chen Q, Galleano M, Cederbaum AI. Cytotoxicity and apoptosis produced byarachidonic acid in HepG2 cells overexpressing human cytochrome P-4502E1. Alcohol Clin Exp Res, 1998,22:782-4.
    205 McClain CJ, Barve S, Deaciuc I, et al. Cytokines in alcoholic liver disease. Semin Liver Dis, 1999,19:205-19.
    206 陆伦根, 曾民德, 李继强,等. 花生四烯酸和亚油酸对肝星状细胞增殖的影响. 世界华人消化杂志, 1999,7:10-12.
    207 Schonfeld P, Wieckowski MR, Wojtczak L. Long-chain fatty acid-promoted swelling of mitochondria: further evidence for the protonophoric effect of fatty acids in the inner mitochondrial membrane. FEBS Lett, 2000,471:108-12.
    208 Nguyen N, Glanz D, Glaesser D. Fatty acid cytotoxicity to bovine lens epithelial cells: investigations on cell viability, ecto-ATPase, Na(+), K(+)-ATPase and intracellular sodium concentrations. Exp Eye Res, 2000,71:405-13.
    209 Ockner RK. Apoptosis and liver diseases: recent concepts of mechanism and significance. J Gastroenterol Hepatol, 2001,16:248-60.
    210 Wu D, Cederbaum AI. Cyclosporine A protects against arachidonic acid toxicity in rat hepatocytes: role of CYP2E1 and mitochondria. Hepatology, 2002,35:1420-30.
    211 Charlton M, Sreekumar R, Rasmussen D, et al. Apolipoprotein synthesis in nonalcoholic steatohepatitis. Hepatology, 2002,35:898-904.
    212 Sreekumar R, Rosado B, Rasmussen D, et al. Hepatic gene expression in histologically progressive nonalcoholic steatohepatitis. Hepatology, 2003,38:244-51.
    213 Hussain MM, Shi J, Dreizen P. Microsomal triglyceride transfer protein and its role in apoB-lipoprotein assembly. J Lipid Res, 2003,44:22-32.
    214 Borradaile NM, de Dreu LE, Barrett PH, et al. Inhibition of hepatocyte apoB secretion by naringenin: enhanced rapid intracellular degradation independent of reduced microsomal cholesteryl esters. J Lipid Res, 2002,43:1544-54.
    215 Marsh JB, Welty FK, Lichtenstein AH, et al. Apolipoprotein B metabolism inhumans: studies with stable isotope-labeled amino acid precursors. Atherosclerosis, 2002,162:227-44.
    216 Pfeifer MA, Brunzell JD, Best JD, et al. The response of plasma triglyceride, cholesterol, and lipoprotein lipase to treatment in non-insulin-dependent diabetic subjects without familial hypertriglyceridemia. Diabetes, 1983,32:525-31.
    217 Taskinen MR, Beltz WF, Harper I, et al. Effects of NIDDM on very-low-density lipoprotein triglyceride and apolipoprotein B metabolism. Studies before and after sulfonylurea therapy. Diabetes, 1986,35:1268-77.
    218 Merkel M, Heeren J, Dudeck W, et al. Inactive lipoprotein lipase (LPL) alone increases selective cholesterol ester uptake in vivo, whereas in the presence of active LPL it also increases triglyceride hydrolysis and whole particle lipoprotein uptake. J Biol Chem, 2002,277:7405-11.
    219 Ksander GM, deJesus R, Yuan A, et al. Diaminoindanes as microsomal triglyceride transfer protein inhibitors. J Med Chem, 2001,44:4677-87.
    220 Chang G, Ruggeri RB, Harwood HJ Jr. Microsomal triglyceride transfer protein (MTP) inhibitors: discovery of clinically active inhibitors using high-throughput screening and parallel synthesis paradigms. Curr Opin Drug Discov Devel, 2002,5:562-70.
    221 Wetterau JR, Gregg RE, Harrity TW, et al. An MTP inhibitor that normalizes atherogenic lipoprotein levels in WHHL rabbits. Science, 1998,282:751-4.
    222 Chandler CE, Wilder DE, Pettini JL, et al. CP-346086: an MTP inhibitor that lowers plasma cholesterol and triglycerides in experimental animals and in humans. J Lipid Res, 2003,44:1887-901.
    223 Liao W, Hui TY, Young SG, et al. Blocking microsomal triglyceride transfer protein interferes with apoB secretion without causing retention or stress in the ER. J Lipid Res, 2003,44:978-85.
