几种生物光合色素分子体系电子激发光谱的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究高效、快速的光合作用反应机理对于开发利用太阳能,生物合理设计以光合作用系统为靶标的除草剂等具有重要的科学意义。捕光系统和光合反应中心是光合作用的两大主要场所,研究这些系统中电子激发的过程与性质是进一步深入探索电子转移机理的基础。目前针对捕光系统和光合反应中心的实验光谱研究已经取得了较大进展,但其光谱内在的性质必须通过相关的理论研究才能得到准确信息,因此,本论文综合运用各种现代分子模拟方法对高等植物光合作用的模型系统(蓝藻捕光系统和紫细菌光合反应中心)的电子激发光谱进行系统的理论归属研究。具体研究内容如下:
     本论文第一章主要对高等植物的光合系统Ⅱ、藻类捕光系统和紫细菌光合反应中心的研究进展,以及论文中所涉及到的理论方法进行了概述性的介绍。
     第二章以卟吩自由基为研究对象,对TDDFT,ZINDO和INDO/S三种方法计算的电子激发态光谱进行了比较研究,并考察了TDDFT方法下基组效应对卟吩自由基理论光谱的影响。为了进一步检验TDDFT方法的精确度,我们将TDDFT方法扩展到两种典型的卟啉类衍生物(四氧卟啉阳离子TOPDC和卟啉烯Porphycene)紫外吸收光谱的理论归属研究中,结合极化连续介质模型(PCM)有效考察了溶剂化效应对基态的电子结构和激发态能量的影响。采用TDDFT-PCM模型计算的理论光谱与溶液中实验吸收光谱的较好吻合证明了这一模型的合理性,也说明溶剂化效应对溶液中的吸收光谱的理论研究是相当重要的。
     第三章以蓝藻捕光系统中的藻蓝蛋白为研究对象,运用含时的密度泛函理论(TDDFT)方法,结合极化连续介质模型(PCM),对藻蓝蛋白的三个藻蓝素(α-84、β-84、β-155)在具有生理活性时的分子状态,紫外吸收光谱和CD光谱进行了深入系统的理论研究。并结合分子动力学模拟(MD)技术以及ONIOM方法,研究了藻蓝素中吡咯环之间的二面角与其最大吸收峰之间的定性关系。通过一系列模型化学的理论比较研究,阐明了藻蓝蛋白中三类藻蓝素在生理状态时都是以质子化的形式存在及其质子化可能的反应途径,并定量分析和归属了紫外吸收光谱和圆二色光谱。
     第四章主要基于色素分子簇模型,运用TDDFT和ZINDO方法对紫细菌(Rps.viridis和Rb.sphaeroides)光合反应中心的紫外吸收光谱和CD光谱重新进行了理论计算与定量解析归属,并有效考察了色素分子间相互作用对电子激发态的影响。TDDFT的计算结果对紫细菌光合反应中心的P发色团被氧化后的实验CD光谱的合理解释表明:色素分子之间的相互作用不可忽视,只基于单个色素分子(或其模型分子)的理论计算进行光谱归属是不合理的。与TDDFT计算结果的比较再次证明,ZINDO半经验分子轨道理论方法对这两类紫细菌光合反应中心的低能带激发态的解析和归属已经具备了一定的精度。
     在第五章中,同时考虑了C=O键长伸缩振动和H-C-H键角弯曲振动对H_2CO分子光电子能谱峰形的影响。同时考虑上述两种正则振动模式的情况下,在SAC-CI-GR/D95~*理论级别下对H_2CO分子的基态(1~1A_1)及三个阳离子激发态(1~2B_2,1~2B_1,1~2A_1)进行了势能面扫描,并拟合得到势能函数,最后采用从头算Franck-Condon因子计算程序解析了这三个激发态的实验光电子能谱的精细结构。
The studies of high efficiency photosynthesis mechanism play a crucial role indeveloping the novel pesticides targeting the photosynthesis systems, and rational usingsolar energy. Light-harvesting system and reaction center are the two fundamentalpigment-protein complexes in the plant photosynthesis system. To make clear theelementary processes of electronic transfer in photosynthesis, knowledge of theelectronic excited characters of light-harvesting system and reaction center is aprerequisite. The theoretical studies of the electronic excitations of light-harvestingsystem and reaction center can provide a sophisticated understanding and theassignments of UV/vis absorption and circular dichroism spectra of these two systems. Inthis thesis, the electronic excitation spectra of the model systems (light-harvesting systemof alga and photosynthetic reacting center (PSRC) of purple bacteria) of photosynthesishave been investigated by using modem molecular simulation methods. The presentthesis is organized as follows:
     The previous studies about light-harvesting system of alga and photosyntheticreacting center of purple bacteria have been reviewed in chapter one. Furthermore, thetheoretical methods used in this thesis have been introduced.
     In chapter two, the electronic ground and singlet vertical excited states of Free-BasePorphyrin (FBP) have been investigated by using TDDFT, ZINDO and INDO/S methods,the basis sets effects have been examined at TDDFT theoretical level. In order to furtherexamine the precision of TDDFT method, the UV/Vis spectra of tetraoxaporphyrindication (TOPDC) and Porphycene have been investigated by using TDDFT method. Thesolvent effects on excitation spectra also have been taken into account by usingpolarizable continuum model (PCM). TDDFT-PCM calculations lead to a closeragreement with the measured values of experimental absorption spectra in solutions,which demonstate the importance of considering the solvent effects for interpretingexperimental absorption spectra in solutions.
     In chapter three, the optical characteristics of UV/Vis spectra and CircularDichroism (CD) spectra ofαandβsubunit of C-phycocyanin (C-PC) were investigatedby using TDDFT method combined with the PCM model. Combining the MolecularDynamic (MD) Simulation and ONIOM methods, the effects of the torsion of thepyrrolic rings in phycocyanobilin (PCB) on the absorption maximum also have been taken into account in this chapter. The electronic excitation at the various levels of modelchemistry demonstrate that, protonation is most likely existing in three PCBs (α-84、β-84、β-155) in C-PC in environmental protein moiety, and the reaction pathway forprotonation of PCBs also have been verified.
     Using the super molecule cluster models, the excitation spectra of PSRC from Rps.viridis and Rb. sphaeroides have been investigated by using TDDFT method in chapterfour. The effects of the interactions of pigment-pigment on the electronic excitation alsohave been examined. The calculation results show that the interactions ofpigment-pigment play an important role in reasonably assigning the UV/Vis spectra andcircular dichroism (CD) spectra of PSRC from Rps. virids and Rb. sphaeroides. Bycomparing with TDDFT calculation, the agreeable assignment of the experimentalUV/Vis and CD spectra were achieved by using the ZINDO method.
     In chapter five, the effects of both C=O stretch and H-C-H scissor models on thephotoelectron spectrum of formaldehyde have been taken into account simultaneously.The potential energy surface of the ground state (1~1A_1) and the first three excited states(1~2B_2, 1~2B_1, 1~2A_1) of formaldehyde have been scanned at SAC-CI-GR/D95* level. Byfitting the potential energy surfaces of these states, the fine structures of the experimentalphotoelectron spectrum of formaldehyde have been accurately assigned by using ab initiofranck-condon factor program.
引文
[1]. Hughes, J. and Lamparter, T. Prokaryotes and Phytochrome. The Connection to Chromophores and Signaling. Plant. PhysioL 1999, 121, 1059-1068.
    [2]. Kratky, C.; Jorde, C.; Falk, H. and Thirring, K. Crystal structure of the mono-lactim ether of a bilatriene-abc derivative at 101 k. Tetrahedron, 1983, 39, 1859-1863.
    [3]. Schneider, S.; Baumann, F.and Geiselhart, P. et al. Biliproteins from the butterfly Pieris brassicae studied by time-resolved fluorescence and coherent anti-stokes Raman spectroscopy. Photochem. Photobiol. 1988, 48, 239-242.
    [4]. Avers, C. G Molecular Cell Biology. Addison-Wesley, Reading, MA, 1985.
    [5]. Chitnis, Parag R. PHOTOSYSTEM I: Function and Physiology. Annu. Rev. Plant Physiol. Plant. Mol. Biol. 2001, 52, 593-626.
    [6]. Barber, J. Photosystem Ⅱ: a multisubunit membrane protein that oxidises water. Curr.Opin. Struet. Biol.2002, 12, 523-530.
    [7]. Ben-Shem, A.; Frolow, F.; Nelson, N. Crystal structure of plant photosystem I. Nature, 2003, 426, 630-635.
    [8]. Ben-Shem, A.; Nelson, N. and Frolow, F.Crystallization and initial X-ray diffraction studies of higher plant photosystem I. Acta Crystallogr D. 2003, 59, 1824-1827.
    [9]. Amunts, A.; Drory, O.; Nelson, N. The structure of a plant photosystem I supercomplex at 3.4 A resolution. Nature, 2007, 447, 58-63.
    [10]. Rhee, K. H.; Morris, E. P.; Zheleva, D.; Hankamer, B.; Barber, J. Nature. 1997, 389, 522-526.
    [11]. Rhee, K. H.; Morris, E. E; Barber, J.; Hankamer, B. Three-dimensional structure of the plant photosystem Ⅱ reaction centre at 8 A resolution. Nature. 1998, 396, 283-286.
    [12]. Sinclair, J. C.; Sandy, J.; Delgoda, R.; Sim, E. & Noble, M. E. M. Structure of arylamine N-acetyltransferase reveals a catalytic triad. Nat. Struct. Biol. 1999, 6, 560-564.
    [13]. Hankamer, B.; Morris, E.; Nield, J.; Gerle, C. and Barber, J. Three-Dimensional Structure of the Photosystem Ⅱ Core Dimer of Higher Plants Determined by Electron Microscopy. J. Struct. Biol. 2001, 135, 262-269.
    [14]. Holzenburg, A.; Bewley, M. C.; Wilson, F. H.; Nicholson, W. V.; Ford, R. C. Three-dimensional structure of photosystem Ⅱ. Nature. 1993, 363, 470-472.
    [15]. 3D map of the plant photosystem Ⅱ supercomplex obtained by cryoelectron microscopy and single particle analysis. Nat. Struct. Biol. 2000, 7, 44-47.
    [16]. Morris, E. P.; Hankamer, B.; Zheleva, D.; Friso, G. and Barber, J. The three-dimensional structure of a photosystem Ⅱ core complex determined by electron crystallography. Structure. 1997, 5, 837-849.
    [17]. Khlbrandt, W & Wang, D. N. Three-dimensional structure of plant light-harvesting complex determined by electron crystallography. Nature. 1991, 350, 130-134.
    [18]. Kuhlbrandt, W.; Wang, D. N. & Fujiyoshi, Y. Atomic model of plant light-harvesting complex by electron crystallography. Nature. 1994, 367, 614-621.
    [19]. Liu, Z. F.; Yan, H. C.; Wang, K. B.; Kuang, T. Y.; Zhang, J. P. et al. Crystal structure of spinach major light-harvesting complex at 2.72 A resolutions. Nature. 2004. 428, 287-292.
    [20]. Cramer, C.; Das Rhodospermin, ein krystalloidischer, quellbarer Korper, im Zellinhalt verschiedener Florideen. Vierteljahrsschr Naturforsch Ges Zurich. 1862, 7, 350-365.
