DWI、PWI以及~1H-MRS鉴别脑脓肿与坏死囊变性胶质瘤和脑转移瘤价值的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨DWI、PWI以及~1H-MRS在鉴别脑脓肿与坏死囊变性胶质瘤和脑转移瘤中的价值。
     方法:经手术病理或临床随访证实的12例脑脓肿与16例坏死囊变性胶质瘤和15例坏死囊变性脑转移瘤病例,在手术切除或临床治疗前接受了常规MRI和DWI、PWI以及多体素2D ~1H-MRS检查。DWI检查采用SE-EPI序列,弥散敏感系数(b值)为0s/mm~2和1000s/mm~2。PWI采用GR-EPI序列。多体素2D ~1H-MRS检查采用PRESS法。将DWI、PWI以及多体素2D ~1H-MRS检查的有关分析指标的测量和(或)计算值,输入SPSS10.0版统计软件行统计学处理。
     结果:(1)DWI:脓腔(脓液)在DWI上呈明显的高信号,而胶质瘤和脑转移瘤的坏死囊变区呈明显的低信号。脓腔的平均最小ADC值(0.52±0.12×10~(-3)mm~2/s)与两类肿瘤坏死囊变区的平均最小ADC值(2.90±0.38×10~(-3)mm~2/s和2.53+0.43×10~(-3)mm~2/s)之间的差别有高度显著性(P<0.01)。脑脓肿灶周水肿带的平均最小ADC值(1.75±0.16×10~(-3)mm~2/s)与坏死囊变性胶质瘤瘤周水肿带的平均最小ADC值(1.28±0.24×10~(-3)mm~2/s)之间的差别有高度显著性(P<0.01),但与脑转移瘤瘤周水肿带的平均最小ADC值(1.80±0.17×10~(-3)mm~2/s)之间的差别无显著性(P>0.05)。ADC伪彩图能直观地显示上述有关差别。(2)PWI:脓肿壁的平均最大rrCBV(2.55+0.92)与两类肿瘤瘤体的平均最大rrCBV(4.12±0.96和5.17±1.75)之间的差别有高度显著性(P<0.01)。脑脓肿灶周水肿带的平均最大rrCBV值(0.45±0.20)与坏死囊变性胶质瘤瘤周水肿带的平均最大rrCBV
    
     重庆医科大学硕士毕业论文
    值(l .71士0.56)之间的差别有高度显著性(P<0.01),而与坏死囊变
    性脑转移瘤瘤周水肿带的平均最大rrCBV值(0 .23士0.09)之间的差
    别无显著性(P>0.05)。脓肿壁的平均最大甘MTT值(l .43士0.14)与
    两类肿瘤瘤体的平均最大rrMTT值(l .41士0.15和1.65士0.25)之间的
    差别无显著性(P>0.05)。脑脓肿灶周水肿带的平均最大仃MTT值
     (l .37土0.13)与两类肿瘤瘤周水肿带的平均最大仃MTT值(l .41士0.14
    和1.20士0.18)之间的差别无显著性(P>0.05)。脓肿壁的平均最大
    rrCBF值(2.00士0.49)与两类肿瘤瘤体的平均最大rrCBF值
     (5.17士1.75和4.16士1.31)之间的差别有高度显著性(P<0.01)。
    脑脓肿灶周水肿带的平均最大rrCBF值(0.41士0.23)与坏死囊变性胶
    质瘤瘤周水肿带的平均最大仃CBF值(2.08士0.97)之间的差别有高度
    显著性(P<0.01),而与坏死囊变性脑转移瘤瘤周水肿带的平均最大
    rrCBF值(0 .28士0.08)之间的差别无显著性(P>0.05)。脓肿壁的平
    均最大P’值(0.47士0.21)与两类肿瘤瘤体的平均最大P‘值(l .55士0.40
    和1.69士0.57)之间的差别有高度显著性(P<0.01)。脑脓肿灶周水肿
    带的平均最大P‘值(0.03士0.03)与坏死囊变性胶质瘤瘤周水肿带的
    平均最大P’值(0.51士0.17)之间的差别有高度显著性(P<0.01),而
    与坏死囊变性脑转移瘤瘤周水肿带的平均最大P’值(0 .09士0.14)之