    224 Shiomi M, Ito T. MTP inhibitor decreases plasma cholesterol levels in LDLreceptor-deficient WHHL rabbits by lowering the VLDL secretion. Eur J Pharmacol, 2001,431:127-31.
    225 Xie Y, Newberry EP, Young SG, et al. Compensatory increase in hepatic lipogenesis in mice with conditional intestine-specific Mttp deficiency. J Biol Chem, 2006,281:4075-86.
    226 Kwon HJ, Hyun SH, Choung SY. Traditional Chinese Medicine improves dysfunction of peroxisome proliferator-activated receptor alpha and microsomal triglyceride transfer protein on abnormalities in lipid metabolism in ethanol-fed rats. Biofactors, 2005,23:163-76.
    227 Pan X, Hussain FN, Iqbal J, et al. Inhibiting proteasomal degradation of microsomal triglyceride transfer protein prevents CCl4 induced steatosis. J Biol Chem, 2007. [Epub ahead of print]
    228 Patton HM, Patel K, Behling C, et al. The impact of steatosis on disease progression and early and sustained treatment response in chronic hepatitis C patients. J Hepatol, 2004,40:484-90.
    229 Poynard T, Ratziu V, McHutchison J, et al. Effect of treatment with peginterferon or interferon alfa-2 and ribavirin on steatosis in patients infected with hepatitis C. Hepatology, 2003,38:75-85.
    230 Perlemuter G, Sabile A, Letteron P, et al. Hepatitis C virus core protein inhibits microsomal triglyceride transfer protein activity and very low density lipoprotein secretion: a model of viral-related steatosis. FASEB J, 2002,16:185-94.
    231 Barrett S, Kieran N, Ryan E, et al. Intrahepatic hepatitis C viral RNA status of serum polymerase chain reaction-negative individuals with histological changes on liver biopsy. Hepatology, 2001,33:1496-502.
    232 Mirandola S, Realdon S, Iqbal J, et al. Liver microsomal triglyceride transfer protein is involved in hepatitis C liver steatosis. Gastroenterology, 2006,130:1661-9.
    233 Day CP. Genes or environment to determine alcoholic liver disease and non-alcoholic fatty liver disease. Liver Int, 2006,26:1021-8.
    234 Karpe F, Lundahl B, Ehrenborg E, et al. A common functional polymorphism in the promoter region of the microsomal triglyceride transfer protein gene influences plasma LDL levels. Arterioscler Thromb Vasc Biol, 1998,18:756-61.
    235 Namikawa C, Shu-Ping Z, Vyselaar JR, et al. Polymorphisms of microsomal triglyceride transfer protein gene and manganese superoxide dismutase gene in non-alcoholic steatohepatitis. J Hepatol, 2004,40:781-6.
    236 Gambino R, Cassader M, Pagano G, et al. Polymorphism in microsomal triglyceride transfer protein: A link between liver disease and atherogenic postprandial lipid profile in NASH?. Hepatology, 2007,45:1097-1107.
    237 Musso G, Gambino R, Durazzo M, et al. Adipokines in NASH: postprandial lipid metabolism as a link between adiponectin and liver disease. Hepatology, 2005,42:1175-83.
    238 Swift LL, Kakkad B, Boone C, et al. Microsomal triglyceride transfer protein expression in adipocytes: a new component in fat metabolism. FEBS Lett, 2005,579:3183-9.
    239 中华内分泌代谢杂志. 微粒体甘油三酯转移蛋白基因多态性与 2 型糖尿病血脂紊乱的关系. 中华内分泌代谢杂志, 2001,17:306-7.
    240 黎荣山,尹瑞兴,林伟雄,等. 广西黑衣壮族人群微粒体甘油三酯转移蛋白基因多态性与血脂水平的关系. 中华医学杂志, 2005,85:2492-6.
    241 孙蓓,陈莉明,郑少雄. MTP-493 基因型与 2 型糖尿病双下肢动脉闭塞症. 天津医药, 2005,33:87-9.
    1 Wetterau JR, Zilversmit DB. Localization of intracellular triacylglycerol and cholesteryl ester transfer activity in rat tissues. Biochim Biophys Acta, 1986,875:610-7.
    2 Wetterau JR, Lin MC, Jamil H. Microsomal triglyceride transfer protein. Biochim Biophys Acta, 1997,1345:136-50.
    3 Wetterau JR, Zilversmit DB. A triglyceride and cholesteryl ester transfer protein associated with liver microsomes. J Biol Chem, 1984,259:10863-6.