    [21]. Molisch H Das phycoerythrin, seine Krystallisirbarkeit und chemische. Natur Bot Z.1894, 52, 177-189.
    [22]. Molisch H Das Phycocyan, ein krystallisirbarer Eiweisskorper. Natur Bot Z 1895, 53, 131-135.
    [23]. Fisher, R. G.; Woods, N. E.; Fuchs, H. E. el al, Three dimensional structure of C-phycocyanin and b-phycoerythrin at 5A Resolution, J. Biol.Chem. 1980, 255, 5082-5098.
    [24]. Schirmer T. Bode W, Huber R. X-ray crystallographic structure of the light-harvesting biliprotein C-phycocyanin from the thermophilic cyanobacterium mastigocladus laminosus and its resemblance to globin structures. J. Mol. Biol. 1985, 184, 257-277.
    [25]. Schimer, T.; Huber, R.; Schneider, M. el al. Crystal structure analysis and refinement at 2.5A of hexameric-phycocyanin from the cyanobacterium agmenellum quadruplicatum. J. Mol. Biol, 1986, 188, 651-676.
    [26]. Schirmer, T.; Bode, W.; Huber, R. Refined threedimensional structure of two cyanobacterial C-phycocyanins at 2.1 and 2.5A resolution. J. Mol. Biol. 1987, 196, 677-695.
    [27]. Duerring, M.; Huber, R.; Bode, W. el al. Refined three-dimensional structure of phycoerythrocyanin from the cyanobacterium mastigocladus laminosus at 2.7A. J. Mol.Biol. 1990, 211,633-644.
    [28]. Fiener, R.; Lobeck, K.; Schmidt, G. et al. Isolation, crystallization, crystal structure analysis and refinement of B-Phycoerythrin from the red alga porphyridium sordidum at 2.2A resolution. J. Mol. Biol. 1992, 229, 935-950.
    [29].梁丽,竺迺珏.条斑紫菜,R-藻红蛋白及其品体学的初步研究.中国科学.B.1990,12, 11277-1283.
    [30].马金石,何慧珠,甄珍等.多管藻中R-藻红蛋白的分离和结构特征.科学通报.1981,26,240-242.
    [31].喻玲华,曾繁杰,蒋丽金等.海洋多管藻的R-藻红蛋白的亚基组成和发色团含量,生物化学与生物物理学报.1990,22,221-227.
    [32].曾繁杰,杨紫萱,蒋丽金等.多管藻中R-藻红蛋白的性质和超微结构.生物化学与生物物理学报.1985,17,93-103.
    [33]. Klotz, A. V.; Glazer, A. N. Characterization of the bilin attachment sites in R-phycoerythrin. J Bio Chem. 1985, 260, 4856-4863.
    [34]. Bald, D.; Kruip, J.; Rogner, M. Supramolecular architecture of cyanobacterial thylakoid membranes: How is the phycobilisome connected with the photosystems. Photosyn. Res. 1996, 49, 103-118.
    [35]. Glazer, A. N. Light harvesting by phycobilisomes. Ann. Rev. Biophys. Chem. 1985, 14, 47-77.
    [36]. MacColl R. Cyanobacterial phycobilisomes. J Struct Biol. 1998, 124, 311-334.
    [37]. Walter, A. Phycobilisome and phycoliliprotein structure. In: Bryant D A ed. The Molecular Biology of Cyanobacteria. Dordrecht: Kluwer Academic Publishers, 1994, pp139-216.
    [38]. Holzwarth, A. R. Structure-function relationships and energy transfer in phycobiliprotein antennae. Plant. Physio, 1991, 83, 518-528.
    [39]. Cheng, L. J.; MA, J. S.; Chiang, L. C. The complexes formed by biladiene a, b compounds with zinc ions and their application in determination of the chromophore composition of α-and β-subunits of R-phycoerythrin. Photochem Photobiol, 1990, 52, 1071-1076.
    [40].张季平,万柱礼,汪曙光等,多管藻中R-藻蓝蛋白的分离、结晶和初步晶体学研究.生物物理学报.1995,11,481-484.
    [41]. Cheng, L. J. and Jiang, L. J. Circular dichroism and stereochemistry of the phycobilins and their derivatives. J. Photochem. Photobiol. B. Biol. 1992, 15, 343-353.
    [42]. Lin, Q. S.; Zeng, E J.; Zhang, J. E and Jiang, L. J. Comparative Studies on Structural Characteristics of Cphycocyanin From Marine Red and Blue-Green Algae. Chinese Science Bulletin. 1993, 38, 71-74.
    [43]. Chang, W. R.; Wan, Z. L.; Jiang. T. et al. Crystal structure of R-phycoerythrin from Polysiphonia urceolato 0.5 nm resolution. Progress in Nature Science, 1994, 5, 202-211.
    [44]. Adir, N.; Vainer, R.; Lerner, N. Refined structure of c-phycocyanin from the cyanobacterium Synechococcus vulcanus at 1.6 A : insights into the role of solvent molecules in thermal stability and co-factor structure. Biochim. Biophys. Acta. 2002, 1556, 168-174.
    [45]. Brejc, K.; Ficner, R.; Huber, R. et al. Isolation, crystallization, crystal structure analysis and refinement of allophycocyanin from the cyanobacterium Spirulina platensis at 2.3 A resolution. J. Mol. Biol. 1995, 249, 424-440.
    [46]. Ficner, R.; Huber, R.; Refined crystal structure of phycoerythrin from Porphyridium cruentum at 0.23nm resolution and localization of the g subunit. Eur. J. Biochem. 1993, 218, 103-106.
    [47]. Chang, W. R.; Jiang, T.; Wan, Z. L. et al. Crystal structure of R-phycoerythrin from Polysiphonia urceolata at 2.8 A resolution. J. Mol. Biol. 1996, 262, 721-731.
    [48]. Jiang, T.; Zhang, J. R; Liang, D. C. Structure and function of chromophores in R-phycoerythrin at 1.9 (A) resolution. Proteins: Struct., Funct., Genet. 1999, 34, 224-231.
    [49]. Ritter, S.; Hiller, R. G.; Wrench, R M.; Welte, W.; Diederichs, K. Crystal structure of a phycourobilin-containing phycoerythrin at 1.90-A resolution. J. Struct. Biol. 1999, 126, 86-97.
    [50]. Kikuchi, H.; Wako, H.; Yura, K.; Go, M. and Mimuro, M. Significance of a Two-Domain Structure in Subunits of Phycobiliproteins Revealed by the Normal Mode Analysis. Biophysical. J. 2000, 79, 1587-1600.
    [51]. Grossman, A. R.; Schaeffer, M. R.; Chiang, G. G. and Collier, J. L. The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol. Rev. 1986, 57, 725-749.
    [52]. Glazer, A. N. Phycobilisome, a macromolecular complex optimized for light energy transfer. Biochim. Biophys. Acta. 1984, 768, 29-51.
    [53]. Glazer, A. N. Phycobilisomes: Structure and dynamics. Biochim. Biophys. Acta. 1982, 36, 173-198.
    [54]. Fujita, Y. and Shimura, Y. Phycoerythrin of the marine, blue-green alga Trichodesmium thiebautii. Plant. Cell. Physiol. 1974, 15, 939-942.
    [55]. Zheng, X. G.; Zhao, F. L.; Wang, H. Z. et al. Investigation into chromophore excited-state coupling in allophycocyanin (Conference Proceedings Paper). Proc. SPIE-Int Soc. Opt. Eng. 1994, 2137, 570-580.
    [56].李晔.藻类捕光系统与光合反应中心匹配及传能动力学.中国科学院化学研究所博士学位论文,2002.
    [57]. Maruthi, S. P. S.; Siebzehnrubl, S.; Mahajan, S.; Scheer, H. Phycoerythrocyanins from Westiellopsis prolifica and Nostoc rivulare: characterization of the phycoviolobilin chromophore in both states. Photochem Photobiol. 1992, 55, 119-124.
    [58]. Maruthi, S. P. S.; Siebzehnrubl, S.; Mahajan, S.; Scheer, H. Fluorescence and circular dichroism studies on the phycoerythrocyanins from the cyanobacterium Westiellopsis prolifica. Photochem Photobiol. 1993, 57,71-75.
    [59].Hucke, M.; Schweitzer G; Holzwarth, A. R.; Sidler, W.; Zuber, H. Studies on chromophore coupling in isolated phycobiliproteins. IV: Femtosecond transient absorption study of ultrafast excited state dynamics in trimeric phycoerythrocyanin complexes. Photochem Photobiol. 1993, 57, 76-80.
    [60].Zhao, J. Q.; Zhu, J. C; Jiang, L. J. Computer simulation on kinetics of primary process in photosynthesis of algae V. Excitation energy transfer in phycoerythrocyanins. Science in China, Series B, Chem. 1996,39, 519-526.
    [61].Mimuro, M.; Fuglistaller, P.; Rumbeli, R.; Zuber, H. Functional assignment of chromophores and energy transfer in C phycocyanin isolated from the thermophilic cyanobacterium Mastigocladus laminosus. Biochim. Biophys. Acta. 1986,848, 155-166.
    [62].Dale, E. and Teale, F. W. J. Number and distribution of chromophore types in native phycobiliproteins. Photochem. Photobiol. 1970,12, 99-117.
    [63].Teale, F. W. J. And Dale, R. E. Isolation and spectral characterization of phycobiliproterins. Biochem. J. 1970,116,161-169.
    
    [64].Gantt, E. Phycobilisomes. Annu. Rev. Plant Physiol. 1981, 32, 327-347.
    [65].Gantt E. Structure and function of phycobilisomes: Light harvesting pigment complexes in red algae and blue-green algae. Int. Rev. Cytol. 1980, 60,45-80.
    [66].Brody, S. S.; Porter, G.; Tredwell, C. J. and Barber, J. Picosecond energy transfer in Anacystis. Nidulans. Photobiochem. Photobiophys. 1981,2, 11-14.
    [67].Brody, S. S.; Treadwell, C. and Barber, J. Picosecond energy transfer in Porphyridium cruentum and Anacystis nidulans. Biophys. J. 1981,34,439-449.
    [68].Mimuro, Y. M.; Murao, T.; Yoshihara, Y. K. and. Fujita, Y. Excitation energy transfer in the light harvesting antenna system of the red alga Porphyridium cruentum and the blue-green alga Anacystis nidulans: analysis of time-resolved fluorescence spectra. Photochem. Photobiol. 1984,39, 233-240.
    [69].Searle, G. F. W.; Barber, J.; Porter, G. et al, Picosecond time-resolved energy-transfer in porphyridium-cruentum 2. isolated light harvesting complex (phycobilisomes). Biochim. Biophys. Acta. 1978, 501,246-256.
    [70].Wendler, J.; Holzwarth, A. R.; Wehrmeyer, W. Picosecond time-resolved, energy transfer in phycobilisomes isolated from the red alga Porphyridium cruentum. Biochim. Biophys. Acta. 1984, 765, 58-67.
