不同孔径二氧化硅气凝胶的制备及其负载药物性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SiO_2气凝胶是一种多功能的介孔材料,由于它具有高孔隙率,高比表面积,低密度等特性使它有广阔的应用前景。多孔结构赋予了SiO_2气凝胶绝热、吸声、催化、吸附等特性,由于它的高比表面积和高孔隙率使它在新型催化剂以及催化剂载体等方面具有广泛的应用,同时它也可以用作冰箱隔热材料,窗户的透明隔热材料,声阻抗藕合材料等,它可以作为研究分析结构动力学的最佳材料,还应用于超级电容材料、集成电路中、新型气体过滤器中等。
     本文研究了通过添加扩孔剂制备不同孔径的SiO_2气凝胶,实现了对制备的二氧化硅气凝胶的孔径调控和优化,并进一步研究了SiO_2气凝胶负载药物的初步性能。
     首先:本课题选用尿素、乌洛托品、聚乙二醇、十二烷基伯胺作为扩孔剂来制备扩孔的二氧化硅气凝胶。制备过程为,用正硅酸乙酯(TEOS)和水为原料,乙醇为溶剂,采用溶胶-凝胶法,通过常压干燥或者超临界干燥,制备出轻质多孔SiO_2气凝胶。扩孔剂是在湿凝胶形成之前被加入,被加入的扩孔剂可以均匀的分散在形成的凝胶网状结构中,通过焙烧把二氧化硅气凝胶中含有的扩孔剂除去,释放了扩孔剂占据的空间,达到了扩孔的目的。
     实验考察了扩孔剂的种类、水解时间、扩孔剂的用量、焙烧温度等因素对二氧化硅气凝胶孔径的影响。其中,乌洛托品的扩孔效果最好;水解时间由12h~60h增加时,制备的二氧化硅气凝胶的孔径先增大后不变,水解时间在24h时二氧化硅气凝胶的孔径达到最大;扩孔剂乌洛托品的用量依次增加时,硅气凝胶的孔径也是逐渐增加的(由于扩孔剂在溶液中的溶解度的影响,加入的扩孔剂的量不能无限增加);在考察的焙烧温度范围内(100℃~500℃),随着焙烧温度的增加,二氧化硅气凝胶的孔径也逐渐增加,温度越高分散在气凝胶孔中的扩孔剂的分解越彻底,释放的空间也就越大,制备出来的二氧化硅气凝胶的孔径也就越大。
     通过实验确立最佳实验条件为:扩孔剂用乌洛托品时扩孔效果最好;水解时间为24h;扩孔剂乌洛托品的用量为0.044mol/mol TEOS;焙烧温度为500℃,最终制备的二氧化硅气凝胶的孔径达14.67nm。
     其次,利用上述过程制备不同孔径的二氧化硅气凝胶负载药物洛伐他订。
     利用超临界技术,通过吸附、结晶过程实现扩孔二氧化硅气凝胶对药物洛伐他订的负载。采用FTIR、TG、N2吸附-脱附和HPLC等分析方法对负载过洛伐他订的硅气凝胶样品进行了表征。结果表明:用硅气凝胶负载过药物的样品既有硅气凝胶的骨架结构又有药物的官能团,说明硅气凝胶负载上了部分洛伐他订药物;BET表征结果显示负载过药物的二氧化硅气凝胶的吸附量比载药之前二氧化硅气凝胶的吸附量有了明显的降低,说明有一部分药物会结晶在硅气凝胶的孔道里面,使二氧化硅气凝胶的孔容变小,吸附量降低;热重数据显示硅气凝胶对洛伐他订有一定的负载量,负载量在9.0%(wt%)左右;用HPLC测定样品的释放性显示经过硅气凝胶负载过的洛伐他订的样品有一定的缓释效果,并且硅气凝胶的负载量随着硅气凝胶孔径的增加而升高。
     最后,通过实验我们成功制备了不同孔径的二氧化硅气凝胶,并且掌握了通过改变制备过程中一些因素来控制所形成的二氧化硅气凝胶的孔径;在载药实验中,利用超临界流体快速膨胀法制备了硅气凝胶负载药物洛伐他订的样品,由硅气凝胶负载的洛伐他订样品的释放曲线和纯的洛伐他订样品的释放曲线对比可知,在释放的前期,经过硅气凝胶负载的药物有一定的缓释效果。
Silica aerogel is one kind of Mutifunction mesoporous materials,it has a lot of characteristics andapplications because silica aerogel has porosity、 the lowest density、larger surface area. Therefore, silicaaerogel has a lot of characteristics and applications, such as thermal insulation, sound absorptive, catalysis,adsorptive property and so on. Silica aerogel has a wide range of applications in the new catalysts andcatalytic carrier Because of its high surface area and high porosity, it can be used as a transparent insulatingmaterial, refrigerator insulation, and acoustic impedance coupled materials. As a study of fractal structuraldynamics of the best materials used in integrated circuits, also super capacitor materials, new gas filter, andso has multiple uses.
