肠缺血再灌注导致全身炎症反应及多器官功能障碍综合征的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景和目的:
     肠缺血再灌注(intestinal ischemia-reperfusion,IIR)是发生多器官功能障碍综合征(multiple organ dysfunction syndrome,MODS)的重要病理生理过程。全身炎症反应(systemic inflammatory response syndrome,SIRS)是IIR后MODS发生的重要发病机理,早期干预炎症反应,积极防治MODS,是降低危重病患者病死率的重要手段。
     全身系统性炎症反应的发生取决于机体的免疫系统。传统上免疫系统分为天然免疫和获得性免疫。我们课题组前期工作表明猕猴IIR后并发SIRS及MODS的发病过程中,肠粘膜TLRs-NF-κB-炎症介质信号转导通路全面激活,但IgA、SC、SIgA均显著减少,表现为肠粘膜过强天然免疫与降低的获得性体液免疫共同存在。IFN-γ是免疫炎症反应的一种重要调控因子,对天然免疫和获得性免疫均有调控作用,但IFN-γ是否参与IIR后肠粘膜免疫反应及SIRS的形成?如果参与,是通过何种机制?细胞因子常与其它激素,神经肽、神经递质共同组成细胞间信号分子系统,如果IFN-γ参与了肠黏膜免疫活动,生长抑素(somatostatin,SST)是否影响IFN-γ的产生?通过这方面的研究,以期增进我们对IIR后肠黏膜免疫的认识,并为防治SIRS、MODS提供新的思路。
     急性重症胰腺炎(severe acute pancreatitis,SAP)是导致IIR的常见病因,在SAP—IIR—MODS的发生中,IIR反过来对胰腺组织病理及功能又有何影响?自SST用于治疗SAP以来,有效降低了MODS发病率。SST的这些作用究竟仅仅是因为抑制了胰酶分泌,还是可以避免IIR后SIRS对胰腺的再次打击?这方面的研究将更新临床防治MODS或SAP的思路,并增加我们对SST在抗炎药理方面的认识。
     传统认为,B细胞介导的获得性免疫在肠粘膜免疫中具有重要的作用。我们研究小组前期的实验表明IIR后,大鼠肠淋巴细胞归巢增加,猕猴PP(peyer’s patches,PP)内B细胞明显增多,但是肠粘膜获得性体液免疫效应却表现为sIgA减少。新近研究表明,B淋巴细胞具有获得性免疫及天然免疫的双重功能。那么IIR时PP内大量集聚的B细胞是否参与肠黏膜增强天然免疫的形成?如果有,是哪一类或哪一发育阶段的B细胞?参与天然免疫的B细胞是否包括具有免疫记忆的B淋巴母细胞?这些研究能增进我们对临床防治SIRS及MODS分子靶点的新认识。
     方法:
     1.实验动物:全部实验所用健康成年猕猴来自成都野生动物世界,雌雄不限,体重6.9±1.7Kg。猕猴进出成都野生动物世界猕猴喂养区时均检疫合格。
     2.实验分组:15只健康成年猕猴随机分为正常、IIR、IIR+SST三组,每组5只动物。肠缺血再灌注手术:肌注复方二甲苯胺噻嗪(0.06~0.24ml/kg)麻醉动物,实验过程中用安定静注0.16±0.09mg/kg/h维持昏睡状态。无菌铺巾,沿腹正中切开,分离肠系膜上动脉后予以夹闭,60 min后松夹进行再灌注,恢复肠系膜上动脉血流。再灌注后1h,静脉输入0.9%盐水,0.1~0.2ml/kg/min,24h内补入葡萄糖20g。
     3.预防使用SST:在夹闭肠系膜上动脉前,从静脉滴注生长抑素,5μg/kg/h,持续至再灌注后24h。
     4.HE染色法观察回肠、胰腺组织病理损伤程度。
     5.放射免疫分析检测外周血SST的含量。
     6.ELISA检测肠上皮细胞、肠淋巴细胞、肠淋巴细胞孵育上清液、回肠组织匀浆、外周血清、门静脉血清中IFN-γ的水平。
     7.ELISA检测外周血清及回肠组织匀浆中IL-1β、IL-6、TNF-α水平。
     8.酶比色法检测血清淀粉酶及脂肪酶。
     9.免疫组化检测IFN-γ、CD4、CD8、CD57、CD20、CD5、PAX-5、浆细胞、TLR4、TLR2、NF-κB、integrinα4β7的分布,图像分析软件测定阳性面积及IOD值。
     10.门静脉血培养。
     11.培养人B淋巴母细胞株hmy2.cir,细胞干预组加入LPS(10μg/ml),另一组为无干预的空白对照组,37℃,5%CO_2孵育。
     12.ELISA检测干预24小时后培养上清液中IL—6及干预72小时后培养上清液中IgM的水平。
     13.免疫荧光检测hmy2.cir细胞TLR2、TLR4表达。
     14.MTT检测LPS干预hmy2.cir细胞株后24小时、48小时、72小时的增殖情况
     结果:
     1.IIR后回肠粘膜上皮细胞、门静脉血内IFN-γ水平较正常组显著增加(分别为30.7±20.1 pg/mg vs 9.4±2.4pg/mg总蛋白;18.1±1.1pg/ml vs 8.7±1.3 pg/m1),p<0.05,而肠淋巴细胞及其上清液的IFN-γ水平较正常组明显降低(分别为1.7±0.02pg/mg vs 11.1±4.0pg/mg总蛋白;2.2±0.3pg/mg ys 5.2±1.5pg/mg)(p<0.05);
     2.预防性给予SST后,与IIR组比较,回肠上皮细胞及门静脉血内IFN-γ的水平显著下降(分别为13.6±4.9pg/mg总蛋白,p=0.055;8.9±2.5pg/ml,p<0.05),肠淋巴细胞及其上清液的IFN-γ水平无明显变化;
     3.组织匀浆及外周血的IFN-γ水平在三组间无明显差别。CD4~+细胞、CD57~+细胞分布与IFN-γ无关,CD8~+细胞分布与IFN-γ变化趋势相反。
     4.IIR后小肠黏膜PP数量增加、增大。
     5.正常组猕猴肠黏膜PP内的B细胞均为PAX-5~+ CD20~+ CD5~-,系B-2细胞,黏膜固有层有散在浆细胞。IIR后PP内PAX-5~+细胞显著增加(p<0.05),但其中CD20表达未见增多,CD5~-表达,出现PAX-5~+ CD20~- CD5~-的祖B细胞,黏膜固有层内浆细胞显著减少(p<0.05)。
     6.正常时,PP中TLR2、TLR4、NF-κB及IFN-γ表达均较弱,IIR时PP内四种分子表达均明显增强。
     7.正常PP内有散在α4β7表达,IIR组明显减少。
     8.IIR后,猕猴外周血及回肠黏膜组织中炎症介质IL-1β(外周血:79.2±14.4ng/ml;回肠:294.0±46.4pg/g)、IL-6(外周血:1261±297.5ng/ml;回肠:1527±160.8p/g)、TNF-α(外周血:64.8±18.7ng/ml;回肠:213.2±29.2pg/g),与正常组IL-1β(外周血:27.3±7.17ng/ml;回肠:82.8±20.5pg/g)、IL-6(外周血:13.9±10.50ng/ml;回肠:709.6±211.2pg/g)、TNF-α(外周血:3.04±1.01ng/ml;回肠:56.0±10.04pg/g)比较,均显著增加(p<0.05)。SST治疗后,外周血中IL-1β(40.0±9.9ng/ml)、IL-6(244.4±70.0 ng/ml)、TNF-α(19.2±10.1 ng/ml)水平明显下降,与IIR组相比有显著性差异(p<0.05)。
     9.正常组5只动物的门静脉血培养均为阴性;IIR组所有猕猴血培养均有细菌生长,阳性率为100%,而且引起菌血症的细菌均为大肠杆菌。
     10.LPS干预72小时后,hmy2.cir细胞上清液中IgM水平为0.528±0.002 ng/ug总蛋白,与空白对照组(0.617±0.057ng/ug总蛋白)相比显著减少(p<0.05)。
     11.LPS干预72小时后,与对照组相比,hmy2.cir细胞TLR4的IOD(1201.3±913.4 vs 5078.2±2483.2)及TLR2的IOD(174.8±80.2 vs 1463.5±51.2)较对照组显著减少(p<0.05)。
     12.LPS干预24小时后,hmy2.cir细胞上清液中IL-6水平(0.528±0.002 pg/ug总蛋白)与空白对照组(0.406±0.218pg/ug总蛋白)相比显著减少(p<0.05)。
     13.LPS干预24小时后,hmy2.cir细胞增殖水平(0.389±0.061)较空白对照组(0.727±0.245)为低,72小时后细胞增殖水平(0.562±0.219)较对照(0.173±0.079)显著增加(p<0.05)。
     14.IIR后,所测胰淀粉酶(2 492.0±2 102.8 IU/L vs 385.4±136.1 IU/L)及脂肪酶(1 278.0±1 446.3 IU/L VS 25.8±13.0 IU/L)在血中水平较正常组均显著升高(p<0.05)。预防性使用SST,既使发生IIR,血胰淀粉酶(567.0±338.0 IU/L)及血脂肪酶(77.2±779 IU/L)明显回落。
     15.放射免疫分析结果表明,IIR后外周血SST(62.17±13.56 pg/ml)较正常对照(160.61±33.84 pg/ml)明显下降(p<0.05),静脉补充SST后,循环SST水平(156.32±30.25 pg/ml)显著回升(p<0.05)。
     16.IIR时可见胰腺组织病理损伤。预防性使用SST后,胰腺病理组织学较IIR时明显减轻,组织学评分从+++降到++。
     结论:
     1.IIR后,来源于上皮细胞及早期祖B细胞大量产生IFN-γ,后果是通过肠、黏膜、肺泡肥大细胞上的FcεRIα活化肥大细胞,引起强烈的天然免疫反应。换言之,IFN-γ将TLR-NF-κB与肥大细胞两个天然免疫反应通路联系在一起,构成了复杂、高效的天然免疫网络。
     2.IIR后祖B细胞参与肠黏膜天然免疫反应,在肠黏膜屏障严重损伤时常伴发LPS血症,这使得LPS可在循环甚至骨髓中通过祖B细胞的TLR介导使祖B细胞迅速卷入天然免疫,在循环中产生大量IL-1β、IL-6、TNF-α,这应是SIRS发生的重要原因之一。
     3.IIR后肠黏膜PP内PAX-5~+ CD20~+ CD5~-、具有免疫记忆的B淋巴母细胞并未在强烈、快速反应的天然免疫中发挥明显作用。
     4.整个B淋巴细胞群具有天然免疫及获得性免疫的双重功能。在不同发育阶段的B淋巴细胞仅分别发挥其中某一项功能。代表早期发育阶段的祖B淋巴细胞高表达TLRs,且能被LPS激活,经TLR-NF-κB-促炎因子途径发挥快速、强烈的天然免疫功能;成熟B细胞具有较弱的天然免疫作用,主要参与获得性免疫;代表发育晚期阶段的B淋巴母细胞虽有TLRs表达,但不能被LPS激活,不具有天然免疫功能。