    间的差别无显著性(P>0.05)。rCBV和rMTT伪彩图可直观地显示上
    述有关差别。(3)多体素ZD‘H一MRs:脑脓肿均可探测到AA(0.gppm)
    峰及其他多种氨基酸峰,部分病例并可见无氧代谢产物Ac峰和Suc
    峰;而坏死囊变性胶质瘤和脑转移瘤除少数可见Glu(2.09一2.36ppm)
    峰外,未探测到脑脓肿所具有的上述代谢产物峰。脑脓肿的Cho‘值
    (0.52士0.19)与两类肿瘤的Cho’值(1.69:I= 0.69和1.59士0.46)之间的差别
    有高度显著性(P<0.01)。脑脓肿的NAA’值(0.45士0.21)与两类肿瘤
    
     重庆医科大学硕士毕业论文
    的NAA’值(0.45士0.19和0.47士0.13)之间的差别无显著性(P>0.05)。
    脑脓肿的e:‘值(0.20士0.18)与两类肿瘤的Cr‘值(0.60:I= 0.20和
    0.40士0.13)之间的差别有高度显著性(p<0 .01)。脑脓肿的NA刀Cr值
    (2.49士0.90)与两类肿瘤的NAA/Cr值(1 .03士0.36和1 .70士0.47)之间
    的差别有高度显著性(P<0.01)。脑脓肿的Cho/Cr值(3 .08士1 .47)与
    两类肿瘤的Cho/Cr值(3 .92士1 .48和3 .90士0.82)之间的差别无显著性
     (P>0.05)。脑脓肿的Cho/Cr一n值(0.72士0.27)与两类肿瘤的Cho/Cr-n
    值(2.76士0.73和2.46士0.87)之间的差别具有高度显著性(P<0.01)。脑
    脓肿的NAA/Cho值(0.93士0.41)与两类肿瘤的NAA/Cho值(0.25士0.11
    和0.45士0.n)之间的差别有高度显著性(P<0.01)。
     结论:Dwl、Pwi以及’H一MRS检查在脑脓肿与坏死囊变性胶质
    瘤和脑转移的鉴别诊断中具有重要价值。
Objective To explore the value of DWI, PWI and [H-MRS in differentiation between brain abscess and necrotic or cystic glioma and metastasis.
    Methods The conventional MR imaging, and MR imaging with DWI, PWI and multivoxel 2D 'H-MRS were performed in 43 patients (12 patients with abscess and 26 patients with necrotic or cystic glioma and 15 patients with metastasis) before operations or treatments. DWI was performed using single shot SE-EPI sequence with two different b values (0s/mm and 1000s/mm ). PWI was performed using single shot GR-EPI sequence. Multivoxel !H-MRS was performed using PRESS sequence. The values of which measuring or calculating from DWI, PWI and 1H-MRS data were processed and then statistical analyses were performed with one way anova by using the software of SPSS 10.0.