    4 Levy E, Stan S, Delvin E, et al. Localization of microsomal triglyceride transfer protein in the Golgi: possible role in the assembly of chylomicrons. J Biol Chem, 2002,277:16470-7.
    5 Wetterau JR, Combs KA, Spinner SN, et al. Protein disulfide isomerase is a component of the microsomal triglyceride transfer protein complex. J Biol Chem, 1990,265:9800-7.
    6 Wetterau JR, Combs KA, McLean LR, et al. Protein disulfide isomerase appears necessary to maintain the catalytically active structure of the microsomal triglyceride transfer protein. Biochemistry, 1991,30:9728-35.
    7 Hussain MM, Shi J, Dreizen P. Microsomal triglyceride transfer protein and its role in apoB-lipoprotein assembly. J Lipid Res, 2003,44:22-32.
    8 Anderson TA, Levitt DG, Banaszak LJ. The structural basis of lipid interactions in lipovitellin, a soluble lipoprotein. Structure, 1998,6:895-909.
    9 Pihlajaniemi T, Helaakoski T, Tasanen K, et al. Molecular cloning of the beta-subunit of human prolyl 4-hydroxylase. This subunit and protein disulphide isomerase are products of the same gene. EMBO J, 1987,6:643-9.
    10 Ricci B, Sharp D, O'Rourke E, et al. A 30-amino acid truncation of the microsomal triglyceride transfer protein large subunit disrupts its interaction with proteindisulfide-isomerase and causes abetalipoproteinemia. J Biol Chem, 1995,270:14281-5.
    11 Shoulders CC, Narcisi TM, Read J, et al. The abetalipoproteinemia gene is a member of the vitellogenin family and encodes an alpha-helical domain. Nat Struct Biol, 1994,1:285-6.
    12 Davidson NO, Shelness GS. APOLIPOPROTEIN B: mRNA editing, lipoprotein assembly, and presecretory degradation. Annu Rev Nutr, 2000,20:169-93.
    13 Borradaile NM, de Dreu LE, Barrett PH, et al. Inhibition of hepatocyte apoB secretion by naringenin: enhanced rapid intracellular degradation independent of reduced microsomal cholesteryl esters. J Lipid Res, 2002,43:1544-54.
    14 Anant S, Henderson JO, Mukhopadhyay D, et al. Novel role for RNA-binding protein CUGBP2 in mammalian RNA editing. CUGBP2 modulates C to U editing of apolipoprotein B mRNA by interacting with apobec-1 and ACF, the apobec-1 complementation factor. J Biol Chem, 2001,276:47338-51.
    15 Olofsson SO, Stillemark-Billton P, Asp L. Intracellular assembly of VLDL: two major steps in separate cell compartments. Trends Cardiovasc Med, 2000,10:338-45.
    16 Das HK, Leff T, Breslow JL. Cell type-specific expression of the human apoB gene is controlled by two cis-acting regulatory regions. J Biol Chem, 1988,263:11452-8.
    17 Elovson J, Chatterton JE, Bell GT, et al. Plasma very low density lipoproteins contain a single molecule of apolipoprotein B. J Lipid Res, 1988,29:1461-73.
    18 Kuriyama H, Yamashita S, Shimomura I, et al. Enhanced expression of hepatic acyl-coenzyme A synthetase and microsomal triglyceride transfer protein messenger RNAs in the obese and hypertriglyceridemic rat with visceral fat accumulation. Hepatology, 1998,27:557-62.
    19 Marsh JB, Welty FK, Lichtenstein AH, et al. Apolipoprotein B metabolism inhumans: studies with stable isotope-labeled amino acid precursors. Atherosclerosis, 2002,162:227-44.
    20 Hussain MM. A proposed model for the assembly of chylomicrons. Atherosclerosis, 2000,148:1-15.
    21 Rustaeus S, Stillemark P, Lindberg K, et al. The microsomal triglyceride transfer protein catalyzes the post-translational assembly of apolipoprotein B-100 very low density lipoprotein in McA-RH7777 cells. J Biol Chem, 1998,273:5196-203.
    22 Boren J, Rustaeus S, Olofsson SO. Studies on the assembly of apolipoprotein B-100- and B-48-containing very low density lipoproteins in McA-RH7777 cells. J Biol Chem, 1994,269:25879-88.
    23 Wang Y, McLeod RS, Yao Z. Normal activity of microsomal triglyceride transfer protein is required for the oleate-induced secretion of very low density lipoproteins containing apolipoprotein B from McA-RH7777 cells. J Biol Chem, 1997,272:12272-8.