     5.IIR导致MODS时,胰腺应为值得重视的、早期受损的器官。其炎症组织病理改变,不是缺血后氧化应激所致,而与循环中炎症介质进入胰腺后激活NF-κB有关。SST可通过降低全身炎症反应,解除血炎症介质对胰腺的再次损伤,从而避免急性胰腺炎向重症方向发展。
Background
     Intestinal ischemia-reperfusion (IIR) is an important pathophysiological factor, contributory to systemic inflammatory response syndrome (SIRS), resulting in multiple organ dysfunction syndrome (MODS). Early intervention on the inflammatory response during IIR is an effective way to reduing MODS-associated mortality of critically ill patients.
     Development of SIRS depends on body's immune response that consists of adaptive immunity and innate immunity. Our prior study revealed activation of TLRs-NF-[kappa]B-proinflammatory gene expression, but decreased IgA, SC, SIgA in intestine during IIR macaque, reflecting excessive innate immunity and reduced adaptive immunity in intestinal mucosal immunity. IFN-γis an important cytokine responsible for regulation of adaptive and innate immunity. However, whether and how IFN-γ, is involved in intestinal mucosal immunity and SIRS post IIR remains to be determined. Cytokines always works closely with other hormones, neuropeptides and neurotransmitters, constituting a particular intercellular network. Role of somatostatin (SST), as a kind of important physiological neuropeptide in the production and regulation of IFN-γis also needed to characterize. Our research may help with understanding intestinal mucosal immunity after IIR and providing a new insight into treatment of SIRS and MODS.
     Intestinal ischemia reperfusion plays an important role in pathophysiological process of sever acute pancreatitis (SAP) to multiple organ disfunction. It is unclear if IIR aggravate inversely the inflammatory and histopathologic changes of pancreas. With the use of SST in treating SAP patients, it remarkedly reduced the incidence of MODS after SAP. Is it the result of suppressing the production of serum amylase levels? Does SST have a pivotal role in preventing second hit of pancreas during SIRS secondary to IIR? By answering this question, it will change our thoughts on prevention and treatment of SIRS and MODS, and will help to understand pharmacological mechanism of anti-inflammatory of SST.
     Traditionally, adaptive immunity mediated by B lymphocyte is regarded as an important factor in intestinal mucosal immunity. Our prior study indicates that increased homing of intestinal mucosal lymphocytes is involved in intestinal ischemia-reperfusion of rats; B lymphocytes in macaques peyer's patches are obviously increased after IIR. But sIgA, as a feature of intestinal acquired immunity, is found to decrease. Recent studies have proved that that B lymphocytes is involved in innate immunity and in acquired immunity. Do B lymphocytes aggragating in peyer's patches participate in excessive intestinal innate immunity? If yes, which type or which stage B lymphocytes have such function? Do immunological memory B lymphoblasts participate in innate immunity? By answering these questions, we should recognize new checkpoints and are able to understand the mechanism of SIRS and MODS better.
     Material and Methods
     1. 15 macaques with weighing 6.9±1.7Kg obtained from ChengDu safari park (ChengDu, china) were divided into three groups: normal control, IIR group and IIR+SST group.
     2. The animals were anesthetized with intramuscular xylazine compound (The military veterinary institute, quartermaster university of PLA, Changchun, China) at a dosage of 0.2±0.1ml/kg, followed by intravenous administration of diazepam at a dose of 0.16±0.09mg/kg/h. In IIR and IIR+SST group, A 5-cm vertical median incision at the epigastrium was made in animals after asepsis and antisepsis were completed. About 20% of initial blood volume removed [removed blood volume(ml)=weight(g)×5%] from inferior caval vein with a syringe and partial blood samples were used for organ functional laboratory tests. The superior mesenteric artery (SMA) was isolated near its aortic origin and was looped with a 7 silk suture. The SMA was occluded for 1h and reopened with this silk suture loop and a vascular clamp. During the experiment, the abdominal wall was kept approximated to prevent fluid and heat loss. One hour later, normal saline solution containing 20g glucose was infused into animal via posterior limb venous at a rate of 0.1~0.2ml/kg/min throughout the study.
     3. All 5 macaques were treated with somatostatin-14(Serono, Genevese, Switzerland) added to the normal saline solution at a dose of 5ug/kg/h iv prior to the onset of occluding superior mesenteric and through out 24 hours. Otherwise in control group, all animals received the same treatment except IIR operation.