    Results (1) DWI The cavities (pus) of brain abscesses showed marked hyperintensity in all 12 patients, whereas necrotic or cystic regions of gliomas and metastases demonstrated hypointensity in all 31 patients. The mean minimum ADC value of the cavities of the abscesses (0.52 ±0.12 x10-3 mm2/s) was lower than that of the necrotic or cystic regions of gliomas and metastases(2.90 ± 0.38 X 10-3 mm2/s and 2.53± 0.43X10-3 mm2/s) (P<0.01) . The mean minimum ADC value of the edema regions of the abscesses (1.75 ± 0.16 X 103 mm2/s) was lower
    
    
    
    than that of the peritumoral edema regions of the gliomas (1.28 ± 0.24 X 10-3mm /s) (P<0.01), but was similar with that of the peritumoral edema regions of the metastases (1.80 ± 0.16X 103 mm2/s) (P>0.05).The ADC artificial colour maps could directly reflect all the differences. (2)PWI The maximum rrCBV in the walls of the abscesses (2.55 ± 0.92) was lower than in the bodies of the gliomas and metastases (4.12 ± 0.96 and 4.32 ±1.09) (P<0.01). The maximum rrCBV in the edema regions of the abscesses (0.45 ± 0.20) was lower than in the peritumoral edema regions of gliomas (1.71±0.56) (P<0.01), but was similar with that of the peritumoral edema regions of the metastases (0.23 ± 0.09) (P>0.05). The mean maximum rrMTT was no significant difference between the walls of the abscesses (1.43 ± 0.14) and the bodies of the gliomas and metastases (1.41±0.15 and 1.65 ± 0.25 ) (P>0.05), also was it between the edema regions of the abscesses (1.37 ± 0.13) and peritumoral edema regions of the gliomas and metastases (1.41±0.1
    4 and 1.20 ± 0.18) (P>0.05). The mean maximum rrCBF was lower in the walls of the abscesses (1.78 ± 0.49) than in the bodies of the gliomas and metastases (2.92±1.75 and 2.62±1.31 ) (P<0.01), also was it in the edema regions of the abscesses (0.33 ± 0.23) than the peritumoral edema regions of the gliomas (1.21 ± 0.37) (P<0.01), but no significant difference was found between the edema regions of the abscesses and the peritumoral edema regions of the metastases (0.19 ± 0.08) (P>0.05). The mean maximum P' was lower in the walls of the abscesses (0.47 ± 0.21) than in the bodies of the gliomas and metastases (1.55 ± 0.40 and 1.69 ± 0.57) (P<0.01), also was it in the edema regions of the abscesses (0.03 ± 0.03) than in the peritumoral edema regions of gliomas (0.51±0.17) (P<0.01), but no
    
    
    significant difference was found between the edema regions of the abscesses and the peritumoral edema regions of the metastases (0.09 ± 0.14) (P>0.05). The rCBV and rMTT artificial colour maps could directly reflect all the differences. (3)Multivoxel 2D 1H-MRS The amino acide (AA) resonances at 0.9ppm and other amino acides resonances were detected in all brain abscesses, and the succinate and or acetate resonances were also detected in some of brain abscesses, while all necrotic or cystic gliomas and metastases showed no AA resonances at 0.9ppm and other amino acides resonances and the succinate and acetate resonances except Glu resonances in fewer cases. The NAA/Cr ratio in the abscesses (2.49 ± 0.90) was higher than in the necrotic or cystic gliomas and metastases (1.03 ±0.36 and 1.70 ± 0.47) (P<0.01). No significant difference was found on the Cho/Cr ratio between the absc
引文
[1] Mamelak AN, Mampalam TJ, Obana WG, et al. Improved management of multiple brain abscesses: a combined surgical and medical approach. Neurosurgery, 1995;36:76-86.
    [2] Monco G, Beldarrain G, Canton F, et al. Resolution of a brainstem abscess through antituberculous therapy. Neurology, 1997;49:265-267. Neurology 2003;60:834-836.
    [3] Chamberlain MC, Tsao-Wei DD. Salvage chemotherapy with cyclophosphamide for recurrent, temozolomide-refractory glioblastoma multiforme. Cancer, 2004; 15: 1213-20.
    [4] Quadery FA, Okamoto K. Diffusion-weighted MRI of haemangioblastomas and other cerebellar tumours. Neuroradiology,2003;45:212-9.
    [5] Park SH, Chang KH, Song IC, et al. Diffusion-weighted MRI in cystic or necrotic intracrnial lesions. Neuroradiology,2000;42:716-721.
    [6] Kono K, Inoue Y, Nakayama K, et al. The Role of Diffusion-weighted Imaging in Patients with Brain Tumors. American Journal of Neuroradiology,2001; 22:1081-1088.