    24 Swift LL. Assembly of very low density lipoproteins in rat liver: a study of nascent particles recovered from the rough endoplasmic reticulum. J Lipid Res, 1995,36:395-406.
    25 Shelness GS, Sellers JA. Very-low-density lipoprotein assembly and secretion. Curr Opin Lipidol, 2001,12:151-7.
    26 Pease RJ, Leiper JM. Regulation of hepatic apolipoprotein-B-containing lipoprotein secretion. Curr Opin Lipidol, 1996,7:132-8.
    27 Liang J, Ginsberg HN. Microsomal triglyceride transfer protein binding and lipid transfer activities are independent of each other, but both are required for secretion of apolipoprotein B lipoproteins from liver cells. J Biol Chem, 2001,276:28606-12.
    28 Leung GK, Veniant MM, Kim SK, et al. A deficiency of microsomal triglyceride transfer protein reduces apolipoprotein B secretion. J Biol Chem, 2000,275:7515-20.
    29 Bakillah A, Hussain MM. Binding of microsomal triglyceride transfer protein to lipids results in increased affinity for apolipoprotein B: evidence for stable microsomal MTP-lipid complexes. J Biol Chem, 2001,276:31466-73.
    30 Tietge UJ, Bakillah A, Maugeais C, et al. Hepatic overexpression of microsomal triglyceride transfer protein (MTP) results in increased in vivo secretion of VLDL triglycerides and apolipoprotein B. J Lipid Res, 1999,40:2134-9.
    31 Sellers JA, Shelness GS. Lipoprotein assembly capacity of the mammary tumor-derived cell line C127 is due to the expression of functional microsomal triglyceride transfer protein. J Lipid Res, 2001,42:1897-904.
    32 van Greevenbroek MM, Robertus-Teunissen MG, Erkelens DW, et al. Participation of the microsomal triglyceride transfer protein in lipoprotein assembly in Caco-2 cells: interaction with saturated and unsaturated dietary fatty acids. J Lipid Res, 1998,39:173-85.
    33 Wolfrum C, Stoffel M. Coactivation of Foxa2 through Pgc-1beta promotes liver fatty acid oxidation and triglyceride/VLDL secretion. Cell Metab, 2006,3:99-110.
    34 Higashi Y, Itabe H, Fukase H, et al. Distribution of microsomal triglyceride transfer protein within sub-endoplasmic reticulum regions in human hepatoma cells. Biochim Biophys Acta, 2002,1581:127-36.
    35 Hussain MM, Bakillah A, Nayak N, et al. Amino acids 430-570 in apolipoprotein B are critical for its binding to microsomal triglyceride transfer protein. J Biol Chem, 1998,273:25612-5.
    36 Liao W, Hui TY, Young SG, et al. Blocking microsomal triglyceride transfer protein interferes with apoB secretion without causing retention or stress in the ER. J Lipid Res, 2003,44:978-85.
    37 Raabe M, Veniant MM, Sullivan MA, et al. Analysis of the role of microsomal triglyceride transfer protein in the liver of tissue-specific knockout mice. J Clin Invest, 1999,103:1287-98.
    38 Wang Y, Tran K, Yao Z. The activity of microsomal triglyceride transfer protein is essential for accumulation of triglyceride within microsomes in McA-RH7777 cells. A unified model for the assembly of very low density lipoproteins. J Biol Chem, 1999,274:27793-800.
    39 Kulinski A, Rustaeus S, Vance JE. Microsomal triacylglycerol transfer protein is required for lumenal accretion of triacylglycerol not associated with ApoB, as well as for ApoB lipidation. J Biol Chem, 2002,277:31516-25.
    40 Gregg RE, Wetterau JR. The molecular basis of abetalipoproteinemia. Curr Opin Lipidol, 1994,5:81-6.
    41 Atzel A, Wetterau JR. Mechanism of microsomal triglyceride transfer protein catalyzed lipid transport. Biochemistry, 1993,32:10444-50.
    42 Atzel A, Wetterau JR. Identification of two classes of lipid molecule binding sites on the microsomal triglyceride transfer protein. Biochemistry, 1994,33:15382-8.
    43 Jamil H, Dickson JK Jr, Chu CH, et al. Microsomal triglyceride transfer protein. Specificity of lipid binding and transport. J Biol Chem, 1995,270:6549-54.
    44 Gretch DG, Sturley SL, Wang L, et al. The amino terminus of apolipoprotein B is necessary but not sufficient for microsomal triglyceride transfer protein responsiveness. J Biol Chem, 1996,271:8682-91.