     4. Tissues of ileum and pancrea were fixed in 4% buffered-paraformaldehyde solution and embedded in paraffin. Paraffin sections (5μn) were prepared and stained with haematoxylin and eosin. Injury was observed under macro- and microscopic examination while sections were scored with a semiquantitative scale designed to evaluate the degree of organ' injury.
     5. SST concentration in peripheral intravenous blood was measured using a radioimmunoassay method.
     6. Ileum tissues and specimens of ileac epithelial cells, ileac lymphocytes, supernatant fluids ofileac lymphocytes incubation, peripheral blood, portal vein blood were obtained for detection the level of IFN-γusing ELISA.
     7. The concentration of tumor necrosis factor-alpha (TNF-alpha), interleukin-1belta(IL-1β) and interleukin-6 (IL-6) in peripheral intravenous blood and Ileum tissues were measured using ELISA kit.
     8. The serum levels of amylase (AMY) and lipase were determined by chromometry.
     9. Immunohistochemistry were performed to identify the distribution of IFN-γ, CD4, CD8, CD57, CD20, CD5, PAX-5, plasma cell, TLR4, TLR2, NF-κB, integrinα4β7 and semi-quantitative immunohistochemical analyse was used to score integrated optical density(IOD) and ratio of area of object to total area of image(per area).
     10. Blood culture ofpotal vein.
     11. Human B lymphoblast cell line was cultured and divided into two groups. One is interferenced in medium supplemented with LPS (10μg/ml) and the other is control group. Stock cultures and the experimental cultures were maintained at 37℃in a moist atmosphere of 95% air and 5% CO_2.
     12. The concentration of IL-6 and IgM in culture cells supernatant fluid was determined by ELISA.
     13. The expression of TLR2 and TLR4 ofhmy2. cir was detected by immunofluorescence.
     14. MTT assay was used to measure the proliferation.
     Results
     1. IFN-γlevel in the ileac epithelial cells and potal vein blood after IIR were both remarkably increased ( 30.7±20.1 pg vs 9.4±2.4pg/mg total protein; 18.1±1.1 pg/ml vs 8.74±1.3 pg/ml), p<0.05; Whereas IFN-γlevel in the ileac lymphocytes and supematant fluid of that of IIR were reduced (1.7±0.02pg/mg vs 11.1±4.0pg/mg total protein; 2.2±0.3pg/mg vs 5.2±1.5pg/mg total protein).
     2. After the injection of SST, IFN-γlevel decreased to 13.6±4.9pg/mg total protein, p=0.055 in the ileac epithelial cells, while in the potal vein blood to 8.9±2.5, p<0.05. However, SST had no effect on IFN-γin the ileac lymphocytes and supernatant fluid.
     3. There is no change of IFN-γlevel in tissue homogenates and peripheral blood among three groups. Distribution of CD4~+, CD57~+ cells has no relationship with IFN-γ, while that of CD8~+ cells demonstrated a conflicting tendency to IFN-γ.
     4. Numbers and areas of peyer's patches were significantly increased postoperatively in IIR groups as compared to NC group.
     5. In peyer's patches, the phenotype of B lymphocyte is PAX-5~+CD20~+CD5~- in NC groups deemed as B2 lymphocyte. In contrast, PAX-5~+ B lymphocytes are increased (p<0.05) and PAX-5~+CD20~-D5~- B lymphocytes(pro-B cells) are observed in peyer's patches of IIR groups. In NC group, plasm cells of mucosa locate mainly in lamina propria but decrease significantly in IIR group(p<0.05).
     6. In NC group, there is weak expression of TLR2, TLR4, NF-κB and IFN-γin peyer's patches. IIR significantly increases the expression of the four molecules.
     7. Regarding toα4β7, there is sporadic expression in normal while IIR group has no expression in peyer's patches.
     8. Compared to IL-1β(peripheral intravenous blood: 27.3±7.17ng/ml; ileac tissues: 82.8±20.5pg/g)、IL-6(peripheral intravenous blood: 13.9±10.50ng/ml; ileac tissues: 709.6±211.2pg/g)、TNF-α(peripheral intravenous blood: 3.04±1.01ng/ml; ileac tissues: 56.0±10.04pg/g)in normal group, these are increased in IIR group: IL-1β(peripheral intravenous blood: 79.2±14.4ng/ml; ileac tissues: 294.0±46.4pg/g), IL-6(peripheral intravenous blood: 1261±297.5ng/ml; ileac tissues: 1527±160.8pg/g), TNF-α(peripheral intravenous blood: 64.8±18.7ng/ml; ileac tissues: 213.2±29.2pg/g)significantly(p<0.05). Pretreatment of the macaques with somatostatin significantly inhibited the increased secretion of IL-1β(40.0±9.9 ng/ml), IL-6(244.4±70.0 ng/ml),TNF-α(19.2±10.1 ng/ml) compared with those of IIR group (p<0.05).
     9. In NC group, all blood cultures of potal vein were negative, whereas all animals' speciments in IIR group were positively. Colon bacillus is the only bacterial translocation ingredient.
     10. Supernatant IgM levels(0.528±0.002 ng/ug total protein) were decreased 72 h after LPS treatment, with significant difference compared to control((0.617±0.057ng/ug total protein) (p<0.05).
     11. Hmy2. cir cells showed a higher IOD of TLR4 (1201.3±913.4)and TLR2(174.8±80.2) 72 h after LPS stimulation compared with those of control group (TLR4: 5078.2±2483.2; TLR2: 1463.5±51.2) (p<0.05).
     12. LPS interference significantly decreases IL-6(0.528±0.002 pg/ug total protein) secretion from hmy2. cir cells compared to that of control group(0.406±0.218pg/ug total protein(p<0.05).
     13. Hmy2. cir cells displayed declined proliferation(0.389±0.061) after 24 h in response to LPS than that of control group(0.727±0.245). 72 h after LPS treatment enhanced proliferation(0.562±0.219) was found in comparation to control group(0.173±0.079) (p<0.05).
     14. Activities of AMY (2 492.0±2 102.8 IU/L vs 385.4±136.1 IU/L) and lipase (1 278.0±1,446. 3 IU/L vs 25.8±13.0 IU/L) were increased (p<0.05). Pretreatment of the macaques with somatostatin significantly inhibited secretion of AMY(567.0±338.0 IU/L)and lipase(77.2±77.9 IU/L) in peripherial blood (p<0.05)。
     15. After IIR injury, somatostatin leveI detected by RIA significantly decreased (62.17±13.56 pg/ml) in comparation to NC group(160.61±33.84 pg/ml) (p<0.05) and got correct after SST treatment(156.32±30.25 pg/ml)(p<0.05).
     16. I1R group exhibited histopathologic injury of pancreas which was reduced from +++ to ++ after SST pretreatment.
     Conclusion
     1. After IIR, intestinal epithelial cells and pro-B lymphocytes produced a large number of IFN-γ, interacting with FcεR on mast cells in intestine, mucosa and tung where resulting in excessive innate immunity. In other words, IFN-γ, connected TLR- NF-κB pathway of innate immunity with mast cells. Thus it produced a sophisicated and highly active network of innate immunity.
     2. After IIR, pro-B lymphocytes in intestine participate in intestinal mucosal innate immunity. In addition, we hypothesize that serum or even marrow pro-B lymphocytes may be activated by LPS through TLR. Then is also involved in innate immunity and SIRS states of circulation by producing numerous IL-1β, IL-6, TNF-α. This is one of prominent causes of SIRS.
     3. After IIR, lack of rapid and vigorous response, PAX-5~+CD20~+ CD5~- memory B lymphoblast does not exhibit function of innate immunity.