     In this paper, the silica aerogel of different diameter be prepared by adding pore expanding,and findsome factors which control and optimization the the pore of silica aerogel.then, further studies the differentdiameter of silica aerogel as carrier and Lovastatin as target drug preliminary performance.
     First, hexamethylene tetramine、urea、 polyethylene and dodecane amine as pore expanding,usingtetraethoxysilane (TEOS) as the silica source,Silica aerogels were prepared via sol-gel method and ambientdrying process,the pore expanding be added in alcohol gel form before. Factors which influence the poresize of silica aerogels,uch as hydrolysis time and the different roasting temperature wereinvestigated.FTIR、SEM、TG and N2Adsorption/Desorption were used to analysize and characterize theaerogels.Results show that the sample with hexamethylene tetramine keep skeleton structure of silicaaerogels、good dispersivity、good thermal stability and larger pore size;Then, hexamethylene tetramine aspore expanding when the pore size of silica aerogels was bigger than another,he pore size of silica aerogelsno longer get bigger at24h around when hydrolysis time increase from12h to60h,and the pore size ofsamples was increase with the increase of the mount of hexamethylene tetramine and roasting temperatureimprove.
     The best experimental conditions:The pore size of samples were biggest use hexamethylene tetramineas expanding agent;Hydrolysis time for24h;The amount of hexamethylene tetramine0.044mol/mol TEOS;Roasting temperature for500℃.The pore size of silica aerogels was14.67nm.
     Secondly,silica aerogels were carried with Lovastatin by adsorption and crystallization in supercriticalCO2.Factors,difference pore size which influence the loading of silica aerogels.FTIR、TG and N2Adsorption/Desorption were used to analysize and characterize the samples.Results show that the loadedsamples both skeleton structure of silica aerogels and skeleton structure of Lovastatin、the absolute quantityof loaded samples were smaller than absolute quantity of silica demonstrate that a little of Lovastatincrystallize in silicas’ pore by BET、the loading rate of silica aerogels up to9.0%(wt%) by TG,the loadingof silica was increase with the improve the pore size of silica.
     Finally, the prepartion silica aerogel of different diameter,and change some factors which during thepreparation process to control the pore size of silica aerogel formation;In the drug trial,by the rapidexpansion of supercritical solution to prepartion the sample of silica load Lovastatin.Compared the releasecurve of the silica aerogel load Lovastatin and the Lovastatin,it reveal that the sample of silica aerogel loadLovastatin contributing to controlled-release.
引文
[1]袁金芳,张锡兰,高清雨.温度及pH敏感性共聚物水凝胶的合成及其对辅酶A的控制释放[J],功能高分子学报,2004,17(4):591-594.
    [2]胡晖,刘郁杨,范晓东,黄怡,温度及pH敏感的β-环糊精聚合物微球的合成及药物控制释放研究[J],高分子学报,,2005,3:357-312.
    [3]巨晓洁,褚良银,李艳.温敏型智能化靶向式药物载体研究(II)—具有温敏开关的微囊[J],生物医学工程学杂志,2004,21(6):999-1002.
    [4]秦建民,张阳德,王红阳,吴孟超.纳米药物在疾病治疗中的应用及其进展[J],中国现代医学杂志,2003,13(11):49-52.
    [5]曾淼,刘敬肖,史非等.医用SiO2气凝胶/壳聚糖复合材料的制备[J].大连轻工业学报,2006,6,25(2):121-124.
    [6]王亭杰,堤敦司,金涌.超临界流体快速膨胀用于细颗粒包覆技术[J].化工进展,2000,4:42-47.
    [7]李珠柱,文利雄,刘凡等.新型阿维菌素纳米控释剂的制备及性能研究[J].农药学学报,2005,7(3):275-281.
    [8] Kenji Mishima, Biodegradable particle formation for drug and gene delivery using supercritical fluidand dense gas, Advanced Drug Delivery Reviews,2007,11.