    [71].Holzwarth, A. R.; Wendler, J. and Wehrmeyer, W. Picosecond time resolved, energy transfer in isolated phycobilisomes from Rhodella violacea (Rhodophyceae). Photochem. Photobiol. 1982, 36,479-487.
    [72].Pellegrino, F.; Wong, D.; Alfano, R. R. and Zilinskas, B. A. Fluorescence relaxation kinetics and quantum yield from the phycobilisomes of the blue- green alga Nostoc sp. measured as a function of single picosecond pulse intensity. Photochem. Photobiol. 1981,34,691-696.
    [73].Hefferle, P.; Nies, M; Wehrmeyer, W. and Schneider, S. Picosecond time-resolved fluorescence study ofthe antenna system, isolated from Mastigocladus laminosus Cohn. I. Functionally, intact phycobilisomes. Photobiochem. Photobiophys. 1983,5,41-51.
    
    [74].Gillbro, T.; Sandstrom, A.; Sundstrom, V. and Holzwarth, A. R. Polarized absorption picosecond kinetics as a probe of energy transfer in phycobilisomes of Synechococcus 6301. FEBS. Letters. 1983,162,64-68.
    [75].Porter, G.; Tredwell, C. J.; Searle, G. F.; Barber, J. Picosecond time-resolved energy transfer in Porphyridium cruentum. Part 1. In the intact alga. Biochim. Biophys. Acta. 1978, 501, 232-245.
    [76].Sharkov, A. V.; Kryukov, I. V.; Khoroshilov, E. V. et al. Femtosecond spectral and anisotropy study of excitation energy transfer between neighbouring a-80 and b-81 chromophores of allophycocyanin trimers, Biochim. Biophys. Acta. 1994,1188, 349-356.
    [77].Homoelle, B. J.; Edington, M. D. Diffey, W. M. et al. Stimulated photon-echo and transient-grating studies of protein-matrix solvation dynamics and interexciton-state radiationless decay in a phycocyanin and allophycocyanin. J. Phys. Chem. 1998, 102, 3044-3052.
    [78].Debreczeny, M. P.; Sauer, K.; Monomeric C-phycocyanin at Room Temperature and 77K:Resolution of the Absorption and Fluorescence Spectra of the Individual Chromophores and Energy Transfer Rate Constants. J. Phys. Chem. 1993, 97, 9852-9862.
    [79].Forster T. Comprehensive Biochemistry. Vol 22. Amsterdam: elsevier, 1967, 61-80.
    [80].Deisenhofer. J.; Epp, O.; Miki, K. et al. Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3 A resolution. Nature, 1985, 318, 618-624
    [81]. Allen, J. P.; Feher, G; Yeates, T. O.; Komiya, H.; Rees, D. C. Structure of the reaction center from Rhodobacter sphaeroides R-26: The cofactors. Proc. Natl. Acad. Sci. USA. 1987, 84, 6162-6166.
    [82].Deisenhofer, J.; Epp, O.; Sinning, I. and Michel, H. Crystallographic refinement at 2.3A resolution and refined model to the photosynthetic reaction centers from Rhodopseudomonas viridis. J. Mol. Biol. 1995, 246, 429-457.
    [83]. Deisenhofer, J. and Michel, H. The photosynthetic reaction center from the purple bacterium Rhodoseudomouas viridis. EMBO. J. 1989, 8, 2149-2170.
    [84]. Gast, P.; Michalski, T. J.; Hunt, J. E. and Norris, J. R. Determination of the amount and the type of quinones present in single crystals from reaction center protein from the photosynthetic bacterium Rhodopseudomonas viridis. FEBS. Letters. 1985, 179, 325-328.
    [85]. CHANG, C. H.; El-kabbani, O.; Tiede, D.; Norris, J.; Schiffer, M. Structure of the membrane-bound pro-. tein photosynthetic reaction center from Rhodobacter. Sphaeroides. Biochemistry. 1991, 30, 5352-5360.
    [86]. Kuglstatter A.; Hellwig P.; Fritzsch G. l; Wachtveitl J.; Oesterhelt D.; Mantele W.; Michel H. Identification of a hydrogen bond in the Phe M197→Tyr mutant reaction center of the photosynthetic purple bacterium Rhodobacter sphaeroides by X-ray crystallography and FTIR spectroscopy. FEBS. Letters. 1999, 463, 169-174.
    [87]. Hughes, J. M.; Hutter, M. C.; Reimers, J. R. and Hush, N. S. Modeling the Bacterial Photosynthetic Reaction Center. 4. The structure electrochemical, and hydrogen-bonding properties of 22 mutant of Rhodobacter sphaeroides. J. Am. Chem. Soc. 2001, 123, 8550-8563.
    [88]. Sa'nchez-Reyes, J. Bezier representation of epitrochoids and hypotrochoids. Science. 2007, 31, 747-750.
    [89]. Gehlen, J. N.; Marchi, M. and Chandler, D. Dynamics affecting the primary charge transfer in photosynthesis. Science. 1994, 263, 499-502.
    [90]. Parson, W. W.; Warshel, A. Dependence of Photosynthetic Electron-Transfer Kinetics on Temperature and Energy in a Density-Matrix Model. J. Phys. Chem. B. 2004, 108, 10474-10483.
    [91]. Chang, C. H.; Tiede, D.; Tang, J.; Smith, U.; Norris, J.; Schiffer, M. Structure of Rhodopseudomonas sphaeroides R-26 reaction center. FEBS. Lett, 1986, 205, 82-86.
    [92]. Allen, J. P. and Williams, J. C. 1998. Photosynthetic reaction centers. FEBS. Lett, 1998, 438, 5-9.
    [93].刘源.紫细菌外周天线色素蛋白复合物及光合作用反应中心的结构与功能研究.中国科学院上海植物生理生态研究所博士学位论文,2005.
    [94]. Williams, J. C.; Steiner, L. A.; Feher, G.; Simon, M. I. Primary structure of the L subunit of the reaction center from Rhodopseudomonas sphaeroides. Proc. Natl. Acad. Sci. USA. 1984, 81, 7303-7307.
    [95]. Peters, J.; Welte, W.; Drews, G. Topographical relationships of polypeptides in the photosynthetic membrane of Rhodopseudomonas viridis investigated by reversible chemical cross-linking. FEBS. Lett, 1984, 171, 267-270.
    [96]. Debus, R. J.; Feher, G. and Okamura, M. Y. LM complex of reaction centers from Rhodopseudomonas sphaeroides R-26: characterization and reconstitution with the H subunit. Biochemistry, 1985, 24, 2488-2500.
    [97]. Artz, K.; Williams, J. C.; Allen, J. P.; Lendzian, E; Rautter, J. and Lubitz, W. Relationship between the oxidation potential and electron spin density of the primary electron donor in reaction centers from Rhodobacter sphaeroides. Proc. Natl. Acad. Sci. USA, 1997, 94, 13582-13587.
    [98]. Lancaster, C. R. D.; Bibikova, M. V.; Sabatino, P.; Oesterhelt, D.; Michel, H. Structural basis of the drastically increased initial electron transfer rate in the reaction center from a Rhodopseudomonas viridis mutant described at 2.00-A resolution. J. Biol. Chem. 2002, 275, 39364-39368.
    [99]. Taly, A.; Sebban, P.; Smith, J. C. and Ullmann, G M. The Position of QB in the Photosynthetic Reaction Center Depends on pH: A Theoretical Analysis of the Proton Uptake upon QB Reduction. Biophys. J. 2003, 84, 2090-2098.
    [100]. Feher, G. The Bruker Lecture. Identification and characterization of the primary donor in bacterial photosynthesis: a chronological account of an EPR/ENDOR investigation. J. Chem. Soc. Perkin. Transactions. 1992, 1861-1874.
    [101]. Ritz, T.; Hu, X. C.; Damjanovic, A.; Klaus, S. Excitons and excitation transfer in the photosynthetic unit of purple bacteria. J. Lumminescence. 1998, 76, 310-321.
    [102]. Holzapfel, W.; Finkele, U.; Kaiser, W.; Oesterhelt, D.; Scheer, H.; Stile, H. U.; Zinth, W. Initial electron-transfer in the reaction center from Rhodobacter sphaeroides. Proc. Nat. Acad. Sci. USA. 1990, 87, 5170-5179.
    [103]. Barber, J.; Nield, J. Morris, E. P.; Hankamer, B. Subunit positioning in Photosystem 2 revosoted. Trends. Biochem. Sci. 1999, 24, 43-45.
    [104].李良璧,匡廷云.光合作用原初光能转化过程的原理与调控,江苏科学技术出版社,2003.
    [105]. Horber, J. K. H.; Gobel, W.; Ogrodnik, A. et al. Ln Antennas and Reaction Centers of Photosynthetic Bacteria. Berlin, Springer-verlag, 1985, 292.
    [106]. Horber, J. K. H.; Gobel, W.; Ogrodnik, A. et al. Time-resolved measurements of fluorescence from reaction centres of Rhodopseudomonas viridis and the effect of menaquinone reduction. FEBS. Lett. 1986, 198, 268-272.
    [107]. Thompson, M. A.; Zerner, M. C. A theoretical examination of the electronic structure and spectroscopy of the photosynthetic reaction center from Rhodopseudomonas viridis. J. Am. Chem. Soc., 1991, 113, 8210-8215.
    [108]. Marchi, M.; Gehlen, J. N.; Chandler, D.; Newton, M. Diabatic surfaces and the pathway for primary electron transfer in a photosynthetic reaction center. Marchi, M.; Gehlen, J. N.; Chandler, D.; Newton, M. D. J. Am. Chem. Soc. 1993, 115, 4178-4190.
    [109]. Gunner, M. R.; Nicholls, A.; Honig, B. Electrostatic Potentials in Rhodopseudomonas viridis Reaction Centers: Implications for the Driving Force and Directionality of Electron Transfer. J. Phys. Chem. 1996, 100, 4277-4291.
    [110]. Lesk, A. M.; Chothia, C. Elbow motion in the immunoglobulins involves a molecular ball-and-socket joint. Nature. 1988, 335, 188-190.
    [111]. Chan, C. K.; DiMagno, T. J.; Chen, L. X.; Norris, J. R. and Fleming, G. R. Mechanism of the initial charge separation in bacterial photosynthetic reaction centers. Proc. Natl. Acad. Sci. USA. 1991, 88, 11202-11206.
    [112]. Zhang, X. D.; Ma, S. H.; Wang, Y. N.; Zhang, X. K.; Zhang, Q. Y. Theoretical studies on mechanism of primary electronic transfer in the photosynthetic reaction center of Rhodopseuodomonas Viridis. J. Photochem. Photobiol. A. Chem. 2000, 131, 85-94.
    [113]. Arlt, T.; Schmidt, S.; Lauterwasser, W. K. C.; Meyer, M.; Zinth, W. The accessory bacteriochlorophyll: a real electron carrier in primary photosynthesis. Proc. Natl. Acad. Sci. USA. 1993, 90, 11757-11761.
    [114]. Holzwarth, A. R.; Muller, M. G. Energetics and kinetics of radical pairs in reaction centers from Rhodobacter sphaeroides: A femtosecond transient absorption study. Biochemistry, 1996, 35, 11820-11831.