     4. B lymphocytes are functional both in innate immunity and in acquired immunity but exert one immunomodulatory function at each stages of development. Pro-B cells may be activated by LPS through expression of TLRs. TLRs signal through NF-κB results in a rapid and vigorous innate immune response characterized by the production of pro-inflammatory cytokines; mature B cells has weak innate immune function but are central components of the adaptive immunity; the lymphoblast though expressing TLRs, does not participate in innate immunity because it is lack of activation function of LPS to TLRs.
     5. From IIR to MODS, pancreas is observed to damage in early stage. The inflammatory changes of pancreas after IIR are not induced by oxidative stress from oxygen deficiency, but are associated with NF-kB activation by inflammatory mediators in the circulation. Intravenous supplement of somatostatin shoud be benefitial in preventing the second hit to pancreas. It thus can avoid exacerbation of acute pancreatitis by suppressing systemic inflammatory reaction.
引文
1. Stefanutti G, Pierro A. Vinardi S, Spitz L, Eaton S. Moderate hypothermia protects against systemic oxidative stress in a rat model of intestinal ischemia and reperfusion injury. Shock. 2005; 24(2): 159-164.
    2. Eltzschig HK, Collard CD. Vascular ischaemia and reperfusion injury. Br. Med. Bull. 2004; 70: 71-86.
    3. Antonsson JB, Fiddian-Green RG..The role of the gut in shock and multiple system organ failure. Eur J Surg. 1991; 157(1): 3-12.
    4. Meakins JL, Marshall JC. The gastro-intestinal tract: the 'motor' of multiple organ failure. Arch Surg. 1986; 121: 197-201.
    5. Marshall JC, Christou NV, Meakins JL. The gastrointestinal tract. The 'undrained abscess' of multiple organ failure. Ann Surg. 1993; 218:111-119.
    6. Deitch EA, Xu DZ, Franko L, Ayala A, Chaudry IH. Evidence favoring the role of the gut as a cytokine generating organ in rats subjected to hemorrhagic shock. Shock. 1994; 1(2): 141-146.
    7. Deitch EA. Role of the gut lymphatic system in multiple organ failure. Curr Opin Crit Care. 2001; 7: 92-98.
    8. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RM, Sibbald WJ. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest. 1992; 101(6): 1644-1655.
    9. Bone RC. Sir Isaac Newton, sepsis, SIRS, and CARS. Crit. Care Med. 1996; 24:1125-1128.
    10.Goris RJ, te Boekhorst TP, Nuytinck JK, Gimbrere JS. Multiple organ failure:generalized autodestructive inflammation? Arch Surg. 1985; 120: 1109-1115.
    11.Moore EE, Moore FA, Franciose RJ, Kim FJ, Biffl WL, Banerjee A. Post-ischemic gut serves as a priming bed for circulating neutrophils that provoke multiple organ failure. J Trauma. 1994; 37: 881-887.
    12.Fiddian-Green RG. Studies in splanchnic ischemia and multiple organ failure.In: Marston A, Bukley GB, Fiddian-Green RG, Haglund UH, eds. Splanchnic ischemia nd multiple organ failure. London: Edward Arnold. 1989: 349-363.
    13.Ahlborg G, Weitzberg E, Lundberg JM. Circulating endothelin-1 reduces splanchnic and renal blood flow and splanchnic glucose production in humans. J Appl Physiol. 1995; 79: 141-145.
    14.Kaufmann P, Tilz GP, Smolle KH, Demel U, Krejs GJ. Increased plasma concentrations of circulating intercellular adhesion molecule-1 (cICAM-1) in patients with necrotizing pancreatitis. Immunobiology. 1996; 195: 209-219.
    15.Norman J, Franz M, Messina J, Riker A, Fabri PJ. Interleukin-1 receptor antagonist decreases severity of experimental acute pancreatitis. Surgery 1994; 117: 648-655.
    16.Fu K, Sarras Jr, MP De Lisle RC, Andrews GK. Expression of oxidative stress-responsive genes and cytokine genes during caerulein-induced acute pancreatitis. Am J Physiol. 1997; 273: G696-705.
    17.de Beaux AC, Goldie AS, Ross JA, Carter DC, Fearon KC. Serum concentrations of inflammatory mediators related to organ failure in patients with acute pancreatitis. Br J Surg. 1996; 83: 349-353.
    18.Medzhitov R, Janeway C Jr. Innate immunity. N Engl J Med. 2000; 343: 338-344.
    19.Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol, 2003; 21: 335-376.
    20.Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol, 2001; 1:135-145.
    21.Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature. 1997; 388: 394-397.
    22.Ian Todd. Cells of the Immune System.Encyclopedia of life science / & 2001 Nature Publishing Group.P1-7.
    23.0kamura H, Tsutsi H, Komatsu T, Yutsudo M, Hakura A, Tanimoto T, Torigoe K, Okura T, Nukada Y, Hattori K, et al. Cloning of a new cytokine that induces IFN-gamma production by T cells. Nature. 1995; 378: 88-91.
    24.Colmenares M, Kima PE, Samoff E, Soong L, McMahon-Pratt D. Per-forin and gamma interferon are critical CD8+ T-cell-mediated responses in vaccine-induced immunity against Leishmania amazonensis infection. Infection & Immunity. 2003; 71(6): 3172-3182.
    25.Keilbaugh SA, Shin ME, Banchereau RF, McVay LD, Boyko N, Artis D, Cebra JJ, Wu GD. Activation of RegIII[beta]/[gamma] and interferon [gamma] expression in the intestinal tract of SCID mice: an innate response to bacterial colonisation of the gut. GUT. 2005; 54(5): 623-629
    26.Bach EA, Aguet M, Schreiber RD. The IFN gamma receptor: a paradigm for cytokine receptor signaling. Annu Rev Immunol, 1997; 15: 563-591.
    27. Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD. How cells respond to interferons. Annu Rev Biochem, 1998; 67: 227-264 .
    28.Billau, A.. Interferon gamma: biology and role in pathogenesis. Advan Immunol. 1996; 62: 61-130.
    29.Lin T, Befus AD. Mast cells and eosinophils in mucosal defens and pathogenesis. In: Ogra PL, Mestecky J, eds. Mucosal immunology 2~(nd) , Academic Press San Diego 1999; pp469-482.
    30.Epelbaum J, Dournaud P, Fodor M, Viollet C. The neurobiology of soma- somatostatin. Crit Rev Neuro, 1994; 8: 25-44.
    31. Ten Bokum AM. Hofland LJ. van Hagen PM. Somatostatin and somatostatin receptors in the immune system: a review. Euro Cytokine Network, 2000, 11(2): 161-176
    32. Tang C. Lan C. Wang C. Liu R. Amelioration of the development of multiple organ dysfunction syndrome by somatostatin via suppression of intestinal mucosal mast cells. Shock. 2005; 23(5): 470-475
    33. Conley ME, Delacroix DL. Intravascular and mucosal immunoglobulin A: two separate but related systems of immune defense? Ann Intern Med. 1987; 106: 892-899.
    34. Jiang HQ, Thurnheer MC, Zuercher AW, Boiko NV, Bos NA, Cebra JJ. Interactions of commensal gut microbes with subsets of B- and T-cells in the murine host. Vaccine. 2004; 22(7): 805-811.
    35. Lopes-Carv-alho T. Kearney JF. Marginal zone B cell physiology and disease. Curr Direc Autoimmun. 2005; 8:91-123.
    36. He B. Qiao X. Cerutti A. CpG DNA induces IgG class switch DNA recombination by activating human B cells through an innate pathway that requires TLR9 and cooperates with IL-10. J Immunol. 2004, 173(7): 4479-4491.