    [9] A. Blazing, M.C. This, Rapid expansion of cellulose triacetate from ethyl acetate solutions,J.Appl.Polym.Sci.95(2005):290–299.
    [10]贺文智,姜兆华,索全伶.超临界流体技术在制备药物输送系统中的应用[J].化学通报,2003,1:27-32.
    [11]王亭杰,堤敦司,金涌.超临界流体快速膨胀用于细颗粒包裹技术[J].化工进展,2000,4:42-47.
    [12]陈鸿雁,蔡建国,邓修.超临界流体溶液快速膨胀法制备灰黄霉素微细颗粒[J].化工学报,2001,52(1):56-60.
    [13]陈兴权,赵天生.快速膨胀超临界溶液法制备a-细辛醚颗粒研究[J].化学工程,2001,29(2):12-14.
    [14]蒋斌波,陈纪忠,阳永荣. RESS法制备超细萘粒子[J],高校化学工程学报,2002,16(3):321-323.
    [15]李湘南.超临界流体技术在制药工业中的应用[J],适用技术,2002,10:24-26.
    [16]胡国勤,陈鸿雁,蔡建国,等.超临界溶液快速膨胀制备灰黄霉素超细微粒[J].华东理工大学学报,2003,29(6):557-561.
    [17]徐超,周斌,解德滨等,超低密度SiO2气凝胶快速制备的新方法[J],材料导报,2006,20(6):105-110.
    [18] Stolarski, M, Walendziewski, J, Steininger, M, Pnia, B,Synthesis and characteristic of silica aerogels.Applied Catalysis A: General,1999,177,139-148.
    [19] Smirnova, I., Arlt, W.,Synthesis of silica aerogel: influence of the supercritical CO2on the sol-gelprocess. Journal of Sol-Gel Science and Technology,2003,28:175-184.
    [20] Dunn, B.C., Cole, P., Covington, D., Webster, M.C., Pugmire, R.J., Ernst, R.D., Eyring, E.M., Shah,N., Huffman, G.P. Silica aerogel supported catalysts for Fischer-Tropsch synthesis. Applied CatalysisA: General,2005,278:233-238.
    [21]张秀华,赵海雷,何方等,SiO2气凝胶的常压制备与表面改性[J],北京科技大学学报,2006,28:157-162.
    [22]刘涛,王慧,曾令可等,SiO2纳米孔超级绝热材料的研究现状[J],陶瓷,2007,7:45-49.
    [23]周小春,魏坤,李永绣,SiO2气凝胶常压合成新工艺[J],《新技术新工艺》·现代表面技术研究与应用,2005,5:66-68.
    [24]张志华,倪星元,陈世文等,SiO2气凝胶常压制备、表面结构与吸附性质[J],原子能科学技术,2005,39(6):498-502.
    [25]陈一民,晓斌,赵大方等,常压制备玻璃基疏水SiO2气凝胶[J],化工新型材料,2005,33(8):21-23.
    [26]徐超,周斌,吴广明等,超低密度SiO2气凝胶的制备及成型研究[J],强激光与粒子束,2005,17(11):1674-1678.
    [27]张勇,陈一民,谢凯,常压干燥制备SiO2气凝胶的研究进展[J],材料导报,2004,18:37-43.
    [28]张勇,陈一民,李华等,常压干燥制备疏水SiO2气凝胶[J],复合材料原材料,2004,13:412-416.
    [29]马建华,孟祥建,孙璟兰等,常压制备SiO2气凝胶薄膜[J],红外与毫米波学报,2004,23(6):465-468.
    [30]刘朝辉,苏勋家,侯根良等,超级绝热材料SiO2气凝胶的制备及应用[J],化工新型材料,2005,33(12):21-23.
    [31]杨大祥,冯坚,周新贵等,低温下溶胶-凝胶法制备氧化硅气凝胶[J],稀有金属材料与工程,2004,33(3):196-199.
    [32]刘世明,曾令可,王慧,非超临界干燥法制备气凝胶绝热材料[J],陶瓷,2007,8:25-35
    [33]甘礼华,陈龙武,张宇星,非超临界干燥法制备SiO2气凝胶[J],物理化学学报,2003,19(6):504-508.
    [34]林高用,张栋,卢斌,非超临界干燥法制备块状SiO2气凝胶[J],中南大学学报,2006,37(6):1117-1121.
    [35]史非,王立久,环境气压干燥制备多孔SiO2气凝胶的研究进展[J],材料导报,2005,19(4),:20-23.