    45 Qiu W, Taghibiglou C, Avramoglu RK, et al. Oleate-mediated stimulation of microsomal triglyceride transfer protein (MTP) gene promoter: implications for hepatic MTP overexpression in insulin resistance. Biochemistry, 2005,44:3041-9.
    46 Lin MC, Gordon D, Wetterau JR. Microsomal triglyceride transfer protein (MTP) regulation in HepG2 cells: insulin negatively regulates MTP gene expression. J Lipid Res, 1995,36:1073-81.
    47 Bremmer DR, Trower SL, Bertics SJ, et al. Etiology of fatty liver in dairy cattle: effects of nutritional and hormonal status on hepatic microsomal triglyceride transfer protein. J Dairy Sci, 2000,83:2239-51.
    48 Lin MC, Arbeeny C, Bergquist K, et al. Cloning and regulation of hamster microsomal triglyceride transfer protein. The regulation is independent from that of other hepatic and intestinal proteins which participate in the transport of fatty acids and triglycerides. J Biol Chem, 1994,269:29138-45.
    49 Bennett AJ, Billett MA, Salter AM, et al. Regulation of hamster hepatic microsomal triglyceride transfer protein mRNA levels by dietary fats. Biochem Biophys Res Commun, 1995,212:473-8.
    50 Bennett AJ, Bruce JS, Salter AM, et al. Hepatic microsomal triglyceride transfer protein messenger RNA concentrations are increased by dietary cholesterol in hamsters. FEBS Lett, 1996,394:247-50.
    51 Taguchi H, Omachi T, Nagao T, et al. Dietary diacylglycerol suppresses high fat diet-induced hepatic fat accumulation and microsomal triacylglycerol transfer protein activity in rats. J Nutr Biochem, 2002,13:678-683.
    52 Taghibiglou C, Carpentier A, Van Iderstine SC, et al. Mechanisms of hepatic very low density lipoprotein overproduction in insulin resistance. Evidence for enhanced lipoprotein assembly, reduced intracellular ApoB degradation, and increased microsomal triglyceride transfer protein in a fructose-fed hamster model. J Biol Chem, 2000,275:8416-25.
    53 Au WS, Kung HF, Lin MC. Regulation of microsomal triglyceride transfer protein gene by insulin in HepG2 cells: roles of MAPKerk and MAPKp38. Diabetes, 2003,52:1073-80.
    54 Hagan DL, Kienzle B, Jamil H, et al. Transcriptional regulation of human and hamster microsomal triglyceride transfer protein genes. Cell type-specific expression and response to metabolic regulators. J Biol Chem, 1994,269:28737-44.
    55 Sato R, Miyamoto W, Inoue J, et al. Sterol regulatory element-binding protein negatively regulates microsomal triglyceride transfer protein gene transcription. J Biol Chem, 1999,274:24714-20.
    56 Lin MC, Li JJ, Wang EJ, et al. Ethanol down-regulates the transcription of microsomal triglyceride transfer protein gene. FASEB J, 1997,11:1145-52.
    57 Navasa M, Gordon DA, Hariharan N, et al. Regulation of microsomal triglyceride transfer protein mRNA expression by endotoxin and cytokines. J Lipid Res, 1998,39:1220-30.
    58 Hirokane H, Nakahara M, Tachibana S, et al. Bile acid reduces the secretion of very low density lipoprotein by repressing microsomal triglyceride transfer protein gene expression mediated by hepatocyte nuclear factor-4. J Biol Chem, 2004,279:45685-92.
    59 Ameen C, Edvardsson U, Ljungberg A, et al. Activation of peroxisome proliferator-activated receptor alpha increases the expression and activity of microsomal triglyceride transfer protein in the liver. J Biol Chem, 2005,280:1224-9.
    60 Stefano JT, de Oliveira CP, Correa-Giannella ML, et al. Nonalcoholic Steatohepatitis (NASH) in OB/OB Mice Treated with Yo Jyo Hen Shi Ko (YHK): Effects on Peroxisome Proliferator-Activated Receptors (PPARs) and Microsomal Triglyceride Transfer Protein (MTP). Dig Dis Sci, 2007:[Epub ahead of print].
    61 Borradaile NM, de Dreu LE, Barrett PH, et al. Hepatocyte apoB-containing lipoprotein secretion is decreased by the grapefruit flavonoid, naringenin, via inhibition of MTP-mediated microsomal triglyceride accumulation. Biochemistry, 2003,42:1283-91.