    37. Viau M. Zouali M. B-lymphocytes, innate immunity, and autoimmunity. Clin Immunol. 2005; 114(1): 17-26
    38.杨辉,唐承薇.多器官功能障碍综合症时肠淋巴细胞再循环的变化.中国危重病急救医学.2004;16(6):333-337
    1. Murray H. W. Interferon gamma, the activated macrophage, and host defense against microbial challenge. Ann Intern Medicine. 1988; 108: 595-608.
    2. Billau, A. Interferon gamma: biology and role in pathogenesis. Advan Immunol. 1996; 62: 61-130.
    3. Kadry Z, Roux-Lombard P, Dayer JM, Lieberman J, Marks WH, Dafoe D, Cretin N, Cighetti G, Buhler L, Charbonnet P, Morel R Impact of intestinal ischemia-reperfusion on cytokine profile and enterocyte viability in human syngeneic intestinal transplantation. Transplant Proceed. 2000; 32(6): 1292-3.
    4. Solomou K, Ritter MA, Palmer DB. Somatostatin is expressed in the murine thymus and enhances thymocyte development. Eur J Immunol, 2002; 32(6): 550-1559.
    5. Stanisz AM, Befus D, Bienenstock J. Differential effect of vasoactive intestinal peptide, substance P, and somatostatin on immunoglobulin synthesis and proliferations by lymphocytes from Peyer's patches, mesenteric lymph nodes, and spleen. J Immunol. 1986, 136(1): 152-156.
    6. Karalis K, Mastorakos G, Chrousos GP, Tolis G Somatostatin analogues suppress the inflammatory reaction in vivo. J Clin Invest. 1994, 93(5): 2000-2006.
    7. 杨辉,唐承薇.肠血管活性多肽或生长抑素抑制大鼠肠CD8~+淋巴细胞归巢[J].上海免疫学杂志.2002,22(3):182-185.
    8. Tang C, Lan C, Liu R. Alleviation of Multiple Organ Dysfunction Syndrome by Somatostatin via Suppression of Intestinal Mucosal Mast Cells. Shock. 2005; 23(5): 470-475.
    9. 许兰涛,范华,谭庆华,胡兵,王春晖,唐承薇.猕弥肠缺血再灌注后生长抑素含量与中性粒细胞寿命的相关性探讨.中华医学杂志. 2006:86:832-36.
    10. Davies MDJ, Parrott DMV. Preparation and purification of lymphocytes from the epithelium and lamina propria of murine small intestine. Gut. 1981; 22:481-488
    11. Owen RL. Uptake and transport of intestinal macromolecules and microorganisms by M cells in Peyer's patches - a personal and historical perspective. Seminars in immunol. 1999; 11: 157-163.
    12. Arock M, Hervatin F, Guillosson JJ, Mencia-Huerta JM, Thierry D. Differentiation of human mast cells from bone-marrow and cord-blood progenitor cells by factors produced by a mouse stromal cell line. Ann. N.Y. Acad. Sci. 1994; 725: 59-68.
    13. Nafziger J, Arock M, Guillosson JJ, Wietzerbin J. Specific high-affinity receptors for interferon-gamma on mouse bone marrow-derived mast cells: inhibitory effect of interferon-gamma on mast cell precursors. Eur J Immunol. 1990; 20: 113-117.
    14. Yanagida M, Fukamachi H, Takei M, Hagiwara T, Uzumaki H, Tokiwa T, Saito H, Iikura Y, Nakahata T. Interferon-gamma promotes the survival and Fc epsilon RI-mediated histamine release in cultured human mast cells. Immunol. 1996; 89: 547-552.
    15. Lin T, Befus AD. Mast cells and eosinophils in mucosal defens and pathogenesis. In: Ogra PL, Mestecky J, eds. Mucosal immunology 2nd , Academic Press San Diego 1999; pp469-482.
    16. Ito K, Ozasa H, Kojima N, Miura M, Iwa T, Senoo H, Horikawa S. Pharmacological preconditioning protects lung injury induced by intestinal ischemia/reperfusion in rat. Shock. 2003; 19: 462-468.
    1. Dasari P, Nicholson IC, Hodge G, Dandie GW, Zola H. Expression of toll-like receptors on B lymphocytes. Cell Immunol. 2005; 236(1-2): 140-5.
    2. 杨辉,唐承薇.多器官功能障碍综合症时肠淋巴细胞再循环的变化. 中国危重病急救医学.2004;16(6):333-337.
    3. Horcher M, Souabni A, Busslinger M. Pax5/bsap maintains the identity of B cells in late B lymphopoiesis. Immunity. 2001; 14: 779-790.
    4. Mikkola I, Heavey B, Horcher M, Busslinger M. Reversion of B cell commitment upon loss of Pax5 expression. Science. 2002; 297:110-113.
    5. Torlakovic E, Torlakovic G, Nguyen PL, Brunning RD, Delabie J. The value of anti-pax-5 immunostaining in routinely fixed and paraffin-embedded sections: a novel pan pre-B and B-cell marker. Am J Surg Pathol. 2002; 26(10): 1343-50.
    6. Souabni A, Cobaleda C, Schebesta M, Busslinger M. Pax5 promotes B lymphopoiesis and blocks T cell development by repressing notchl. Immunity. 2002; 17: 781-793.
    7. Nutt SL, Urbanek P, Rolink A, Busslinger M. Essential functions of Pax5 (BSAP) in pro-B cell development: difference between fetal and adult B lymphopoiesis and reduced V-to-DJ recombination at the IgH locus. Genes Dev. 1997; 11: 476-491.
    8. Nutt SL, Heavey B, Rolink AG, Busslinger M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature. 1999; 401: 556-562.
    9. Mikkola I, Heavey B, Horcher M, Busslinger M. Reversion of B cell commitment upon loss of Pax5 expression. Science. 2002; 297: 110-113.
    10. Wakatsuki Y, Neurath MF, Max EE, Strober W. The B cell-specific transcription factor BSAP regulates B cell proliferation. J Exp Med. 1994; 179: 1099-1108.
    11. Chang Karen L, Arber Daniel A, Weiss Lawrence M. CD20: A Review.Applied Immunohistochemistry. 1996; 4(1): 1-15.
    12. Viau M, Zouali M. B-lymphocytes, innate immunity, and autoimmunity. Clin Immunol. 2005; 114(1): 17-26.
    13. Pasare C, Medzhitov R. Control of B-cell responses by Toll-like receptors. Nature. 2005; 438(7066): 364-368.
    14. Iizuka T, Tanaka T, Suematsu M, Miura S, Watanabe T, Koike R, Ishimura Y, Ishii H, Miyasaka N, Miyasaka M. Stage-specific expression of mucosal addressin cell adhesion molecule-1 during embryogenesis in rats. J Immunol. 2000 ; 164 (5): 2463-2471.
    15. Yoshida H, Kawamoto H, Santee SM, Hashi H, Honda K, Nishikawa S, Ware CF, Katsura Y, Nishikawa SI. Expression of alpha(4)beta(7) integrin defines a distinct pathway of lymphoid progenitors committed to T cells, fetal intestinal lymphotoxin producer, NK, and dendritic cells. J Immunol. 2001; 167(5): 2511-2521.
    16. Ekert PG, Vaux DL. Apoptosis and the immune system. Br Med Bull. 1997; 53(3): 591-603.
    17. Oberholzer A, Oberholzer C, Moldawer LL. Cytokine signaling-regulation of the immune response in normal and critically ill states. Grit Care Med. 2000; 28(4 Suppl): N3-12.
    18. Deitch EA, Xu DZ, Franko L, Ayala A, Chaudry IH. Evidence favoring the role of the gut as a cytokine generating organ in rats subjected to hemorrhagic shock. Shock. 1994; 1(2): 141-146.
    1. Jiang HQ, Thurnheer MC, Zuercher AW, Boiko NV, Bos NA, Cebra JJ. Interactions of commensal gut microbes with subsets of B- and T-cells in the murine host. Vaccine. 2004; 22(7): 805-811.