    [115]. Schmidt, S.; Arlt, T.; Hamm, P.; Huber, H.; Nagele, T.; Wachtveitl, J.; Meyer, M.; Scheer, H. and Zinth, W. Energetics of the primary electron transfer reaction revealed by ultrafast spectroscopy on modified bacterial reaction centers. Chem. Phys. Lett. 1994, 223, 116-120.
    [116]. Wang, Z. Y.; Pearlstein, R. M.; Jia, Y. W.; Fleming, G. R. and Norris, J. R. Inhomogeneous electron transfer kinetics in reaction centers of bacterial photosynthesis. Chem. Phys. 1993, 176, 421-425.
    [117]. Jia, Y. W.; DiMagno, T. J.; Chan, C. K.; Wang, Z. Y.; Popov, M. S.; Du, M.; Hanson, D. K. Schiffer, M.; Norris, J. R.; Fleming, J. R. Primary charge separation in mutant reaction centers of Rhodobacter capsulatus. J. Phys. Chem, 1993, 97, 13180-13191.
    [118]. Thompson, M. A.; Zerner, M. C; Fajer, J. A theoretical examination of the electronic structure and excited states of the bacteriochlorophyll b dimer from Rhodopseudomonas viridis. J. Phys. Chem. 1991,95, 5693-5700.
    [119]. Shkuropatov, A.Y.; Shuvalov, V. A.; Electron transfer in pheophytin a-modified reaction Centers from Rhodobacter sphaeroides (R-26). FEBS. Lett. 1993, 322, 168-172.
    [120]. Parson, W. W.; Scherz, A.; Warshel, W. Calculations of spectroscopic properties of bacterial reaction centers. In: ME Michel-Bayerle (eds) Antannas and reaction centers of photosynthetic bacteria. Springer Verlag, 1985, pp. 122-130.
    [121]. Martin, J. L.; Breton, J.; Hoff, A. J.; Migus, A. and Antonetti, A. Femtosecond spectroscopy of electron transfer in the reaction center of the photosynthetic bacterium Rhodopseudomonas sphaeroides R-26: direct electron transfer from the dimeric bacteriochlorophyll primary donor to the bacteriopheophytin acceptor with a time constant of 2.8±0.2 psec. Proc. Natl. Acad. Sci. USA,1986,83,957-961.
    [122]. Dressier, K.; Umlauf, E.; Schmidt, S.; Hamm, P.; Zinth, W.; Buchanan, S. and Michel, H. Detailed studies of the subpicosecond kinetics in the primary electron transfer of reaction centers of Rhodopseudomonas viridis. Chem. Phys. Lett. 1991,183,270-276.
    [123]. Jia, Y.; Jonas, D. M.; Joo, T.; Nagasawa, Y.; Lang, M. J.; Fleming, G R. Observation of ultrafast energy transfer from the accessory bacteriochlorophylls to the special pair in photosynthetic reaction centers. J. Phys. Chem. 1995, 99,6263-6266.
    [124]. Stanley, R. J.; King, B. Boxer, S. G Excited state energy transfer pathways in photosynthetic reaction centers. 1. Structural symmetry effects. J. Phys. Chem. 1996, 100, 12052-2059.
    [125]. Jonas, D. M.; Lang, M. J.; Nagasawa, Y; Joo, T. Fleming G R, Pump-probe polarization anisotropy study of femtosecond energy transfer within the photosynthetic reaction center of Rhodobacter sphaeroides R26. J. Phys. Chem. 1996,100, 12660-12673.
    [126]. Harn, G; Wynne, K.; Moser, C. C; Dutton, P. L.; Hochstrasser, R. Level mixing and energy redistribution in bacterial photosynthetic reaction centers. J. Phys. Chem. 1996, 100, 5562-5569.
    [127].Vulto, S. I. E.; Streltsov, A. M.; Shkuropatov, A. Y; Shuvalov, V. A.; Aartsma, T. J. Subpicosecond excited-state relaxation of the accessory bacteriochlorophylls in native and modified reaction centers of Rb; sphaeroides R26. J. Phys. Chem. B. 1997,101,7249-7255.
    [128]. Arnett, D. C; Moster, C. C; Dutton, P. L.; Scherer, N. F. The first events in photosynthesis: electronic coupling and energy transfer dynamics in the photosynthetic reaction center from Rhodobacter sphaeroides. J. Phys. Chem. B. 1999, 103, 2014-2032.
    [129]. Tiede, D. M.; Prince, R. C. and Dutton, P. L EPR and Optical Spectroscopic Properties of the Electron Carrier Intermediate Between the Reaction Center Bacteriochlorophylls and the Primary Acceptor in Chromatium vinosum. Biochim. Biophys. Acta. 1976, 449, 447-467.
    [130]. Vermeglio, A. and Clayton, R. K. Orientation of chromo-, phores in reaction, centers, of. Rhodopseudomonas sphaeroides. Biochim. Biophys. Acta. 1976, 449, 500-515.
    [131]. Shuvalov, V. A.; Krakhmaleva, I. N.; Klimov, V. V. Photooxidation of P-960 and. photoreduction of P-800 (bacteriopheophytin b-800) in reaction centers from. Rhodopseudomonas viridis. Biochim. Biophys. Acta. 1976, 449, 597-601.
    [132]. Holten, D.; Windsor, M. W.; Parson, W. W. and Thomber, J. P. Primary photochemical processes in isolated reaction centers. 37. of Rhodopseudomonas viridis. Biochim. Biophys. Acta. 1978, 501, 112-126.
    [133]. Vermeglio, A.; Breton, J.; Paillotin, G. and Cogdell, R. Orientation of chromophores in reaction centers of. Rhodopseudomonas sphaeroides. Biochim. Biophys. Acta. 1978, 501, 514-530.
    [134]. Shuvalov, V. A. and Asadov, A. A. Arrangement and interac-, tion of pigment molecules in reaction centers of. Rhodopseudomonas viridis. Biochim. Biophys. Acta. 1979, 545, 296-308
    [135]. Scherer, O. J.; Scharnagl, C.; Fischer, S. F. Symmetry breakage in the electronic structure of bacterial reaction centers. Chem. Phys. 1995, 197, 333-341.
    [136]. Michel-Beyerle, M. E.; Plato, M.; Deisenhofer, J.; Michel, H.; Bixon, M.; Jortner, J. Unidirectionality of Charge Separation in Reaction Centers of Photosynthetic Bacteria. Biochim. Biophys. Acta 1988, 932, 52-70.
    [137]. Plato, M.; Mo"bius, K.; Michel-Beyerle, M. E.; Bixon, M.; Jortner, J. Intermolecular electronic interactions in the primary charge separation in bacterial photosynthesis. J. Am. Chem. Soc. 1988, 110, 7279-7285.
    [138]. Marcus, R. A.; Sutin, N. Electron transfers in chemistry and biology. Biochim. Biophys. Acta 1985, 811, 265-322.
    [139]. Hasegawa, J.; Ohkawa, K.; Nakatsuji, H. Excited States of the Photosynthetic Reaction Center of Rhodopseudomonas viridis: SAC-CI Study. J. Phys. Chem. B. 1998, 102, 10410-10419.
    [140]. Nakatsuji H.; Hasegawa J.; Ohkawa K. Excited states and electron transfer mechanism in the. photosynthetic reaction center of Rhodopseudomonas Oiridis:. SAC-CI study. Chem. Phys. Lett. 1998, 296, 499-504.
    [141]. Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. B. 1964, 136, 864-871
    [142]. Kohn, W.; Sham, L. J. Self-Consistent Equations Including Exchange And Correlation Effects. Phys. Rev. A. 1965, 140, 1133-1138.
    [143]. Slater, J. C. Quantum Theory of Molecular and Solids. Vol. 4: The Self-Consistent Field for Molecular and Solids McGraw-Hill, New York, 1974.
    [144]. Salahub, D. E.; Zerner, M. C. The Challenge ofd and f Electrons ACS, Washington, D. C., 1989.
    [145]. Parr, R. G.; Yang, W. Density-functional theory of atoms and molecules, Oxford. Univ. Press, Oxford, 1989.
    [146]. Pople, J. A.; Gill, P. W. M.; Johnson, B. G. Kohn-sham density-functional the ory within a finite basis set. Chem. Phys. Lett. 1992, 199, 557-561.
    [147]. Johnson, B. G.; Frisch, M. J. An Implementation of Analytic Second Derivatives of the Gradient-Corrected Density Functional Energy. J. Chem. Phys. 1994, 100, 7429-7432.
    [148]. Labanowski, J. K.; Andzehn, J. W. Density Functional Methods in Chemistry. Springer-Verlag: New York, 1991.
    [149]. Perdew, J. P. and Schmidt, K. In Density Functional Theory and Its Applications to Materials. Edited by V. E. van Doren, K van Alseoy and P Geerlings, American Institute of Physics, 2001.
    [150]. Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098-3100.
    [151]. Vosko, S. H.; Wilk, L. and Nusair, M. Accurate spin-dependent electronliquid correlation energies for local spin density calculations:a critical analysis. Can. J. Phys. 1980, 58, 1200-1211.
    [152]. Lee, C.; Yang, W. and Parr, R. G. development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785-789.
    [153]. a) Schreckenbach G, Ziegler T. Calculation of NMR shielding tensors using gauge-including atomic orbitalsand modern density functional theory. J. Phys. Chem. 1995, 99, 606-611; b) the calculation of NMR shielding tensors based on density functional theory and the frozen-core approximation. Int. J. Quantum Chem. 1996, 60,753-766.
    [154]. Runge, E.; Gross, E. K. U. Density-functional theory for time-dependent systems. Phys. Rev. Lett. 1984, 52, 997-1000.
    [155]. Gross. E. K. U.; Kohn. W. Local density-functional theory of frequency-dependent linear response. Phys. Rev. Lett. 1985, 55, 2850-2852.
    [156]. Gross, E. K. U.; Kohn, W. Time-dependent density functional theory. Adv. Quantum Chem. 1990, 21, 255-288.
    [157]. Casida, M. E. In Recent Advances in Density Functional Methods, Part Ⅰ, Chong, D. P., Ed.; World Scientific: Singapore, 1995, pp. 155.
    [158]. van Leeuwen, R. Key concepts of time-dependent density-functional theory. Int. J. Mod. Phys. B 2001, 15, 1969-2023.
    [159]. Marques, M. A. L.; Gross, E. K. U. Time-dependent density functional theory. Annu. Rev. Phys. Chem. 2004, 55, 427-455.
    [160]. 仇毅翔.电子光谱的含时密度泛涵理论研究.上海交通大学博士学位论文,2006.
    [161]. Van Leeuwen, R. Mapping from Densities to Potentials in Time-Dependent Density-Functional Theory. Phys. Rev. Lett. 1999, 82, 3863-3866.
    [162]. Nakajima, T.; Nakatsuji, H. Energy gradient method for the ground, excited, ionized, and electron-attached states calculated by the SAC (symmetry-adapted cluster)/SAC-CI (configuration interaction) method. J. Chem. Phys. 1999, 242, 177-193.
    [163]. Nakatsuji, H.; Hirao, K. Cluster expansion of the wave.Symmetry-adapted-cluster expansion,its variational determination, and extension of open-shell orbital theory. J. Chem. Phys. 1978, 68, 2053-2061.