    62 Wilcox LJ, Borradaile NM, de Dreu LE, et al. Secretion of hepatocyte apoB is inhibited by the flavonoids, naringenin and hesperetin, via reduced activity and expression of ACAT2 and MTP. J Lipid Res, 2001,42:725-34.
    63 Allister EM, Borradaile NM, Edwards JY, et al. Inhibition of microsomal triglyceride transfer protein expression and apolipoprotein B100 secretion by the citrus flavonoid naringenin and by insulin involves activation of themitogen-activated protein kinase pathway in hepatocytes. Diabetes, 2005,54:1676-83.
    64 Nerurkar PV, Pearson L, Efird JT, et al. Microsomal triglyceride transfer protein gene expression and ApoB secretion are inhibited by bitter melon in HepG2 cells. J Nutr, 2005,135:702-6.
    65 Orekhov AN, Grunwald J. Effects of garlic on atherosclerosis. Nutrition, 1997,13:656-63.
    66 Berthold HK, Sudhop T. Garlic preparations for prevention of atherosclerosis. Curr Opin Lipidol, 1998,9:565-9.
    67 Agarwal KC. Therapeutic actions of garlic constituents. Med Res Rev, 1996,16:111-24.
    68 Lin MC, Wang EJ, Lee C, et al. Garlic inhibits microsomal triglyceride transfer protein gene expression in human liver and intestinal cell lines and in rat intestine. J Nutr, 2002,132:1165-8.
    69 Fatma S, Yakubov R, Anwar K, et al. Pluronic L81 enhances triacylglycerol accumulation in the cytosol and inhibits chylomicron secretion. J Lipid Res, 2006,47:2422-32.
    70 Sharp D, Ricci B, Kienzle B, et al. Human microsomal triglyceride transfer protein large subunit gene structure. Biochemistry, 1994,33:9057-61.
    71 Bjorn Lundahl, Leren TP, Ose L, et al. A functional polymorphism in the promoter region of the microsomal triglyceride transfer protein (MTP -493G/T) influences lipoprotein phenotype in familial hypercholesterolemia. Arterioscler Thromb Vasc Biol, 2000,20:1784-8.
    72 Swift LL, Jovanovska A, Kakkad B, et al. Microsomal triglyceride transfer protein expression in mouse intestine. Histochem Cell Biol, 2005,123:475-82.
    73 Sharp D, Blinderman L, Combs KA, et al. Cloning and gene defects in microsomal triglyceride transfer protein associated with abetalipoproteinaemia. Nature,1993,365:65-9.
    74 Nakamuta M, Chang BH, Hoogeveen R, et al. Mouse microsomal triglyceride transfer protein large subunit: cDNA cloning, tissue-specific expression and chromosomal localization. Genomics, 1996,33:313-6.
    75 Narcisi TM, Shoulders CC, Chester SA, et al. Mutations of the microsomal triglyceride-transfer-protein gene in abetalipoproteinemia. Am J Hum Genet, 1995,57:1298-310.
    76 Wetterau JR, Aggerbeck LP, Bouma ME, et al. Absence of microsomal triglyceride transfer protein in individuals with abetalipoproteinemia. Science, 1992,258:999-1001.
    77 Xie Y, Newberry EP, Young SG, et al. Compensatory increase in hepatic lipogenesis in mice with conditional intestine-specific Mttp deficiency. J Biol Chem, 2006,281:4075-86.
    78 Karpe F, Lundahl B, Ehrenborg E, et al. A common functional polymorphism in the promoter region of the microsomal triglyceride transfer protein gene influences plasma LDL levels. Arterioscler Thromb Vasc Biol, 1998,18:756-61.
    79 黎荣山,尹瑞兴,林伟雄,等. 广西黑衣壮族人群微粒体甘油三酯转移蛋白基因多态性与血脂水平的关系. 中华医学杂志, 2005,85:2492-6.
    80 孙蓓,陈莉明,郑少雄. MTP-493 基因型与 2 型糖尿病双下肢动脉闭塞症. 天津医药, 2005,33:87-9.
    81 中华内分泌代谢杂志. 微粒体甘油三酯转移蛋白基因多态性与 2 型糖尿病血脂紊乱的关系. 中华内分泌代谢杂志, 2001,17:306-7.
    82 Cuchel M, Bloedon LT, Szapary PO, et al. Inhibition of microsomal triglyceride transfer protein in familial hypercholesterolemia. N Engl J Med, 2007,356:148-56.
    83 Chandler CE, Wilder DE, Pettini JL, et al. CP-346086: an MTP inhibitor that lowers plasma cholesterol and triglycerides in experimental animals and in humans. J Lipid Res, 2003,44:1887-901.