    2. Lopes-Carvalho T, Kearney JF. Marginal zone B cell physiology and disease. Curr Dir Autoimmun. 2005; 8: 91-123.
    3. He B, Qiao X, Cerutti A CpG DNA induces IgG class switch DNA recombination by activating human B cells through an innate pathway that requires TLR9 and cooperates with IL-10. J Immunol. 2004; 173(7): 4479-4491.
    4. Viau M, Zouali M. B-lymphocytes, innate immunity, and autoimmunity. Clin Immunol. 2005; 114(1): 17-26.
    5. Cote RJ, Morrissey DM, Houghton AN, Beattie EJ Jr, Oettgen HF, Old LJ. Generation of human monoclonal antibodies reactive with cellular antigens. Proc. Natl. Acad. Sci. U.S.A. 1983, 80(7): 2026-2030.
    6. Akira S. Takeda K. Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nature Immunol. 2001; 2(8): 675-80.
    7. Beutler B. Inferences, questions and possibilities in Toll-like receptor signalling. Nature. 2004; 430(6996): 257-263.
    8. Dasari P, Nicholson IC, Hodge G, Dandie GW, Zola H. Expression of toll-like receptors on B lymphocytes. Cell Immunol 2005; 236(1-2): 140-145.
    9. Papadimitraki ED, Choulaki C, Koutala E, Bertsias G, Tsatsanis C, Gergianaki I, Raptopoulou A, Kritikos HD, Mamalaki C, Sidiropoulos P, Boumpas DT. Expansion of toll-like receptor 9-expressing B cells in active systemic lupus erythematosus: implications for the induction and maintenance of the autoimmune process. Arthri Rheuma. 2006; 54(11): 3601-3611.
    10. Gunn KE, Brewer JW. Evidence that marginal zone B cells possess an enhanced secretory apparatus and exhibit superior secretory activity. J Immunol. 2006; 177(6): 3791-3798.
    11. Rolf M, Zinkernage. On natural and artificial vaccinations.Annu. Rev. Immunol. 2003; 21: 515-546.
    12. Raman VS, Bal V, Rath S, George A. Ligation of CD27 on murine B cells responding to T-dependent and T-independent stimuli inhibits the generation of plasma cells. J Immunol. 2000; 165(12): 6809-6815.
    13. Hebeis B, Vigorito E, Kovesdi D, Turner M. Vav proteins are required for B-lymphocyte responses to LPS. Blood. 2005; 106(2): 635-640.
    14. Kishimoto T, Akira S, Narazaki M, Taga T. Interleukin-6 family of cytokines and gp130. Blood. 1995, 86(4): 1243-1254.
    15. Biffl WL, Moore EE, Moore FA. Interleukin-6 in the injured patients.Marker of injury or mediator of inflammation. Ann Surg .1996; 224:647-664.
    1. Nagar AB,Gorelick FS.Acute pancreatitis.Curr Opin in gastroenterol. 2004; 20: 439-443.
    2. Stefanutti G, Pierro A, Vinardi S, Spitz L, Eaton S. Moderate hypothermia protects against systemic oxidative stress in a rat model of intestinal ischemia and reperfusion injury. Shock. 2005; 24: 159-164.
    3. Ammori BJ. Role of the gut in the course of severe acute pancreatitis. Pancreas. 2003; 26: 122-129.
    4. Eltzschig HK. Collard CD. Vascular ischaemia and reperfusion injury. Br. Med. Bull. 2004; 70: 71-86.
    5. Corleto VD, Fave GD. Role of somatostatin in the human gastrointestinal tract. Curr Opin Endocrinol & Diab. 2003; 10: 72-77.
    6. Tang C, Lan C, Liu R. Alleviation of multiple organ dysfunction syndrome by somatostatin via suppression of intestinal mucosal mast cells. Shock. 2005; 23(5): 470-475.
    7. Haseldonckx M, Van Reempts J, Van de Ven M, Wouters L, Borgers M. Protection With Lubeluzole against delayed ischemic brain damage in rats: A quantitative histopathologic study. Stroke. 1997; 28(2): 428-432.
    8. Solez K, Vincenti F, Filo RS. Histopathologic findings from 2-year protocol biopsies from a U.S. multicenter kidney transplant trial comparing tacrolimus versus cyclosponne: a report of the FK506 Kidney Transplant Study Groupl,2,7.Transplant. 1998; 66(12): 1736-1740.
    9. Collard CD, Gelman S. Pathophysiology, clinical manifestations, and prevention of ischemia-reperfusion injury. Anesthesiology. 2001, 94: 1133-1138.
    10. Yamasaki M, Masgrau R, Morgan AJ, Churchill GC, Patel S, Ashcroft SJ, Galione A. Organelle selection determines agonist-specific Ca2+ signal in pancreatic acinar and beta cells.J Biol Chem. 2004; 279: 7234-7240.
    11. Kim JY, Kim KH, Lee JA, Namkung W, Sun AQ, Ananthanarayanan M, Suchy FJ, Shin DM, Muallem S, Lee MG. Transporter-mediated bile acid uptake causes Ca2+-dependent cell death in rat pancreatic acinar cells. Gastroenterology. 2002; 122: 1941-1954.
    12. Ma ZH, Ma QY ,Wang LC , Sha HC, Wu SL, Zhang M. Effect of resveratrol on peritoneal macrophages in rats with severe acute pancreatitis. Inflammation Research. 2005; 54(12): 522-527.
    13. Gray KD, Simovic MO, Chapman WC, Blackwell TS, Christman JW, Washington MK, Yull FE, Jaffal N, Jansen ED, Gautman S, Stain SC. Systemic NF-κB activation in a transgenic mouse model of acute pancreatitis.J Surg Res,2003,110:310-314.
    1. Deitch EA. Multiple Organ Failure: Pathophysiology and potential future therapy. Ann Surg. 1992; 216:117-134.
    2. Miller CG; Cook DN, Kotwal GJ. Two chemotactic factors, C5a and MIP-lalpha, dramatically alter the mortality from zymosan-induced multiple organ dysfunction syndrome (MODS): C5a contributes to MODS while MIP-lalpha has a protective role. Mol-Immunol. 1996; 33(14): 1135-7.
    3. 胡森,盛志勇,薛立波,周宝桐,陆江阳,晋桦,于燕,孙晓床,黎君友,郑玉清,熊德鑫.多器官功能障碍综合征动物模型的系列研究. 解放军医学杂志.1996;21(1):5~9.
    4. 唐承薇,蓝程.生长抑素抑制多器官功能衰竭时肠粘膜肥大细胞活性. 中华消化杂志.2003;23(8):461-5.
    5. Sun Z, Wang X, Lasson A, Bojesson A, Annborn M, Andersson R. Effects of inhibition of PAF, ICAM-1 and PECAM-1 on gut barrier failure caused by intestinal ischemia and reperfusion. Scand J Gastroenterol. 2001; 36(1): 55-65.
    6. Nieuwenhuijzen GA, Knapen MF, Hendriks T. Elimination of various subpopulations of macrophages and the development of multiple-organ dysfunction syndrome in mice. Arch Surg. 1997; 132(5): 533-9.
    7. Chang TW. Improvement of Survival from Hemorrhagic Shock by Enterectomy in Rats: Finding to Implicate the Role of the Gut for Irreversibility of Hemorrhagic Shock. J trauma. 1997; 42(2): 223-230.
    8. Lu JB. Shi Hp. Dendritic cells: another possible carrier for gastrointestinal bacterial translocation. Di Yi Junyi Daxue Xuebao. 22(1):17-9, 2002 Jan. )
    9. Reynolds FD, Dauchy R, Blask D, Dietz PA, Lynch D, Zuckerman R. The pineal gland hormone melatonin improves survival in a rat model of sepsis/shock induced by zymosan A. Surgery. 2003; 134(3): 474-9.