    [7] 周正荣,王玖华,刘宜春,等.颅脑肿瘤质子磁共振波谱研究.中国临床神经科学杂志.2002;10:33-36.
    [8] Ebisu T, Tanaka C, Umeda M, et al. Discrimination of brain abscess from necrotic or cystic tumors by diffusion-weighted echo-planar imaging. Magn Reson Imaging, 1996; 14:1113-1116.
    [9] Desprechins B, Stadnik T, Koerts G, et al. Use of diffusion-weighted MR imaging in differential diagnosis between intracerebral necrotic tumors and cerebral abscesses. AJNR Am J Neuroradiol 1999; 20:1252-1257.
    [10] 艾林,戴建平,高培毅,等.弥散加权图像在鉴别脑脓肿与坏死囊变性脑肿瘤中的作用.中华放射学杂志,2001;35:663-665.
    [11] Chan JH, Tsui EY, Chan LF, et al. Discrimination of an infected brain tumor from a cerebral combined MR perfusion and diffusion imaging. Computerized Meddical Imaging and Graphics,2002;26:19-23.
    
    
    [12] Poptani H, Gupta RK, Roy R, et al. Characterization of intracranial mass lesions with in vivo MR spectroscopy. Am J Neuroradiol, 1995; 16:1593-1603.
    [13] Kim SH, Chang KH, Han MH, et al. Brain abscess and brain tumor: discrimination with in vivo H-1 MR spectroscopy. Radiology, 1997;204:239-245.
    [14] 齐志钢,沈天真,陈星容,等.~1HMRS在常见脑肿瘤诊断中的初步应用.中国医学计算机成像,2001;7:217-221.
    [15] Castillo M. Imaging Brain Abscesses with Diffusion-Weighted and Other Sequences. American Journal of Neuroradiology, 1999; 20:1193-1194.
    [16] Sadeghi N, Camby I, Goldman S, et al. Effect of Hydrophilic Components of the Extracellular Matrix on Quantifiable Diffusion-Weighted Imaging of Human Gliomas: Preliminary Results of Correlating Apparent Diffusion Coefficient Values and Hyaluronan Expression Level. AJR, 2003; 181:235-241.
    [17] Rana S, Albayram S, Lin D, et al. Diffusion-Weighted Imaging and Apparent Diffusion Coefficient Maps in a Case of Intracerebral Abscess with Ventricular Extension. American Journal of Neuroradiology, 2002;23:109-112.
    [18] Kamra P, Vatsal DK, Husain M, et al. MRI demonstration of unsuspected intravebtricular rupture of pyogenic cerebral abscess in patients being treated. Neuroradiology,2002;44:114-117.
    [19] Ketelslegers E, Duprez T, Ghariani S, et al. Time dependence of serial diffusion-weighted imaging features in a case of pyogenic brain abscess. J Comput Assist Tomogr, 2000;24:478-481.
    [20] Noguchi K, Watanabe N, Nagayoshi T, et al. Role of diffusion-weighted echo-planar MRI in distinguishing between brain abscess and tumour:a preliminary report. Neuroradiology, 1999;41:171-174.
    [21] Kono K, Inoue Y, Nakayama K, et al. The role of diffusion-weighted imaging in patients with brain tumors. American Journal of Neuroradiology,2001; 22:1081-88.
    [22] Holtas S, Geijer B, Stromblad LG, et al. A ring-enhancing metastasis with central high signal on diffusion-weighted imaging and low apparent diffusion coefficients. Neuroradiology,,2000 ;42:824-7.
    [23] Tung GA, Evangelista P, Rogg JM, et al. Diffusion-weighted MR imaging of rim-enhancing brain masses is markedly decreased water diffusion specific for
    
    brain abscess?.AJR,2001; 177:709-12.
    [24] 彭晴,戴建平,朱明旺,等.MR脑血流灌注成像在星形细胞肿瘤中的应用研究.中华放射学杂志,2003;37(7):636-639.