    [36]陈龙武,张宇星,甘礼华等,气凝胶的非超临界干燥制备技术[J],实验室研究与探索,2001,20(6):54-57.
    [37]陈龙武,张宇星,甘礼华.气凝胶的非超临界干燥制备技术[J],实验室研究与探索,2001,20(6):54-58.
    [38]徐超,周斌,解德滨等,超低密度SiO2气凝胶快速制备的新方法[J],材料导报,2006,20(6):105-110.
    [39]沈军,王珏,吴翔,二氧化硅气凝胶的纳米结构与分形特性[J],同济大学学报,1996,24(2):76-81.
    [40]何飞,赫晓东,杨丽丽等,二氧化硅气凝胶的制备方法研究[J],材料导报,2005,19:30-33.
    [41]刘朝辉,苏勋家,侯根良等,二氧化硅气凝胶的制备和表征[J],无机盐工业,2006,38(7):25-27.
    [42]同小刚,王芬,冯海涛等,二氧化硅气凝胶的制备和应用研究[J],材料导报,2006,20(Ⅵ):24-33.
    [43]郝利峰,高志华,阴丽华等,气凝胶的制备及其在催化领域的应用[J],天然气化工,2005,30:49-53.
    [44]秦国彤,李文萃,郭树才,气凝胶结构控制[J],功能材料,2000,31(1):26-32.
    [45]秦国彤,门薇薇,魏微等,气凝胶研究进展[J],材料科学与工程学报,2005,23(2):293-296.
    [46]刘继来,侯占忠,孙明辉,气凝胶应用研究进展[J],河北北方学院报,2007,23(2):20-22.
    [47]武志刚,赵永祥,许临萍等,气凝胶制备进展及其在催化方面的应用[J],化学研究与应用,2003,15(1):17-20.
    [48]吴俊升,李晓刚,杜伟等,纳米多孔气凝胶材料在催化和吸附领域的应用[J],功能材料,2004,增(35):2682-2688.
    [49]万小波,任洪波,张林,二氧化硅气凝胶杂化改性研究[J],硅酸盐通报,2006,25(4):80-82.
    [50]任洪波,万小波,张林等,改性SiO2气凝胶制备及其在ICF实验中的应用[J],强激光与粒子束,2006,18(8):45-51.
    [51]李文翠,郭树才,溶胶-凝胶技术在新型纳米气凝胶合成中的应用[J],化工进展,2001,2:34-36.
    [52]刘朝辉,苏勋家,侯根良等,SiO2气凝胶的改性研究及在航空航天领域的应用[J],飞航导弹,2006,10:61-64.
    [53]邓忠生,黄耀东,魏建东等,二氧化硅气凝胶的表面修饰研究[J],功能材料,2001,10:1220-1223.
    [54]冯乙巳,张立德,介孔二氧化硅干凝胶和气凝胶纳米复合材料的研究进展[J],功能材料,2003,6(34):619-625.
    [55] Abhijit, A.D, Patravale, V.B,Current strategies for engineering drug nanoparticles. Current Opinion inColloid&Interface Science,2004,9:222-235.
    [56] Jung, J., Perrut, M. Particle design using supercritical fluids: literature and patent survey. The Journalof Supercritical Fluids,2001,20:179-219.
    [57]李湘南.超临界流体技术在制药工业中的应用[J],适用技术,2002,10:24-26.
    [58]蒋思媛,赵亚平,于文利,等.超临界快速膨胀法制备植物甾醇超细微粒[J].精细化工,2004,21(2):129-132.
    [59] Smirnova I, Mamic J, Arlt W, Adsorption of drugs on silica aerogels[J]. Langmuir,2003,19:8521–8525.
    [60] Smirnova I,Suttiruengwong S, Arlt W,Feasibility study of hydrophilic and hydrophobic silica aerogelsas drug delivery systems[J].Non-Crystalline Solids,2004,350:54–60.
    [61] Gorle B S K, Smirnova I, Dragan I M, Dragan S, Arlt W, Crystallization under supercritical solutionsin aerogels[J]. Supercritical Fluids,2008,44:78–84.
    [62] Gorlea B S K, Smirnova I,Arlt W,Adsorptive crystallization of benzoic acid in aerogels fromsupercritical solutions[J], Supercritical Fluids,2010,52:249–257.
    [63]银建中,刘润杰,魏炜等.沙棘籽油在超临界CO2中溶解度的测定和关联[J].高等化学工程学报,2006,20(1):126–129.