    84 Chang G, Ruggeri RB, Harwood HJ Jr. Microsomal triglyceride transfer protein (MTP) inhibitors: discovery of clinically active inhibitors using high-throughput screening and parallel synthesis paradigms. Curr Opin Drug Discov Devel, 2002,5:562-70.
    85 Jamil H, Gordon DA, Eustice DC, et al. An inhibitor of the microsomal triglyceride transfer protein inhibits apoB secretion from HepG2 cells. Proc Natl Acad Sci U S A, 1996,93:11991-5.
    86 Bakillah A, Nayak N, Saxena U, et al. Decreased secretion of ApoB follows inhibition of ApoB-MTP binding by a novel antagonist. Biochemistry, 2000,39:4892-9.
    87 Ksander GM, deJesus R, Yuan A, et al. Diaminoindanes as microsomal triglyceride transfer protein inhibitors. J Med Chem, 2001,44:4677-87.
    88 Wetterau JR, Gregg RE, Harrity TW, et al. An MTP inhibitor that normalizes atherogenic lipoprotein levels in WHHL rabbits. Science, 1998,282:751-4.
    89 Li J, Bertinato P, Cheng H, et al. Discovery of potent and orally active MTP inhibitors as potential anti-obesity agents. Bioorg Med Chem Lett, 2006,16:3039-42.
    90 Shiomi M, Ito T. MTP inhibitor decreases plasma cholesterol levels in LDL receptor-deficient WHHL rabbits by lowering the VLDL secretion. Eur J Pharmacol, 2001,431:127-31.
    91 Zhang X, Tengowski M, Fasulo L, et al. Measurement of fat/water ratios in rat liver using 3D three-point dixon MRI. Magn Reson Med, 2004,51:697-702.
    92 Ueshima K, Akihisa-Umeno H, Nagayoshi A, et al. Implitapide, a microsomal triglyceride transfer protein inhibitor, reduces progression of atherosclerosis in apolipoprotein E knockout mice fed a Western-type diet: involvement of the inhibition of postprandial triglyceride elevation. Biol Pharm Bull, 2005,28:247-52.
    93 Aggarwal D, West KL, Zern TL, et al. JTT-130, a microsomal triglyceride transferprotein (MTP) inhibitor lowers plasma triglycerides and LDL cholesterol concentrations without increasing hepatic triglycerides in guinea pigs. BMC Cardiovasc Disord, 2005,5:30.
    94 Burnett JR. Drug evaluation: The MTP inhibitor JTT-130 as a potential treatment for hyperlipidemia. IDrugs, 2006,9:495-9.
    95 Huang H, Sun F, Owen DM, et al. Hepatitis C virus production by human hepatocytes dependent on assembly and secretion of very low-density lipoproteins. Proc Natl Acad Sci U S A, 2007,104:5848-53.
    96 Phillips C, Bennett A, Anderton K, et al. Intestinal rather than hepatic microsomal triglyceride transfer protein as a cause of postprandial dyslipidemia in diabetes. Metabolism, 2002,51:847-52.
    97 Bartels ED, Lauritsen M, Nielsen LB. Hepatic expression of microsomal triglyceride transfer protein and in vivo secretion of triglyceride-rich lipoproteins are increased in obese diabetic mice. Diabetes, 2002,51:1233-9.
    98 Phillips C, Mullan K, Owens D, et al. Intestinal microsomal triglyceride transfer protein in type 2 diabetic and non-diabetic subjects: the relationship to triglyceride-rich postprandial lipoprotein composition. Atherosclerosis, 2006,187:57-64.
    99 Lally S, Owens D, Tomkin GH. Genes that affect cholesterol synthesis, cholesterol absorption, and chylomicron assembly: the relationship between the liver and intestine in control and streptozotosin diabetic rats. Metabolism, 2007,56:430-8.
    100 Phillips C, Owens D, Collins P, et al. Low density lipoprotein non-esterified fatty acids and lipoprotein lipase in diabetes. Atherosclerosis, 2005,181:109-14.
    101 Day CP, Yeaman SJ. The biochemistry of alcohol-induced fatty liver. Biochim Biophys Acta, 1994,1215:33-48.
    102 Venkatesan S, Ward RJ, Peters TJ. Effect of chronic ethanol feeding on the hepatic secretion of very-low-density lipoproteins. Biochim Biophys Acta, 1988,960:61-6.
    103 Raabe M, Flynn LM, Zlot CH, et al. Knockout of the abetalipoproteinemia gene in mice: reduced lipoprotein secretion in heterozygotes and embryonic lethality in homozygotes. Proc Natl Acad Sci U S A, 1998,95:8686-91.