    [25] 郑斐群,余永强,柏亚,等.MR灌注成像在评价神经胶质瘤肿瘤血管中的价值.中华放射学杂志,2003;37:813-817.
    [26] Henry RG, Vigneron DB, Fischbein NJ, et al. Comparison of Relative Cerebral Blood Volume and Proton Spectroscopy in Patients with Treated Gliomas. American Journal of Neuroradiology, 2000;21:357-366.
    [27] Kremer S, Grand S, Berger F, et al. Dynamic contrast-enhanced MRI: differentiating melanoma and renal carcinoma metastases from high-grade astrocytomas and other metastases. Neuroradiology, 2003;45: 44-49.
    [28] Wetzel S, Cha S, Johnson G, et al. Relative cerebral blood volume measurements in intracranial mass lesions: interobserver and intraobserver reproducibility study.Radiology,2002;224:797-803.
    [29] Cha S, Knopp EA, Johonson G, et al. Intracranial Mass Lesions: Dynamic Contrast-enhanced Susceptibility-weighted Echo-planar Perfusion MR Imaging. Radiology, 2002;223:11-29.
    [30] 张冬,张哉根,卞修武,等.脑星形细胞瘤微血管密度与临床病理的关系.临床与实验病理学杂志,2002;18:295-297.
    [31] Krishnamurthy S, Tong D, McNamara KP, et al. Early carotid endarterectomy after ischemic stroke improves diffusion/perfusion mismatch on magnetic resonance imaging: report of two cases. Neurosurgery,2003;52:238-41.
    [32] Shin JH, Lee HK, Kwun BD, et al. Using Relative Cerebral Blood Flow and Volume to Evaluate the Histopathologic Grade of Cerebral Gliomas: Preliminary Results. AJR, 2002; 179:783-789.
    [33] 钱银峰,余永强,陈俊,等.MR灌注成像对星行胶质细胞瘤肿瘤血管通透性的评价研究.中华放射学杂志,2002;36:733-736.
    [34] Brat DJ, Scheithauer BW, Medina-Flores R, et al. Infiltrative astrocytomas with granular cell features (granular cell astrocytomas): a study of histopathologic features, grading, and outcome. Am J Surg Pathol,2002 Jun;26(6):750-7.
    [35] Shimizu H, Kumabe T, Shirane R, et al. Correlation between Choline level measured by Proton MR spectroscopy and Ki-67 labeling index Gliomas. American Journal of Neuroradiology, 2000;21:659-665.
    
    
    [36] Gupta R, Vatsal D, Husain N, et al. Differentiation of Tuberculous from Pyogenic Brain Abscesses with In Vivo Proton MR Spectroscopy and Magnetization Transfer MR Imaging. American Journal of Neuroradiology,2001;22:1503-1509.
    [37] Gonen O, Moriarty D, Li B, et al. Relapsing-remitting Multiple Sclerosis and Whole-Brain N-Acetylaspartate Measurement: Evidence for Different Clinical Cohorts Initial Observations. Radiology,2002; 225:261-268
    [38] 范国光,吴振华,张伟,等.我国正常成人脑灰质的MRI及~1H MRS定量研究.实用放射学杂志,2001;17:81-85.
    [39] Poptani H, Gupta RK, Jain VK, et al. Cystic intracranial mass lesions: possible role of in vivo MR spectroscopy in its differential diagnosis. Magn Reson Imaging. 1995;13:1019-1029.
    [40] 杜湘珂.核磁共振波谱及其临床应用.谢敬霞主编.核磁共振新技术研究与临床应用.第一版.北京:北京医科大学出版社,2001:445-462.
    [41] Majs C, Alonso J, Aguilera C, et al. Proton magnetic resonance spectroscopy of human brain tumours: assessment of differences between tumour types and its applicability in brain tumour cateorization. Eur Radiol,2003;13:582-591.