    [164]. Nakatsuji, H. Cluster expansion of the wavefunction. Excited states. Chem. Phys. Lett. 1978, 59, 362-364.
    [165]. Nakatsuji, H. Cluster expansion of the wavefunction. Electron correlations in ground and excited states by SAC (symmetry-adapted-cluster) and SAC CI theories. Chem. Phys.Lett. 1979, 67, 329-333.
    [166]. Nakatsuji, H. Electronic structures of ground, excited, ionized and anion states studied by the SAC/SAC-CI theory. Acta. Chim. Hung. 1992, 129, 719-776.
    [167]. Nakatsuji, H. Computational Chemistry-Reviews of Current Trends, Vol. 2, World Scientific, 1997, pp. 62.
    [168]. Nakatsuji, H. Dipped Adcluster Model for Chemisorption and Catalytic Reactions. Prog. Surf. Sci. 1997, 54,1-68.
    [169]. Nakatsuji, H.; Hasegawa, J. Hada, M. Excited and ionized states of free base porphin studied by the symmetry adapted cluster-configuration interaction (SAC-CI) method. J. Chem. Phys. 1996, 104, 2321-2329.
    [170]. Tokita, Y.; Nakatsuji, H. Ground and Excited States of Hemoglobin CO and Horseradish Peroxidase CO: SAC/SAC-CI Study. J. Phys. Chem. B. 1997, 101, 3281-3289.
    [171]. Nakatsuji, H.; Ehara, M. Symmetry-adapted cluster-configuration interaction method applied to high-spin multiplicity. J. Chem. Phys. 1993, 98, 7179-7184.
    [172]. Condon, E. U. Nuclear Motions Associated with Electron Transitions in Diatomic Molecules. Phys. Rev. 1928, 32, 858-872.
    [173]. Franck, J. Elementary processes of photochemical reactions. Trans. Faraday Soc. 1925, 21, 536-542.
    [174]. Atkins, P. W. Physical Chemistry, Sixth Edition, Oxford University Press, 1998.
    [175]. Rodger, A. and Norden, B. circular dichroism and linear dichroism, oxford university press, 1997.
    [176]. Bour, P. Simulation of Electronic Circular Dichroism with Rigid Kohn-Sham Orbitals: A Computational Experiment. J. Phys. Chem. A. 1999, 103, 5099-5104.
    [177]. Furche, F.; Ahlrichs, R.; Wachsmann, C.; Weber, E.; Sobanski, A.; Vogtle, E and Grimme, S. Circular Dichroism of Helicenes Investigated by Time-Dependent Density Functional Theory. J. Am. Chem. Soc. 2000, 122, 1717-1724.
    [178]. Grimme, S.; Furche, F. and Ahlrichs, R. An improved method for density functional calculations of the frequency-dependent optical rotation. Chem. Phys. Lett. 2002, 361, 321-328.
    [179]. Autschbach, J.; Ziegler, T.; Van Gisbergen, S. J. A. and Baerends, E. J. Chiroptical properties from time-dependent density functional theory. I. Circular dichroism spectra of organic molecules. J. Chem. Phys. 2002, 116, 6930-6940.
    [180]. Sundholm, D. A density-functional-theory study of bacteriochlorophyll b. Phys. Chem. Chem. Phys. 2003, 5, 4265-4271.
    [181]. Miertus, S.; Scrocco, E.; Tomasi, J. Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chem. Phys. 1981, 55, 117-122.
    [182].潘清江.d~8和d~10配合物激发态性质与金属间弱相互作用的量子理论研究.吉林大学博士学位论文,2005.
    [183]. Pullman, B.; Miertusl, S. and Perahia. D. Hydration scheme of the purine and pyrimidine bases and base-pairs of the nucleic acids. Theoret. Chim. Acta. 1979, 50, 317-325.
    [184]. Goldblum, A.; Perahia, D. and Pullman, A. Hydration scheme of the complementary base-pairs of DNA. FEBS. Letters. 1978, 91, 213-215.
    [185]. Miertus, S.; Tomasi, J. Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes. Chem. Phys. 1982, 65, 239-245.
    [186]. Onsager, L. Electric Moments of Molecules in Liquids. J. Am. Chem. Soc. 1936, 58, 1486-1493.
    [187]. Tapia, O.; Goscinski, O. Self-consistent reaction field theory of solvent effects. Mol. Phys. 1975, 29, 1653-1661.
    [188]. Pascualahuir, J. L.; Silla, E.; Tomasi, J.; B onaccorsi, R. Electrostatic interaction of a solute with a continuum. Improved description of the cavity and of the surface cavity bound charge distribution. J. Comp. Chem. 1987, 8, 778-787.
    [189]. Cossi, M., Barone, V.; Cammi, R.; Tomasi, J. Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. Chem. Phys. Lett. 1996, 255, 327-335.
    [190]. Cossi, M.; Barone, V.; Mennucci, B.; Tomasi, J. Ab initio study of ionic solutions by a polarizable continuum dielectric model. Chem. Phys. Lett. 1998, 286, 253-260.
    [191]. Cances, E.; Mermucci, B.; Tomasi, J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys. 1997, 107, 3032-3041.
    [192]. Barone, V.; Cossi, M.; Tomasi, J. A new definition of cavities for the computation of solvation free energies by the polarizable continuum model. J. Chem. Phys. 1997, 107, 3210-3221.
    [1]. Henderson, R. W.; Dougherty, T. J. How does photodynamic therapy work. Photochem Photobiol. 1992, 55, 145-157.
    [2]. Bonnett, R. Photodynamic therapy in historic persective. Rev. Contemp. Pharmacother. 1999, 10, 1-6.
    [3]. Oleinick, N. L.; Evans, H. H. The photobiology of photodynamic therapy cellar targets and mechanisms. Radiat Res. 1998, 150, 146-156.
    [4]. Vogel, E.; Haas, W.; Knipp, B.; Lex, J.; Schmickler, H. Tetraoxaporphyrin-Dikatio. Angew. Chem. 1988 100, 445-448; Vogel, E.; Haas, W.; Knipp, B.; Lex, J.; Schmickler, H. Tetraoxaporphyrin Dication. Angew. Chem. Int. Ed. Engl. 1988, 27, 406-409.
    [5]. Vogel, E. The porphyrins from the 'annulene chemist's' perspective. Pure. Appl. Chem. 1993, 65, 143-152.
    [6]. Vogel, E.; Kocher, M.; Schmickler, H.; Lex, J. Porphycene - a Novel Porphin Isomer. J. Angew. Chem. 1986, 98, 262-264.
    [7]. Bachmann, R.; Cerson, F.; Cescheidt, C.; Vogel, E. Five Redox Stages of Tetraoxaporphyrin: A UV/Visible/Near-IR, ESR, and MO-Theoretical Study" J. Am. Chem.Soc. 1992, 114, 10855-10860.
    [8]. Vogel, E. Novel Porphyrinoid Macrocycles and their Metal Complexes. J. Heterocycl. Chem. 1996, 33, 1461-1487.
    [9]. Furuta, H.; Asano, T.; Ogawa, T. "N-Confused Porphyrin": A New Isomer of Tetrapheny lporphyrin J. Am. Chem. Soc. 1994, 116, 767-768.
    [10]. Chmielewski, P. J.; Latos-Grazynski, L.; Rachlewicz, K.; Glowiak, T. Tetra-p-tolylporphyrin with an Inverted Pyrrole Ring: A Novel Isomer of Porphyrin. Angew. Chem. Int. Ed. Engl. 1994, 33, 779-781.
    [11]. Vogel, E.; Pohl, M.; Herrmann, A.; Wib, T.; Konig, C.; Lex, J.; Gross, M.; Gisselbrecht, J. P. Porphyrinoide Makrocyclen auf Thiophen-Basis: Octaethyltetrathiaporphyrin-Dikation. Angew. Chem. 1996, 108, 1677-1682.
    [12]. Furuta, H.; Morimoto, T.; Osuka. A. Structures and Ligand Exchange of N-Confused Porphyrin Dimer Complexes with Group 12. Metals. Inorg. Chem. 2004, 43, 1618-1624.
    [13]. Furuta, H.; Maeda, H.; Osuka, A. Confusion, inversion, and creation—a new spring from porphyrin chemistry. Chem Commun. 2002, 1795-1804.
    [14]. Latos-Grazynski, L.; Olmstead, M. M.; Balch, A. L. The first structural characterization of a nickel(Ⅰ) macrocyclic system: structure of nickel(Ⅰ) diphenyldi-p-toyl-21-thiaporphyrin, Inorg. Chem. 1989, 28, 4065-4066.
    [15]. Latos-Grazyfiski, L.; Lisowski, J.; Ohnstead, M. M.; Balch, A. L. Five-coordinate complexes of 21-thiaporphyrin. Preparations, spectra, and structures of iron(Ⅱ), nickel (Ⅱ), and copper (Ⅱ) complexes. Inorg. Chem. 1989, 28, 1183-1188.
    [16]. Gebauer, A.; Schmidt, J. A. R.; Arnold, J. Synthesis, Characterization, and Properties of a Lithium 21-Thiaporphyrin Complex. Inorg. Chem. 2000, 39, 3424-3427.
    [17]. Johnson, A. W. In Porphyrins and Metalloporphyrins, Ed: Smith, K. M., Elsevier, Amsterdam, 1975, p729.
    [18]. Schick, G. A.; O'Grady, M. R.; Tiwari, R. K. Resonance Raman Scattering from Exciton-Coupled States in Porphyrin Monolayer Assemblies J. Phys. Chem. 1993, 97, 1339-1345.
    [19]. Pasternack, R. F.; Schaefer, K. F.; Hambright, P. Resonance Light-Scattering Studies of Porphyrin Diacid Aggregates. Inorg. Chem. 1994, 33, 2062-2065.
    [20]. Ribo, J. M.; Crusats, J.; Farrera, J. A.; Valero, M. L. Aggregation in water solutions of tetrasodium diprotonated meso-tetrakis(4-sulfonatophenyl)porphyrin. J. Chem. Soc. Chem. Commun. 1994, 681-682.
    [21]. Akins, D. L.; Ozcelik, S.; Zhu, H. K.; Guo, C. Aggregation-Enhanced Raman Scattering of a Cyanine Dye in Homogeneous Solution. J. Phys. Chem. A. 1997, 101,3251-3259.
    [22]. Akins, D. L.; Zhu, H. K.; Guo, C. Fluorescence Decay Kinetics and Structure of Aggregated Tetrakis(p-Sulfonatophenyl)Porphyrin. J. Phys. Chem. 1996, 100, 14390-14396.
    [23]. Akins, D. L.; Ozcelik, S.; Zhu, H. K.; Guo, C. Aggregation of Tetraaryl-Substituted Porphyrins in Homogeneous Solution. J. Phys. Chem. 1996, 100, 5420-5425.
    [24]. Tokita, Y.; Hasegawa, J.; Nakatsuji, H. SAC-CI Study on the Excited and Ionized States of Free-Base Porphin: Rydberg Excited States and Effect of Polarization and Rydberg Functions. J. Phys. Chem. A 1998, 102, 1843-1849.