    [64] P. Sutra, P. Berry, J. Saurian, C. Domingo, Influence of expansion condition son the characteristics ofcholesterol crystal analyzed by statistical design,J.Supercrit.Fluids31(2004)313–322.
    [65] Silvia De Dea,Dominic Graziani,David R. Miller, Robert E. Continetti, Growth of magnetic thin filmsusing CO2RESS expansions, J.of Supercritical Fluids,2006,11.
    [66] E.Reverchon, R.Adami, Nanomaterials and supercritical fluids, J.Supercrit.Fluids,2006,37(1).
    [67] I. Khalil, D.R. Miller, The free-jet expansion of supercritical CO2from a capillary source, in: M.Capitally (Ed.), Proceedings of the24th International Symposium on Rarefied Gas Dynamics,Am.Inst.Phys.Conf.Proc.762(2005)343.
    [68] Jintao Huang, T. Moriyoshi, Fabrication offline powders by RESS with a clearance nozzle, JoveSupercritical Fluids37(2006):292–297.
    [69] J. Huang, T. Moriyoshi, Synthesis of pharmaceutical microcapsules by rapid expansion of supercriticalsolutions, in: Proceedings of the10th Asian Pacific Confederation of Chemical Engineering Congress,Kitakyushu, October17–21,2004,1H-04.
    [70] Ranjit Thakur, Ram B. Gupta, Rapid expansion of supercritical solution with solid cosolvent(RESS-SC) process: Formation of2-aminobenzoic acid nanoparticle, J. of Supercritical Fluids37(2006):307–315.
    [71] R. Thakur, R.B. Gupta, Rapid expansion of supercritical solution with solid co-solvent (RESS-SC)process: formation of griseofulvin nanoparticles, Ind. Eng. Chem. Res.44(19)(2005):7380–7387.
    [72] Ozge Guney-Altay,Natalia Levit,Dmitry Pestov,Gary Tepper, Precipitation of nanocompositeparticles from a multi-component rapidly expanding supercritical solution, J. of Supercritical Fluids,37(2006):229–241.
    [73]王亭杰,堤敦司,金涌.超临界流体快速膨胀用于细颗粒包裹技术[J].化工进展,2000,4:42-47.
    [74]蒲敏,周根树,郑茂盛等,硅气凝胶超细粉的室温制备及结构研究[J].西安交通大学学报,1998,1,32(1):85-87.
    [75]隋淑娟,邱坚,李坚,木材-纳米SiO2气凝胶复合材料结构的FTIR表征[J],东北林业大学学报,2006,34(5):49-50.
    [76]倪星元,张志华,黄耀东等,纳米多孔SiO2气凝胶的常压制备及应用[J],功能材料,2004,增(35):2761-2763.
    [77]井强山,刘朋,纳米孔超级绝热材料硅气凝胶制备与改性[J],许昌学院学报,2004,23(5):33-37.
    [78]冯乙巳,张立德.介孔二氧化硅干凝胶和气凝胶纳米复合材料的研究进展[J],功能材料,2003,6(34):619-621.
    [79]秦国彤,李文翠,郭树才.气凝胶结构控制[J],功能材料,2000,1(31):26-29.
    [80] Jung. Control of surface residual-OH polar bonds in SiO2aerogel film by silylation thin solid films [J],nature,2002:503-507.
    [81] Stolarski, M, Walendziewski, J., Steininger, M., Pnia, B.,Synthesis and characteristic of silicaaerogels. Applied Catalysis A: General,1999,177:139-148.
    [82] Smirnova, I., Arlt, W.,Synthesis of silica aerogel: influence of the supercritical CO2on the sol-gelprocess. Journal of Sol-Gel Science and Technology,2003:28,175-184.
    [83]陈龙武,甘礼华,侯秀红,SiO2气凝胶的非超临界干燥法制备及其形成过程[J],物理化学学报2003,19(9):819-823.
    [84]贾云砚,甘礼华,王玉栋等,SiO2气凝胶小球的制备及表征[J],化工科技,2004,12(6):6-9.
    [85]何方,赵海雷,曲选辉等,硅石气凝胶的吸水性能[J],北京科技大学学报,2007,29(3):302-305.
    [86]李伟,王霞瑜,张平等,快速溶胶-凝胶法制备SiO2气凝胶的研究[J],湘潭大学自然科学学报,2002,24(1):64-67.
    [87]沈军,王珏,甘礼华.溶胶-凝胶法制备SiO2气凝胶及其特性研究[J].无机材料学报,1995,10(1):69.