    10. 王单松,靳大勇,吴肇汉,杨幼明.急性出血坏死型胰腺炎大鼠模型. 上海实验动物科学.2002;22(1):23-25.
    11. Nieuwenhuijzen GA, Meyer MP, Hendriks T, Goris RJ. Deficiency of complement factor C5 reduces early mortality but does not prevent organ damage in an animal model of multiple organ dysfunction syndromes. Crit Care Med. 1995; 23(10): 1686-93.
    12. Volman T J, Goris RJ, van der Jagt M, van de Loo FA, Hendriks T. Organ damage in zymosan-induced multiple organ dysfunction syndromes in mice is not mediated by inducible nitric oxide synthase. Crit Care Med. 2002; 30(7): 1553-9.
    13. Mahesh J, Daly J, Cheadle WG.. Elucidation of the early events contributing to zymosan-induced multiple organ dysfunction syndrome using MIP-lalpha, C3 knockout, and C5-deficient mice. Shock. 1999; 12(5): 340-9.
    14. 张大朋 摘,孙卫明校.多器官衰竭综合征小鼠模型的炎性细胞因子变化.国外医学免疫学分册,1997;20(6):332-3.
    15. Nielsen VG; Weinbroum A, Tan S, Samuelson PN, Gelman S, Parks DA. Xanthine oxidoreductase release after descending thoracic aorta occlusion and reperfusion in rabbits. J Thorac Cardiovasc Surg. 1994; 107(5): 1222-7.
    16. 刘亚玲,林树新,徐明达,李志超,陈璧,张世范.兔烫伤早期多器官功能衰竭模型的制备.第四军医大学学报.2001;22(3):246-248.
    17. Saxe JM, Dombi GW, Lucas WF, Ledgerwood AM, Lucas CE. Hemodynamic, plasma volume, and prenodal skin lymph responses to varied resuscitation regimens. J Trauma. 1996; 41(2): 283-289.
    18. 曲度,张弦.多脏器微栓塞病细胞综合征动物实验模型——定义、判断标准、发生机制及其与临床的关系.天津医药.1999;27(12): 734-735.
    19. 陈意生,史景泉,吴军,谯怡然.严重烧伤后输液对多器官功能障碍综合征的病理组织学和超微结构变化的影响.中华烧伤杂志.2002; 18(1):34-37.
    20. Returners D, Dwenger A, Grotz M, Seekamp A, Pape HC, Gruner A, Hafemann R, Regel G. Attenuation of multiple organ dysfunction in a chronic sheep model-by the 21-aminosteroid U74389G. J Surg Res. 1996; 62(2): 278-83.
    21. 柴琛,方国恩,沈贤,林富林,聂明明,罗天航,袁扬,毕建威.主要组织相容性复合体Ⅱ类基因在多器官功能障碍综合征中的表达及意义.中华创伤杂志.2006;22(11):839-842.
    22. 黎刚,周文良,张费通,黄东健,邝丽影,崔其亮.新生猪多器官功能障碍综合征模型建立的实验研究.中国当代儿科杂志.2006; 8(1):49-53.
    23. 姚宁,方国恩,杜成辉,赵为国,王冰.早期高容量血液滤过对多器官功能障碍综合征及中性粒细胞功能的影响.中华急诊医学杂志. 2006;15(11):990-3.
    24. 王恒进,王笑云,应旭曼,毛慧娟,沈霞.猪多器官功能障碍综合征 合并急性肾衰竭模型的制作.南京医科大学学报(自然科学版).2003;23(03):196-9.
    25. Oda J, Ivatury RR, Blocher CR, Malhotra AJ, Sugerman HJ. Amplified cytokine response and lung injury by sequential hemorrhagic shock and abdominal compartment syndrome in a laboratory model of ischemia-reperfusion. J Trauma. 2002; 52(4): 625-31; discussion 632.
    26. Senthil M, Brown M, Xu DZ, Lu Q, Feketeova E, Deitch EA. Gut-Lymph Hypothesis of Systemic Inflammatory Response Syndrome/Multiple-Organ Dysfunction Syndrome: Validating Studies in a Porcine Model. J Trauma. 2006 May;60(5):958-65; discussion 965-7.
    27. Povoas HP, Weil MH, Tang W, Moran B, Kamohara T, Bisera J. Comparisons Between Sublingual and Gastric Tonometry During Hemorrhagic Shock. Chest. 2000; 118(4): 1127-32. Comment in: Chest. 2000; 118(4): 894-6.
    28. 任添华,姜悦,任爱民,张淑文,王宝恩.单相速发型多脏器功能障碍综合征动物模型的研究.首都医科大学学报.2005;26(04):479-481.
    29. Song Q, Wang M, Huang X, Zhang H. Effect of propofol on protecting Rhesus macaques from reperfusion lung injury. Zhonghua Yi Xue Za Zhi. 2002 Sep 10; 82(17): 1203-6.
    30. 谭庆华,胡兵,范华,吴浩,许兰涛,唐承薇.猕猴肠缺血再灌注后器官组织病理及功能变化实验研究.中国实用内科杂志.2006; 26(18):1407-10.
    31. Laudes IJ, Chu JC, Sikranth S, Huber-Lang M, Guo RF, Riedemann N, Sarma JV, Schmaier AH, Ward PA. Anti-c5a ameliorates coagulation/fibrinolytic protein changes in a rat model of sepsis. Am J Pathol. 2002; 160(5): 1867-75.
    32. Karter MJ. 1996 U.S. fire loss. NFPA J. 1997; 91(5): 76-83.
    33. Ryan CM, Schoenfeld DA, Thorpe WP, Sheridan L, Cassem EH, Thompkins RG. Objective estimates of the probability of death from burn injuries. N Engl J Med 1998; 338: 362-6.
    34. Quinn DA, Moufarrej R, Volokhov A, Syrkina O, Hales CA. Combined Smoke Inhalation and Scald Burn in the Rat. J Burn Care Rehabil. 2003; 24(4): 208-16.
    35. Walker HL, Mason AD. A standard animal burn. J Trauma. 1979; 19: 812-8.
    36. 金丽娟,王静珍,金春华.挤压伤引起多器官衰竭的动物模型.中国病理生理杂志.1994;10(2):220-1转209.
    37. 庞荣清,陈忠明,徐永清,潘兴华,陈志龙,王力.一种多器官功能障碍综合征模型的建立.中华实验外科杂志.2001;18(6):506-7.
    38. Cuzzocrea S, Mazzon E, Di Paola R, Genovese T, Serraino I, Dugo L, Cuzzocrea E, Fulia F, Caputi AP, Salvemini D. Protective effects of M40401, a selective superoxide dismutase mimetic, on zymosan-induced nonseptic shock. Crit Care Med. 2004; 32(1): 157-67.
    39. Jansen MJ, Hendriks T, Vogels MT. Inflammatory cytokines in an experimental model for the multiple organ dysfunction syndrome. Crit Care Med. 1996; 24(7): 1196-202.
    40. Di Filippo A. Scardi S. Consalvo M. Pellegrini G. Evaluation of an experimental model of multiple organ dysfunction. Minerva Anestesiol. 1994; 60(4): 157-64.
    41. Nieuwenhuijzen GA, Knapen MF, Oyen WJ, Hendriks T. Corstens FH. Goris RJ. Organ damage is preceded by changes in protein extravasation in an experimental model of multiple organ dysfunction syndrome. Shock. 1997; 7(2): 98-104.