    [25]. Serrano-Andres, L.; Merchan, M.; Rubio, M.; Roos, B. O. Molecular excitation energies to high-lying bound states from timedependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold. J. Chem. Phys. 1999, 108, 4439-4449.
    [26]. Gwaltney, S. R.; Bartlett, R. J. Coupled-cluster calculations of the electronic excitation spectrum of free base porphin in a polarized basis. J. Chem. Phys. 1998, 108, 6790-6798
    [27]. van Gisbergen, S. J. A.; Rosa, A.; Ricciardi, G.; Baerends, E. J. Time-dependent density functional calculations on the electronic absorption spectrum of free base porphin. J. Chem. Phys. 1999, 111, 2499-2506.
    [28]. Malsch, K.; Roeb, M.; Karuth, V.; Hohlneicher, G. The importance of electron correlation for the ground state structure of Porphycene and tetraoxaporphyrin-dication. Chem. Phys. 1998, 227, 331-348.
    [29]. Chen, D. M.; He, T. J.; Cong, D. F.; Zhang, Y. H.; Liu, F. C. Resonance Raman Spectra and Excited-State Structure of Aggregated Tetrakis (4-sulfonatophenyl)porphyrin Diacid. J. Phys. Chem. A. 2001, 105, 3981-3988.
    [30]. Ghosh, A.; Almlof, J. Structure and stability of cis-porphyrin. J. Phys. Chem. 1995, 99, 1073-1077.
    [31]. Chen. B. M. L., Tulinsky. A., The redetermination of free-baseporphyrin. J. Am. Chem. Soc. 1972, 94, 4144.
    [32]. Nakatsuji. H., Hasegawa J., and Hada. M, Excited and ionized states of free base porphin studied by the symmetry adapted cluster-configuration interaction (SAC-CI) method, J. Chem. Phys. 1996, 104, 2321-2329.
    [33]. Tokita. Y., Hasegawa. J., and Nakatsuji. H., SAC-CI Study on the Excited and Ionized States of Free-Base Porphin: Rydberg Excited States and Effect of Polarization and Rydberg Functions, J. Phys. Chem. A. 1998, 102, 1843-1849.
    [34]. Merchan. M., Orti. E., and Roos. B. O., Theoretical determination of the electronic spectrum of free base porphin, Chem. Phys. Lett. 1994, 226, 27-36.
    [35]. Serrano-Andres. L., Merchan. M., Rubio. M., and Roos. B. O., Interpretation of the electronic absorption spectrum of flee base porphin by using multiconfigurational second-order perturbation theory, Chem. Phys. Lett. 1998, 295, 195-203.
    [36]. Bauernschmitt, R.; Ahlrichs, R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem. Phys. Lett. 1996, 256, 454-464.
    [37]. Casda. M. E. Jamorski. C., Casida. K. C., Salahub. D. R., Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold, J. Chem. Phys. 1998, 108, 4439-4449.
    [38]. Stratmann. R. E., Scuseria. G. E., Frisch. M. J., An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules, J. Chem. Phys. 1998,109,8218-8224.
    [39].Cossi, M. and Barone, V. Time-dependent density functional theory for molecules in liquid solutions. J. Chem. Phys. 2001,115,4708-4717.
    [40].Miertus, S.; Scrocco, E. and Tomasi, J. Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chem. Phys. 1981,55, 117-129.
    [41].Barone, V.; Cossi, M. and Tomasi, J. A new definition of cavities for the computation of solvation free energies by the polarizable continuum model. J. Chem. Phys. 1997, 707, 3210-3221.
    [42].Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648-5652.
    [43].Kendall, R. A.; Jr. Dunning, T. H.; Harrison, R. J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992, 96, 6796-6806.
    [44].Dunning, T. H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007-1023.
    [45].Ditchfield, R.; Hehre, W. J. and Pople, J. A. Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. J. Chem. Phys. 1971, 54, 724-728.
    
    [46]. Physical Properties of Lange's Handbook of Chemistry 5~(th) Edition by Dean, J. A. 1999.
    [47].Frisch, M. J.; Trucks, G W.; Schlegel, H. B.; Scuseria, G E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, Jr. T.; Kudin, K. N.; Burant, J. C; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G; Rega, N.; Petersson, G A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C; Ochterski, J. W.; Ayala, P. Y; Morokuma, K.; Voth, G A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G; Dapprich, S.; Daniels, A. D.; Strain, M. C; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V; Cui, Q.; Baboul, A. G; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T; Al-Laham, M. A.; Peng, C. Y; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C; Pople, J. A. Gaussian 03, Revision B.03; Gaussian, Inc.; Pittsburgh PA, 2003.
    [48].Pople. J. A. and Beveridge. D. L., Approximate molecular orbital theory, New York, MacGraw-Hill, 1970.
    [49]. Gouterman, M. Study of the Effects of Substitution on the Absorption Spectra of Porphin. J. Chem. Phys. 1959, 30, 1139-1161.
    [50]. Dietrich, H. J. Ph. D. Thesis, Cologne 1993.
    [51]. Waluk, J.; Muller, M.; Swiderek, P.; Kocher, M.; Vogel, E.; Hohlneicher, G. and Michl, J. Electronic States of Porphycenes. J. Am. Chem. Soc. 1991, 113, 5511-5527.
    [52]. Baerends, E. J.; Ricciardi, G; Rosa, A.; Gisbergen, V. S. J. A. A DFT/TDDFT interpretation of the ground and excited states of porphyrin and porphyrazine complexes. Coordination Chemistry Reviews 2002, 230, 5-27.
    [53]. Hashimoto, T.; Choe, Y-K.; Nakano, H. and Hirao, K. Theoretical Study of the Q and B Bands of Free-Base, Magnesium, and Zinc Porphyrins, and Their Derivatives. J. Phys. Chem. A. 1999, 103, 1894-1904.
    [54]. Kitao. O., Ushiyama. H., Miura. N., Theoretical study of the mechanism of electron transfer at photosynthetic reaction centers. I. Singlet excited states of free base porphin, J. Chem. Phys. 1999, 110, 2936-2946.
    [55]. Edwards. L., Dolphin. D. H., Gouterman. M. and Adler. A. D., Porphyrins ⅩⅦ. Vapor absorption spectra and redox reactions: Tetraphenylporphins and porphin, J. Mol. Spectrosc. 1971, 38, 16-32.
    [56]. Mylvaganam, K.; Bacskay, G.B.; and Hush, N. S. Homogeneous Conversion of Methane to Methanol. 2. Catalytic Activation of Methane by cis-and trans-Platin: A Density Functional Study of the Shilov Type Reaction. J. Am. Chem. Soc. 2000, 122, 2041-2052.
    [57]. Gilbert, T. M.; Hristov, I.; and Ziegler. T. Comparison between Oxidative Addition and σ-Bond Metathesis as Possible Mechanisms for the Catalytica Methane Activation Process by Platinum(Ⅱ) Complexes: A Density Functional Theory Study. Organometallics. 2001, 20, 1183-1189.
    [58]. Kua, J.; Xu, X.; Periana, R. A. and Goddard Ⅲ, W. A. Stability and Thermodynamics of the PtC12 Type Catalyst for Activating Methane to Methanol: A Computational Study. Organometallics. 2002, 21, 511-525.
    [1]. Schirmer, T.; Bode, W and Huber, R. Refined Three-dimensional Structures of Two Cyanobacterial C-phycocyanins at 2.4 and 2.3 A Resolution. J. Mol. Biol. 1987, 196, 677-695.
    [2]. Duerringt, M.; Schmidt, G. B and Huber, R. Isolation, Crystallization, Crystal Structure Analysis and Refinement of Constitutive C-phycocyanin from the Chromatically Adapting Cyanobacterium Fremyella diplosiphon at 1.66 A Resolution. J. Mol. Biol. 1991, 217, 577-592.
    [3]. Adir, N.; Dobrovetsky, Y. and Lerner, N. Structure of c-phycocyanin from the thermophilic cyanobacterium Synechococcus vulcanus at 2.5A: structural implications for thermal stability in phycobilisome assembly. J. Mol. Biol. 2001, 313, 71- 81.
    [4]. Adir, N.; Vainer, R. and Lerner, N. Refined structure of c-phycocyanin from the cyanobacterium Synechococcus vulcanus at 1.6A: insights into the role of solvent molecules in thermal stability and co-factor structure. Biochim. Biophys. Acta. 2002, 1556, 168-174.
    [5]. Mimuro, M.; Fuglistaller, P.; Rumbeli, R.; Zuber, H. Functional assignment of chromophores and energy transfer in C phycocyanin isolated from the thermophilic cyanobacterium Mastigocladus laminosus. Biochim. Biophys. Acta 1986, 848, 155-166.
    [6]. Mimuro, M.; Rumbeli, R.; Fuglistaller, P.; Zuber, H. The microenvironment around the chromophores and its changes due to the association states in C-phycocyanin isolated from the cyanobacterium Mastigocladus laminos. Biochim. Biophys. Acta. 1986, 851,447-456.
    [7]. Scharnagl, C.; Schneider, S. uv-visible absorption and circular dichroism spectra of the subunits of c-phycocyanin I: quantitative assessment of the effect of chromophore-protein interaction in the α-subunit J. Photochem. Photobiol. B: Biology. 1989, 3, 603-614.
    [8]. Scharnagl, C.; Schneider, S. uv-visible absorption and circular dichroism spectra of the subunits of C-phycocyanin Ⅱ: A quantitative discussion of the chromophore-protein and chromophore-chromophore interactions in the p subunit J. Photochem. Photobiol. B: Biology. 1991, 8, 129-157.
    [9]. Kikuchi, H.; Sugimoto, T.; Mimuro, M. An electronic state of the chromophore, phycocyanobilin, and its interaction with the protein moiety in C-phycocyanin: protonation of the chromophore. Chem. Phys. Lett. 1997, 274, 460-465.
    [10]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomai, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scahnani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K. G.; Voth, A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C; Farkas, O.; Malick, D. K.; Rabuk, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C; Pople, J. A. Gaussian 03, Revision B.03; Gaussian, Inc., Pittsburgh, PA, 2003
    [11].Cossi, M.; Barone, V. Time-dependent density functional theory for molecules in liquid solutions. J. Chem. Phys. 2001,115,4708-4717.
    [12].Miertus, S.; Scrocco, E.; Tomasi, J. Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chem. Phys. 1981,55, 117-129.
    [13].Barone, V.; Cossi, M.; Tomasi, J. A new definition of cavities for the computation of solvation free energies by the polarizable continuum model. J. Chem. Phys. 1997, 107, 3210-3221.
    [14].Wan, J.; Xu, X.; Ren, Y. L. A Time Dependent Density Functional Theory Study of a-84 Phycocyanobilin Chromophore in C-Phycocyanin. J. Phys. Chem. B, 2005,109, 11088-11090.
    [15].Blomberg, M. R. A.; Siegbahn, P. E. M.; Babcock, G. T. Modeling Electron Transfer in Biochemistry: A Quantum Chemical Study of Charge Separation in Rhodobacter sphaeroides and Photosystem II. J. Am. Chem. Soc. 1998,120, 8812-8824.
    [16].Cas, D. A.; Pearlman, J. W. ; Caldwell, T. E., et al., AMBER 8. University of California: San Francisco, CA, 2002.