    [42] Lai PH, Ho JT, Chen WL, et al. Brain abscess and necrotic brain tumor: discrimination with proton MR spectroscopy and diffusion-weighted imaging. AJNR Am J Neuroradiol,2002;23:1369-77.
    [43] Fan G, Wu Z, Pan S, et al. Quantitative study of MR T1 and T2 relaxation times and 1HMRS in gray matter of normal adult brain. Chin Med J (Engl),2003; 116:400-4.
    [44] Hartmann WM, Herminghaus S, Krings T, et al. Clinical application of proton magnetic resonance spectroscopy in the diagnosis of intracranial mass lesions. Neuroradiology,2002; 44:371-381.
    [45] 齐志刚,沈天真,陈星荣.氢质子磁共振波谱在脑膜瘤诊断中的应用.中国医学计算机成像,2003;9(3):226-230.
    [46] 杜湘珂,冯义廉.医学磁共振波谱是人体功能代谢病生理检查的一种方法.中华放射学杂志,2000;34:333-338.
    [47] Dev R, Gupta RK, Poptani H, et al. Role of in vivo proton magnetic resonance spectroscopy in the diagnosis and management of brain abscesses.
    
    Neurosurgery, 1998;42:37-43.
    [48] Law M, Cha S, Knopp EA, et al. High grade gliomas and solitary metastases: Differentiation by using perfusion and proton spectroscopic MR imaging. Radiology, 2002;222:715-721.
    [49] Demaerel P, Van Hecke P, Van Oostende S, et al. Bacterial metabolism shown by magnetic resonance spectroscopy. Lancet, 1994;344:1234-1235.
    [50] Himmelreich U, Dzendrowskyj T, Allen C, et al. Cryptococcomas Distinguished from Gliomas with MR Spectroscopy: An Experimental Rat and Cell Culture Study. Radiology, 2001;220:122-128.
    [51] Schlemmer HP, Bachert P, Henze M, et al. Differentiation of radiation necrosis from tumor progression using proton magnetic resonance spectroscopy. Neuroradiology,2002;44:216-222.
    [52] Burtscher I, Holtas S. In Vivo Proton MR Spectroscopy of Untreated and Treated Brain Abscesses. American Journal of Neuroradiology, 1999;20:1049-1053.
    [53] Garg M, Gupta R, Husain M, et al. Brain Abscesses: Etiologic Categorization with in Vivo Proton MR Spectroscopy. Radiology,2004;230:519-527.
    [53] Martinez-Pérez I, Moreno , Alonso J, et al. Diagnosis of brain abscess by magnetic resonance spectroscopy. J Neurosurg ,1997;86:708-713.
    [54] Rémy C, Grand S, La ES, et al. ~1H MRS of human brain abscesses in vivo and in vitro. Magn Reson Med, 1995;34:508-514.
    [55] Demaerel P. In vivo localized single-voxel proton magnetic resonance spectroscopy of intracranial tumors. Int J Neuroradiol, 1997;3:94-110.
    [56] 沈训泽,龚向阳综述.细菌性脑脓肿的~1HMRS表现.中国医学影像学杂志,2003:11:148-149.
    [57] Dev R, Gupta RK, Poptani H, et al. Role of in vivo proton magnetic resonance spectroscopy in the diagnosis and management of brain abscesses. Neurosurgery, 1998; 42:37-43.
    [58] Grand S, Passaro G, Ziegler A, et al. Necrotic Tumor versus Brain Abscess: Importance of Amino Acids Detected at ~1H MR Spectroscopy-Initial Results. Radiology, 1999;213:785-793.
    [59] Kendi T, Arikan OK, Koc C. MR spectroscopy in a cervical abscess. Neuroradiology,2003;45:631-3.
    
    
    [60]. Shukla-Dave A, Gupta RK, Roy R, et al. Prospective evaluation of in vivo proton MR spectroscopy in differentiation of similar appearing intracranial cystic lesions. Magn Reson Imaging, 2001; 19:103-110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700