    42. Miller CG, Cook DN, Kotwal GJ. Two chemotactic factors, C5a and MEP-1 alpha, dramatically alter the mortality from zymosan-induced multiple organ dysfunction syndrome (MODS): C5a contributes to MODS while MIP-1 alpha has a protective role. Mol Immunol. 1996; 33(14): 1135-7.
    43. Hu S, Sheng Z, Zhou B, Guo Z, Lu J, Xue L, Jin H, Sun X, Sun S, Li J, Lu Y. Study on delay two-phase multiple organ dysfunction syndrome. Chin-Med-J-(Engl). 1998; 111(2): 101-8.
    44. Mitaka C, Hirata Y, Masaki Y, Takei T, Yokoyama K, Imai T. S-Methylisothiourea sulfate improves renal, but not hepatic dysfunction in canine endotoxic shock model. Intensive Care Med. 2000; 26(1): 117-24.
    45. Volman TJ, Hendriks T, Verhofstad AA, Kullberg BJ, Goris RJ. Improved survival of TNF-deficient mice during the zymosan-induced multiple organ dysfunction syndrome. Shock. 2002; 17(6): 468-72.
    46. Zacharowski K, Olbrich A, Cuzzocrea S, Foster SJ, Thiemermann C. Membrane-permeable radical scavenger, tempol, reduces multiple organ injury in a rodent model of gram-positive shock. Crit Care Med. 2000; 28(6): 1953-61.
    47. Kengatharan KM. De Kimpe S. Robson C. Foster SJ. Thiemermann C. Mechanism of gram-positive shock: Identification of peptidoglycan and lipoteichoic acid moieties essential in the induction of nitric oxide synthase, shock, and multiple organ failure. Exp Med. 1998; 188: 305-15.
    48. Kengatharan KM, De-Kimpe SJ, Thiemermann C. Role of nitric oxide in the circulatory failure and organ injury in a rodent model of gram-positive shock. Br J Pharmacol. 1996; 119(7): 1411-21.
    49. Sheehan M, Wong H, Hake P. Parthenolide improves systemic hemodynamics and decreases tissue leukosequestration in rats with polymicrobial sepsis. Crit Care Med. 2003; 31 (9): 2263-70.
    50. Zacharowski K, Olbrich A, Cuzzocrea S, Foster SJ, Thiemermann C. Resistance to Acute Septic Peritonitis in Poly(ADP-ribose) Polymerase-1-Deficient Mice. Shock. 2002; 17(4): 286-92.
    51. Vromen A, Arkovitz MS, Zingarelli B, Salzman AL, Garcia VF, Szabo C. Low-level expression and limited role for the inducible isoform of nitric oxide synthase in the vascular hyporeactivity and mortality associated with cecal ligation and puncture in the rat. Shock. 1996; 6(4): 248-53.
    52. han M. Wong HR. Hake PW. Zingarelli B. Parthenolide improves systemic hemodynamics and decreases tissue leukosequestration in rats with polymicrobial sepsis. Crit Care Med. 2003; 31( 9): 2263-70.
    53. Foitzik T, Eibl G, Hotz B, Hotz H, Kahrau S, Kasten C, Schneider P, Buhr HJ. Persistent multiple organ microcirculatory disorders in severe acute pancreatitis: experimental findings and clinical implications. Dig Dis Sci. 2002; 47(1): 130-8.
    54. Guido E, Bence F, Hubert G. Endothelin A but not endothelin B receptor blockade reduces capillary permeability in severe experimental pancreatitis. Pancreas. 2002; 25(2): e15-20.
    55. Forgacs B, Eibl G, Faulhaber J. Effect of fluid resuscitation with and without endothelin A receptor blockade on hemoconcentration and organ function in experimental pancreatitis. Eur Surg Res. 2000; 32(3): 162-8.
    56. Yekebas EF, Treede H, Knoefel WT. Influence of Zero-Balanced Hemofiltration on the Course of Severe Experimental Pancreatitis in Pigs. Ann Surg. 1999; 229(4): 514-22.
    57. Wiggers HC, Ingraham RC. Hemorrhagic shock: definition and criteria for its diagnosis. J Clin Invest. 1946; 25(1): 30-6.
    58. Jarrar D, Wang P, Song GY. Inhibition of tyrosine kinase signaling after trauma-hemorrhage: a novel approach for improving organ function and decreasing susceptibility to subsequent sepsis. Ann Sur. 2000; 231(3): 399-407.
    59. Yao YM, Wang YP, Tian HM, Yu Y, Chang GY, Shi ZG, Sheng ZY. Reduction of circulating prostaglandin E2 level by antiserum against core lipopolysaccharide in a rabbit model of multiple organ failure. J Trauma. 1996; 40(2): 270-7.
    60. Olanders K. Sun Z. Borjesson A. Dib M. Andersson E. Lasson A. Ohlsson T. Andersson R. The effect of intestinal ischemia and reperfusion injury on ICAM-1 expression, endothelial barrier function, neutrophil tissue influx, and protease inhibitor levels in rats. Shock. 2002; 18(1): 86-92.
    61.Komatsu H. Koo A. Ghadishah E. Zeng H. Kuhlenkamp JF. Inoue M. Guth PH. Kaplowitz N. Neutrophil accumulation in ischemic reperfused rat liver: evidence for a role for superoxide free radicals. Am J Physiol. 1992; 262(4pt 1): G669-76.
    62. Saito T, Unno N, Yamamoto N, Inuzuka K, Sagara D, Suzuki M, Konno H. Intraperitoneal administration of hyperbarically oxygenated perfluorochemical enhances preservation of intestinal mucosa against ischemia/reperfusion injury. Shock. 2006; 26(6): 620-624.
    63. Farrar CA, Wang Y, Sacks SH, Zhou W. Independent pathways of P-selectin and complement-mediated renal ischemia/reperfusion injury. Am J Pathol. 2004; 164(1):133-41.
    64. Okaya T, Blanchard J, Schuster R, Kuboki S, Husted T, Caldwell CC, Zingarelli B, Wong H, Solomkin JS, Lentsch AB. age-dependent responses to hepatic ischemia/reperfusion injury. Shock. 2005; 24(5): 421-7.
    65. Wiersema AM, Dirksen R, Oyen WJ. A method for long duration anaesthesia for a new hindlimb ischaemia-reperfusion model in mice. Lab Anim. 1997; 31(2): 151-6.
    66. Fink MP. Thoracoabdominal aortic aneurysm repair: a human model of ischemia/reperfusion- induced cytokine-driven multiple organ dysfunction syndrome. [comment]. Crit Care Med. 2000; 28(9):3356-7.
    67. 郭洪志,屈传强.大鼠急性前脑缺血致多器官功能障碍综合征模型的建立.脑与神经疾病杂志.2004;12(01):11-3.
    68. 郭洪志,张侠,彭华,麻琳,郑金峰,江文静,屈传强.局灶性脑缺血再灌注致大鼠多器官功能障碍综合征模型的建立.中风与神经疾病杂志.2005;22(01):41-4.
    69. 梁临平,王蕾,郭洪志,王静.构建大鼠脑出血致多器官功能障碍综合征模型(英文).中国临床康复.2005;9(29):181-3.
    70. Spain DA, Kawabe T, Keelan PC, Wilson MA, Harris PD, Garrison RN. Decreased alpha-adrenergic response in the intestinal microcirculation after "two-hit" hemorrhage/resuscitation and bacteremia. J Surg Res. 1999 Jun 15; 84(2): 180-5.
    71. Kuiken T. Rimmelzwaan GF. Van Amerongen G Pathology of human influenza A (H5N1) virus infection in cynomolgus macaques (Macaca fascicularis). Vet Pathol. 2003; 40(3): 304-10.
    72. Jansen MJ, Hendriks T, Verhofstad AA. Gradual development of organ damage in the murine zymosan-induced multiple organ dysfunction syndrome. Shock. 1997; 8(4): 261-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700