    [17].Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D., et al. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926-935.
    [18].Braslavsky, S. E.; Schneider, D.; Heilhoff, K.; Nonell, S.; Aramendia, P. F.; Schaffner, K. Phytochrome models. 11. Photophysics and photochemistry of phycocyanobilin dimethyl ester. J. Am. Chem. Soc. 1991,113, 7322-7334.
    [19]. Smit, K.; Matysik. J.; Hildebrandt, P.; Mark, F. Vibrational analysis of biliverdin dimethyl ester. J. Phys. Chem. 1993, 97, 11887-11900.
    [20]. DA MOTTA NETO, J. D. ; Guimaraes, C. R. W.; Alencastro, R. B. Phytochrome Structure: A New Methodological Approach. Int. J. Quantum Chem. 1998, 70, 1145-1157.
    [21]. Debreczeny, M. P.; Sauer K.; Zhou J. H.; Bryant D. A. Comparison of Calculated and Experimentally Resolved Rate Constants for Excitation Energy Transfer in C-Phycocyanin. 1. Monomers. J. Phys. Chem. 1995, 99, 8412-8419.
    [22]. Debreczeny, M. P.; Sauer K.; Zhou J. H.; Bryant D. A. Comparison of Calculated and Experimentally Resolved Rate Constants for Excitation Energy Transfer in C-Phycocyanin. 2. Trimers. J. Phys. Chem. 1995, 99, 8420-8431.
    [23]. Strauss H. M.; Hughes, J.; Schmieder P. Heteronuclear Solution-State NMR Studies of the Chromophore in Cyanobacterial Phytochrome Cph1. Biochemistry. 2005, 44, 8244-8250.
    [24]. MacColl, R. Cyanobacterial Phycobilisomes. J. Struct. Biol. 1998, 124, 311-334.
    [25]. Suter, G. W.; Mazzola, P.; Wendler, J.; Holzwarth, A. R. Fluorescence decay kinetics in phycobilisomes isolated from the bluegreen alga Synechococcus 6301. Biochim. Biophys. Acta. 1984, 766, 269-276.
    [26]. Zazza, C.; Sanna, N.; Aschi, M. Theoretical Study of-84 Phycocyanobilin Chromophore from the Thermophilic Cyanobacterium Synechococcus elongates. J. Phys. Chem. B. 2007, 111, 5596-5601.
    [27]. Pettersen, E. F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C. and Ferrin, T.E. UCSF Chimera-A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605-1612.
    [28]. Sanner, M. F.; Olson, A. J. and Spehner, J.C. Reduced surface: an efficient way to compute molecular surfaces. Biopolymers. 1996, 38, 305-320.
    [1]. Loll, B.; Kern, J.; Saenger, W.; Zouni, A.; Biesiadka, J. Towards complete cofactor arrangement in the 3.0A resolution structure of photosystem Ⅱ. Nature. 2005, 438, 1040-1044.
    [2]. Kamiya, N.; Shen, J. R. Crystal structure of oxygen-evolving Photosystem Ⅱ from Thermosynechococcus vulcanus at 3.7A resolution. Proc. Natl. Acad. Sci. USA. 2003, 100, 98-103.
    [3]. Deisenhofer, J.; Epp, O.; Sinning, I. et al. Crystallographic refinement at 2.3A Resolution and Refined Model of the Photosynthetic Reaction Centre from Rhodopseudomonas viridis. J. Mol. Biol. 1995, 246, 429-457.
    [4]. Ermler U, Fritzsch G, et. al. Structure of the photosynthetic reaction centre from Rhodobacter sphaeroides at 2.65 A resolution: cofactors and protein-cofactor interactions. Structure, 1994, 2, 925-936.
    [5]. Horber, J. K. H.; Gobel, W.; Ogrodnik, A. et al. Ln Antennas and Reaction Centers of Photosynthetic Bacteria. Berlin, Springer-verlag, 1985, pp292
    [6]. Horber, J. K. H.; Gobel, W.; Ogrodnik, A. et al. Time-resolved measurements of fluorescence from reaction centres of Rhodopseudomonas viridis and the effect of menaquinone reduction. FEBS Lett. 1986, 198, 268-272.
    [7]. Nakatsuji H. Cluster expansion of the wavefunction. Excited states. Chem. Phys. Lett. 1978, 59, 362-364.
    [8]. Nakatsuji, H. Cluster expansion of the wavefunction. Electron correlations in ground and excited states by SAC (symmetry-adapted-cluster) and SAC CI theories. Chem. Phys. Lett. 1989, 67, 329-333.
    [9]. Nakatsuji, H. Cluster expansion of the wavefunction. Calculation of electron correlations in ground and excited states by SAC and SAC CI theories, Chem. Phys. Lett. 1989, 67, 334-342.
    [10]. Bauernschmitt R. and Ahlrichs R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem. Phys. Lett. 1996, 256, 454-464.
    [11]. Bauernschmitt R, Haser M, Treutler O, et al. Calculation of excitation energies within time-dependent density functional theory using auxiliary basis set expansions. Chem Phys Lett, 1997, 264, 573-578.
    [12]. Rubio, M.; Merchan, M.; Orti, E. The internal rotational barrier of biphenyl studied with multiconfigurational second-order perturbation theory (CASPT2). Theor. Chim. Acta. 1995, 91, 17-29.
    [13]. Bartlett, R. J. "Coupled-Cluster Theory: An Overview of Recent Developments", in Modern Electronic Structure Theory, Ⅱ, ed. D. Yarkony, World Scientific, 1995.
    [14]. Facelli, J. C. Density Functional Theory Calculations of the Structure and the 15N and 13C Chemical Shifts of Methyl Bacteriopheophorbide a and Bacteriochlorophyll a. J. Phys. Chem. B, 1998, 102, 2111-2116.
    [15]. Parusel, A. B. J.; Grimme, S. A Theoretical Study of the Excited States of Chlorophyll a and Pheophytin a. J. Phys. Chem. B, 2000, 104, 5395-5398.
    [16]. O'Malley, P. J. Density functional predicted geometries and vibrational frequencies of the neutral and anion-radical form of pheophytin: relevance to electron transfer in photosynthetic reaction centres. Chem. Phys. Lett. 2000, 331, 78-82.
    [17]. O'Malley, P. J. The Effect of Oxidation and Reduction of Chlorophyll a on Its Geometry, Vibrational and Spin Density Properties as Revealed by Hybrid Density Functional Methods. J. Am. Chem. Soc. 2000, 122, 7798-7801.
    [18]. Sinnecker, S.; Koch, W. and Lubitz, W. Bacteriochlorophyll a radical cation and anion-calculation of isotropic hyperfine coupling constants by density functional methods. Phys. Chem. Chem. Phys. 2000, 2, 4772-4778.
    [19]. O'Malley, P. J. Density Functional Calculations Modelling the Spin Density Distribution, Hyperfine Couplings, and Hydrogen Bonding Environment of the Ascorbate (Vitamin C) Free Radical. J. Phys. Chem. B, 2001, 105, 11290-11293.
    [20]. Collins, S. J.; O'Malley, P. J. The Effect of Axial Mg Ligation on the Geometry and Spin Density Distribution of Chlorophyll and Bacteriochlorophyll Cation Free Radical Models: A Density Functional Study. J. Am. Chem. Soc. 2001, 123, 11042-11046.
    [21]. Hsu, C. P.; Walla, P. J.; Head-Gordon, M.; Fleming, G. R. The Role of the S1 State of Carotenoids in Photosynthetic Energy Transfer: The Light-Harvesting Complex Ⅱ of Purple Bacteria. J. Phys. Chem. B. 2001, 105, 11016-11025.
    [22]. Sundholm, D. A density-functional-theory study of bacteriochlorophyll b. Phys. Chem. Chem. Phys. 2003, 5, 4265-4271.
    [23]. Hasegawa, J.; Ozeki, Y.; Ohkawa, K. et al. Theoretical Study of the Excited States of Chlorin, Bacteriochlorin, Pheophytin a, and Chlorophyll a by the SAC/SAC-CI Method. J.. Phys. Chem. B. 1998, 102, 1320-1326.
    [24].Sundholm, D. Density functional theory calculations of the visible spectrum of chlorophyll a. Chem. Phys. Lett. 1999, 302, 480-484.
    [25].Sundholm, D. Comparison of the electronic excitation spectra of chlorophyll a and pheophytin a calculated at density functional theory level. Chem. Phys. Lett. 2000, 317, 545-552.
    [26].Sundholm, D. Presented at the 37 th Symposium for Theoretical Chemistry, Bad Herrenalb, 2001.
    [27].Nakatsuji, H.; Hasegawa, J.; Ohkawa, K. Excited states and electron transfer mechanism in the photosynthetic reaction center of Rhodopseudomonas viridis: SAC-CI study. Chem. Phys. Lett. 1998, 296, 499-504.
    [28].Hasegawa, J.; Ohkawa, K.; Nakatsuji, H. Excited States of the Photosynthetic Reaction Center of Rhodopseudomonnas viridis: SAC-CI study. J. Phys. Chem. B. 1998, 102, 10410-10419.
    [29].Zerner, M. C; Lowe, G. H.; Kirchner, R. F. et al. An intermediate neglect of differential overlap technique for spectroscopy of transition-metal complexes. Ferrocene. J. Am. Chem. Soc. 1980,102, 589-599.
    [30].Breton, J. Orientation of the chromophores in the reaction center of Rhodopseudomonas viridis. Comparison of low-temperature linear dichroism spectra with a model derived from X-ray crystallography. Biochim. Biophys. Acta. 1985, 810, 235-245.
    [31].Shuvalov, V. A and Asadov, A. A. Arrangement and interaction of pigment molecules in reaction centers of Rhodopseudomonas viridis. Biochim. Biophys. Acta. 1979, 545, 296-308.
    [32].Reed, D. W. and Bacon, K. Spectral properties of reaction center preparations from rhodopseudomonas spheroids. J. Bio. Chem. 1973, 248, 3041-3045.
    [33].Gaussian 03, Revision B.03, Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian, Inc, Pittsburgh PA, 2003.
    [34].Stewart, J. J. P. Optimization of Parameters for Semi-Empirical Methods I-Method. J. Comp. Chem. 1989,10, 209-220.
    [35].Rappe, K.; Casewit, C. J.; Colwell, K. S. et al. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 1992, 114, 10024-10035.
    [36].Ren, Y. L.; Wan, J.; Liu, J. J. et al. A Theoretical Comparison Study on Vertical Excited States of Free-Base Porphin. Acta Phys. Chim. Sin. 2004, 20, 1089-1092.
    [37]. Thompson, M. A and Zerner, M. C. A Theoretical Examination of the Electronic Structure and Spectroscopy of the Photosynthetic Reaction Center from Rhodopseudomonas viridis. J. Am. Chem. SOC. 1991, 113, 8210-8215.
    [38]. Ren, Y. L.; Cheng, L.; Liu, J. J.; Wan, J. et. al. A theoretical study of electronic excited states of photosynthetic reaction center in Rhodopseudomonas viridis. Science in China Series B-Chemistry, 2006, 47, 88-96.