    104 Wanless IR, Lentz JS. Fatty liver hepatitis (steatohepatitis) and obesity: an autopsy study with analysis of risk factors. Hepatology, 1990,12:1106-10.
    105 Farrell GC. Non-alcoholic steatohepatitis: what is it, and why is it important in the Asia-Pacific region?. J Gastroenterol Hepatol, 2003,18:124-38.
    106 Bernard S, Touzet S, Personne I, et al. Association between microsomal triglyceride transfer protein gene polymorphism and the biological features of liver steatosis in patients with type II diabetes. Diabetologia, 2000,43:995-9.
    107 Namikawa C, Shu-Ping Z, Vyselaar JR, et al. Polymorphisms of microsomal triglyceride transfer protein gene and manganese superoxide dismutase gene in non-alcoholic steatohepatitis. J Hepatol, 2004,40:781-6.
    108 Gambino R, Cassader M, Pagano G, et al. Polymorphism in microsomal triglyceride transfer protein: A link between liver disease and atherogenic postprandial lipid profile in NASH?. Hepatology, 2007,45:1097-107.
    109 Musso G, Gambino R, Durazzo M, et al. Adipokines in NASH: postprandial lipid metabolism as a link between adiponectin and liver disease. Hepatology, 2005,42:1175-83.
    110 Swift LL, Kakkad B, Boone C, et al. Microsomal triglyceride transfer protein expression in adipocytes: a new component in fat metabolism. FEBS Lett, 2005,579:3183-9.
    111 Sugimoto T, Yamashita S, Ishigami M, et al. Decreased microsomal triglyceride transfer protein activity contributes to initiation of alcoholic liver steatosis in rats. J Hepatol, 2002,36:157-62.
    112 Kwon HJ, Hyun SH, Choung SY. Traditional Chinese Medicine improves dysfunction of peroxisome proliferator-activated receptor alpha and microsomaltriglyceride transfer protein on abnormalities in lipid metabolism in ethanol-fed rats. Biofactors, 2005,23:163-76.
    113 Letteron P, Sutton A, Mansouri A, et al. Inhibition of microsomal triglyceride transfer protein: another mechanism for drug-induced steatosis in mice. Hepatology, 2003,38:133-40.
    114 Pan X, Hussain FN, Iqbal J, et al. Inhibiting proteasomal degradation of microsomal triglyceride transfer protein prevents CCl4 induced steatosis. J Biol Chem, 2007:[Epub ahead of print].
    115 Lonardo A, Adinolfi LE, Loria P, et al. Steatosis and hepatitis C virus: mechanisms and significance for hepatic and extrahepatic disease. Gastroenterology, 2004,126:586-97.
    116 Patton HM, Patel K, Behling C, et al. The impact of steatosis on disease progression and early and sustained treatment response in chronic hepatitis C patients. J Hepatol, 2004,40:484-90.
    117 Poynard T, Ratziu V, McHutchison J. Effect of treatment with peginterferon or interferon alfa-2b and ribavirin on steatosis in patients infected with hepatitis C. Hepatology, 2003,38:75-85.
    118 Yamaguchi A, Tazuma S, Nishioka T, et al. Hepatitis C virus core protein modulates fatty acid metabolism and thereby causes lipid accumulation in the liver. Dig Dis Sci, 2005,50:1361-71.
    119 Domitrovich AM, Felmlee DJ, Siddiqui A. Hepatitis C virus nonstructural proteins inhibit apolipoprotein B100 secretion. J Biol Chem, 2005,280:39802-8.
    120 Perlemuter G, Sabile A, Letteron P, et al. Hepatitis C virus core protein inhibits microsomal triglyceride transfer protein activity and very low density lipoprotein secretion: a model of viral-related steatosis. FASEB J, 2002,16:185-94.
    121 Barrett S, Kieran N, Ryan E, et al. Intrahepatic hepatitis C viral RNA status of serum polymerase chain reaction-negative individuals with histological changes onliver biopsy. Hepatology, 2001,33:1496-502.
    122 Mirandola S, Realdon S, Iqbal J, et al. Liver microsomal triglyceride transfer protein is involved in hepatitis C liver steatosis. Gastroenterology, 2006,130:1661-9.
    123 Petit JM, Masson D, Minello A, et al. Lack of association between microsomal triglyceride transfer protein gene polymorphism and liver steatosis in HCV-infected patients. Mol Genet Metab, 2006,88:196-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700