    [88]王兴利,邱国民,张克铮,SiO2气凝胶胶稳定性的正交试验[J].辽宁石油化工大学学报,2006,3,26(1):30-33.
    [89]朱文霞,王水菊,张棋河等.球形微孔二氧化硅的合成与表征[J].厦门大学学报,2004,1,43(1):77-79.
    [90]史非,王立久.环境气压干燥新工艺快速合成SiO2气凝胶研究[J].大连理工大学学报,2006,3,46(2):241-245.
    [91]史非,王立久等.纳米介孔SiO2气凝胶的常压干燥制备及表征[J].硅酸盐学报,2005,8,33(8):963-974.
    [92]陈龙武,甘礼花.气凝胶[J].化学通报,1997,8:21-27.
    [93]何飞,赫晓东等.正交优化二氧化硅干凝胶反应配比的研究[J].材料工程,2006,1:72-78.
    [94]隋学叶,刘世权,程新.正硅酸乙酯的水解缩聚反应及多孔SiO2粉体的制备[J].中国粉体技术,2006,3:35-39.
    [95]曲绪平,王兆伦,陈娅如等.正硅酸乙酯水解-聚合的工艺参数研究及纳米SiO2的合成[J].玻璃与搪瓷,2005,6,33(3):19-23.
    [96]陈一民,谢凯,赵大方等,SiO2气凝胶制备及疏水改性研究[J].宇航材料工艺,2006,1:30-33.
    [97]赵大方,陈一民,洪晓斌等,疏水SiO2气凝胶的低成本制备[J],硅酸盐学报,2004,32(5):548-552.
    [98]任洪波,万小波,徐嘉靖等,疏水SiO2气凝胶制备及其分形结构研究[J],功能材料,2006,增(37):834-836.
    [99]张志华,倪星元,沈军等,疏水SiO2气凝胶的常压制备及吸附性能研究[J],同济大学学报,2005,33(12):1641-1645.
    [100]同小刚,王芬,冯海涛,疏水型二氧化硅气凝胶薄膜的制备[J],中国陶瓷,2006,42(3):29-31.
    [101]李云辉,张文娟,张伟娜等,疏水性二氧化硅气凝胶性能表征[J],材料科学与工艺,2007,15(3):358-365.
    [102]倪星元,张志华,沈军等,高比表面的SiO2纳米多孔气凝胶制备及表面特性研究[C],第六届全国表面工程学术会议,2006,8:518-521.
    [103] Van M.J, Han A.B, Drying of silica aerogel with supercritical carbon dioxide [J].Non-CrystallineSolids,1995(186):78-82.
    [104] B.S.K.Gorle, I.Smirnova, M.Dragan, S.Dragan, Crystallization under supercritical conditions inaerogels, the journal of supercritical Fluids,2007,19.
    [105] Nuray Yildiz, Sebnem Tuna, Onur Duker, Micronization of salicylic acid and taxi (palliate rapidexpansion off supercritical fluids, The Journal of Supercritical Fluids,2007,41(3):440-451.
    [106] Markus Weber and Mark C.Thies, A simplified and generalized model for the rapid expansion ofsupercritical solutions, Thee Journal of Supercritical Fluids,2007,40(3):402-419.
    [107] Michael Turk, Gerd Upper, Formation of composite drug-polymer by co-precipitation during therapid expansion of supercritical fluids, Thee Journal of Supercritical Fluids,2006,39(2):253-263
    [108] AmpornSane, MarkC.Thies, Effect of material properties and processing condition son of RESS poly(L-lactate), The Journal of Supercritical Fluids,2007,40:134–143.
    [109] A. Sane, M.C. Thies, The formation of fluorinated tetraphenylporphyrin nanoparticles via rapidexpansion processes: RESS vs. RESOLV, J. Phys.Chem. B109(2005)19688–19695.
    [110] Nuray Yildiz, Sebnem Tuna, Onur Duker, Micronization of salicylic acid and taxi (palliate rapidexpansion off supercritical fluids, The Journal of Supercritical Fluids,2007,41(3):440-451.
    [111]张伟娜,李云辉,王庆伟等.二氧化硅气凝胶的表面改性及热稳定性的研究[J].吉林师范大学学报,2009,2(1):67–69.
    [112]张小勇,杨浩,陈蔚萍等,六亚甲基四胺对硅气凝胶的扩孔研究[J],河南大学学报,2012,42(1):37-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700