    [1]. Kupka, H. and Cribb, P. H. Multidimensional Franck-Condon integrals and Duschinsky mixing effects. J. Chem. Phys. 1986. 85, 1303-1315.
    [2]. Sharp, T. E. and Rosenstock, H. M. Franck—Condon Factors for Polyatomic Molecules. J. Chem. Phys. 1964, 41, 3453-3463.
    [3]. Lin, S. H. Rate of Interconversion of Electronic and Vibrational Energy. J. Chem. Phys. 1966, 44, 3759-3767
    [4]. Katriel, J. Second quantization and the general two-centre harmonic oscillator integrals. J. Phys. B. 1970, 3, 1315-1320.
    [5]. Cederbaum, L. S. and Domcke, W. A many-body approach to the vibrational structure in molecular electronic spectra. I. Theory. J. Chem. Phys. 1976, 64, 603-611.
    [6]. Doktorov, E. V.; Malkin, I. A. and Man'ko, V. I. Dynamical symmetry of vibronic transitions in polyatomic molecules and the Franck-Condon principle. J. Mol. Spectrosc. 1977, 64, 302-306.
    [7]. Mukamel, S.; Abe, S.; Islampour, R. Generating function for electronic spectra ofpolyatomic molecules. J. Phys. Chem. 1985, 89, 201-204.
    [8]. Bowman, J. M. The self-consistent-field approach to polyatomic vibrations. Acc. Chem. Res. 1986, 19, 202-208.
    [9]. Ratner, A. and Gerber, R. B. Excited vibrational states of polyatomic molecules: the semiclassical self-consistent field approach. J. Phys. Chem. 1986, 90, 20-30.
    [10]. Rodriguez-Garcia, V.; Yagi, K.; Hirao, K.; Iwata, K.; Hirata, S. Franck-Condon factors based on anharmonic vibrational wave functions of polyatomic molecules. J. Chem. Phys. 2006, 125, 014109-1-9.
    [11]. Bowman, J. M.; Christoffel, K. and Tobin, F. Application of SCF-SI theory to vibrational motion in polyatomic molecules. J. Phys. Chem. 1979, 83, 905-912.
    [12]. Norris, L. S.; Ratner, M. A.; Roitberg, A. E. and Gerber, R. B. Moller-Plesset perturbation theory applied to vibrational problems. J. Chem. Phys. 1996, 105, 11261-11267.
    [13]. Christiansen, O. Vibrational coupled cluster theory. J. Chem. Phys. 2004, 120, 2149-2159.
    [14]. Rudberg, E. and Brinck, T. Computation of Franck-Condon factors for many-atom systems: simulated photoelectron spectra of formic acid isotopologues. Chem. Phys. 2004, 302, 217-228.
    [15]. Liu, J. B.; Devener, B. V. and Anderson, S. L. The effects of vibrational mode and collision energy on the reaction of formaldehyde cation with carbonyl sulfide. J. Chem. Phys. 2002, 117, 8292-8307.
    [16]. Liu, J. B.; Devener, B. V and Anderson, S. L. Vibrational mode and collision energy effects on reaction of H_2CO+ with C_2D_4. J. Chem. Phys. 2004, 121, 11746-11759
    [17]. Liu, J. B.; Song, K; Hase, W. L.; Anderson, S. L. Direct dynamics study of energy transfer and collision-induced dissociation: Effects of impact energy, geometry, and reactant vibrational mode in H2CO+-Ne collisions. J. Chem. Phys. 2003, 119, 3040-3050.
    [18]. Liu, J.; Uselman, B.; Van Devener, B.; Anderson, S. L. Vibrational Mode Effects as a Probe of Inter-channel Coupling in the Reactions of Formaldehyde Cation with Ammonia and Water. J. Phys. Chem. A 2004, 108, 9945-9956
    [19]. Guyon, P. M. and Tronc, M. Predissociations in the dissociative ionization of formaldehyde. Ⅰ. Isotopic effects studied in the dissociation of formaldehyde, formaldehyde-d1, and formaldehyde-d2. J. Chim. Phys. Phys. -Chim. Biol. 1969, 66, 35-40.
    [20]. Guyon, P. M. Predissociations in the dissociative ionization of formaldehyde. Ⅱ. Interpretation of mass spectra. J. Chim. Phys. Phys. -Chim. Biol. 1969, 66, 467-471.
    [21]. Wankenne, H.; Caprace, G. and Momigny. J. Unimolecular decay of metastable ions in formaldehyde. J. Mass. Spectrom. Ion Processes. 1984, 57, 149-158.
    [22]. Matthews, C. S. and Warneck, P. Heats of Formation of CHO+ and C3H by Photoionization. J. Chem. Phys. 1969, 51, 854-855.
    [23]. Warneck, P. Photoionization of methanol and formaldehyde. Z Naturforsch. Teil A, 1971, 26, 2047-2057.
    [24]. Guyon, P. M.; Chupka, W. A. and Berkowitz, J. Photoionization mass spectrometric study of formaldehyde H2CO, HDCO and D2CO. J. Chem. Phys. 1976, 64, 1419-1436.
    [25]. Traeger, J. C. Heat of formation for the formyl cation by photoionization mass spectrometry. Int. J. Mass. Spectrom. Ion. Processes. 1985, 66, 271-282.
    [26]. Liu, J. B.; Kim, H. T. and Anderson, S. L. Multiphoton ionization and photoelectron spectroscopy of formaldehyde via its 3p Rydberg states. J. Chem. Phys. 2001, 114, 9797-9806.
    [27]. Bombach, R.; Dannacher, J.; Stadelmann, J. P. and Vogt, J. The fragmentation of formaldehyde molecular cations: energetics of the dissociation X2CO+((?)2B1)→CO+(2∑+)+X2(1∑g+) (X=H, D). Chem. Phys. Lett. 1980, 76, 429-432.
    [28]. Bombach, R.; Dannacher, J.; Stadelmann, J. P. and Vogt, J. Fragmentation of formaldehyde molecular cations. J. Mass. Spectrom. Ion. Phys. 1981, 40, 275-285.
    [29]. Bombach, R.; Dannacher, J.; Stadelmann, J. P. and Vogt, J. The fragmentation of formaldehyde molecular cations: the lifetime of CD20+(A 2B1). Chem. Phys. Lett. 1981, 77, 399-402.
    [30]. Pires, M. V.; Galloy, C. and Lorquet, J. C. Unimolecular decay paths of electronically excited species. I. The H2CO+ion. J. Chem. Phys. 1978, 69, 3242-3249.
    [31]. Barbier, C.; Galloy, C. and Lorquet, J. C. Unimolecular decay paths of electronically excited species. V. The ~2B_1 state of H_2CO~+. J. Chem. Phys. 1984, 81, 2975-2980.
    [32]. Lorquet, J. C.; Takeuchi. T. Nonadiabatic unimolecular reactions. 4. Isolated state decay in the fragmentation of the formaldehyde cation. J. Phys. Chem. 1990, 94, 2279-2283.
    [33]. Niu, B.; Shirley, D. A. and Bai, Y. High resolution photoelectron spectroscopy and femtosecond intramolecular dynamics of H2CO~+ and D2CO~+. J. Chem. Phys. 1993, 98, 4377-4390.
    [34]. Baker, A. D.; Baker, C.; Brundle, C. R. and Turner, D. W. The electronic structures of methane, ethane, ethylene and formaldehyde studied by high-resolution molecular photoelectron spectroscopy. Intern. J. Mass Spectrom. Ion Phys. 1968, 1, 285-301.
    [35]. Turner, D. W.; Baker, A. D. and Bmndle, C. R. Molecular photoelectron spectroscopy, Wiley, New York, 1970, pp. 135-137.
    [36]. Domcke, W. and Cederbaum, L. S. A many-body approach to the vibrational structure in molecular electronic spectra. Ⅱ. Application to nitrogen, carbon monoxide, and formaldehyde. J. Chem. Phys. 1976, 64, 612-625.
    [37]. K. Takeshita, A theoretical study on the ionic states with analysis of vibrational levels of the photoelectron spectrum of formaldehyde (CH_2O). J. Chem. Phys. 1991, 94, 7259-7265.
    [38]. Atkins, P. W. Physical Chemistry, Sixth Edition, Oxford University Press, 1998.
    [39]. Dushinsky, F. Acta Physicochim. 1937, URSS, 7, 551-566.
    [40]. Peter, F.; Bernath. Spectra of Atoms and Molecules, Oxford, New York, 1995.
    [41]. Gruner, D. and Brumer, P. Efficient evaluation of harmonic polyatomic Franck-Condon factors. Chem. Phys. Lett. 1987, 138, 310-314.
    [42]. Gruner, D. and Brumer, P. Intramolecular vibrational redistribution in alkylbenzenes. Ⅱ. Spectroscopy and dynamics. J. Chem. Phys. 1991, 94, 2862-2872.
    [43]. Dods, J.; Gruner, D. and Brumer, P. A genetic algorithm approach to fitting polyatomic spectra via geometry shifts. Chem. Phys. Lett. 1996, 261, 612-619.
    [44]. Berger, R.; Fischer, C.; Klessinger, M. Calculation of the Vibronic Fine Structure in Electronic Spectra at Higher Temperatures. 1. Benzene and Pyrazine. J. Phys. Chem. A. 1998, 102, 7157-7167.
    [45]. Schumm, S.; Gerhards, M.; Kleinermanns, K. Franck-Condon Simulation of the S1→S0 Spectrum of Phenol. J. Phys. Chem. A. 2000, 104, 10648-10655.
    [46]. Hazra, A.; Nooijen, M. Derivation and efficient implementation of a recursion formula to calculate harmonic Franck-Condon factors for polyatomic molecules. Int. J. Quantum Chem. 2003, 95, 643-657.
    [47]. Kikuchi, H.; Kubo, M.; Watanabe, N.; Suzuki, H. Computational method for calculating multidimensional Franck-Condon factors: Based on Sharp-Rosenstock's method. J. Chem. Phys. 2003, 119, 729-736.
    [48]. Yang, D. S.; Zgierski, M. Z.; Rayner, D. M.; Hackett, P. A.; Martinez, A.; Salahub, D. R.; Roy, P. -N. and Carrington, T. Jr. The structure of Nb30 and Nb30+ determined by pulsed field ionization-zero electron kinetic energy photoelectron spectroscopy and density functional theory. J. Chem. Phys. 1995, 103, 5335-5342.
    [49]. Sutcliffe, B. T.; Tennyson, J. A General Treatment of Vibration-Rotation Coordinates for Triatomic Molecules. Int. J. Quantum Chem. 1991, ⅩⅩⅪⅩ, 183-196.
    [50]. Lehoucq, R.; Sorensen, D. C. and Yang, C. ARPACK User's Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, SIAM, Philadelphia, PA, 1998, http://www.caam.rice.edu/software/ARPACK
    [51]. Gaussian 03, Revision B.03, Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian, Inc, Pittsburgh PA, 2003.
    [52]. Niu, B.; Shirley, D. A.; Bai, Y. and Daymo, E. High-resolution He Iα photoelectron spectroscopy of H2CO and D2CO using supersonic molecular beams. Chem. Phys. Lett. 1993, 201, 212-216.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700