哀牢山中山湿性常绿阔叶林空心树分配格局和木质残体呼吸作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空心树(Hollow-bearing tree)是森林生态系统的重要组成部分,它能为树洞依赖动物提供食物、栖息地、避难所、哺育地等,在维持森林动物群落的物种多样性方面起着重要作用。本研究通过在云南哀牢山国家级自然保护区徐家坝地区建立了有代表性的空心树森林调查样地6公顷,调查分析了哀牢山中山湿性常绿阔叶林空心树的数量、径级分配、树种组成以及树洞的丰度及组成,阐述了哀牢山中山湿性常绿阔叶林空心树分配规律。分别在雨季和干季采集空心树木质残体对其呼吸速率进行了测定,并比较了木质残体呼吸速率与木质密度和含水量之间的相关关系,分析了呼吸速率对温度的敏感性,并对木质残体呼吸速率与含水量、木质密度和气温进行了多元线性回归,以确定空心树木质残体分解的影响因子和限制因子。研究结果如下:
     1.哀牢山中山湿性常绿阔叶林空心树密度平均为92.8±11.9株/公顷,样地间存在较大的变异。活木和枯立空心树密度和形成空心树的比例都有显著差异(P<0.05),活木和枯立木空心树密度分别为82.2±11.8株/公顷和10.7±1.1株/公顷,空心枯立木的比例(18.0±3.2%)显著高于活木(7.7±0.5)(P<0.05)。活木和枯立空心树的径级分配以20≤DBH<40 cm级别的最多(28.4%),80≤DBH<100 cm级别的最少(3.2%),随着胸径的增大,活木空心树所占比例也显著增大。枯立空心树径级分配也以20≤DBH<40 cm级别的最多(28.4%),显著高于其它几个径级的(P <0.05)。空心树物种组成物种丰富,分属于15科34种,空心树分别占科和种层次的83.3%和68.0%。空心树数量科层次上以壳斗科(Fagaceae)、山茶科(Theaceae)、樟科(Lauraceae)和木兰科(Magnoliaceae)为主,与该区中山湿性常绿阔叶林优势科相一致。空心树数量种层次上以腾冲栲(Castanopsis wattii)、木果柯(Lithocarpus xylocarpus)、硬壳柯(Lithocarpus hancei)、红花木莲(Manglietia insignis)、滇润楠(Machilus yunnanensis)、南洋木荷(Schima noronhae)和舟柄茶(Hartia sinensis)为主。
     2.哀牢山中山湿性常绿阔叶林中树洞分配不均匀,平均密度为140.3±19.2个/公顷。树洞分配以树干中部洞口和树干基部洞口最多,这两种类型的树洞数量都显著高于树干裂缝、侧枝中部洞口、侧枝顶部洞口和树干顶部洞口(P<0.05)。树洞洞口直径的级别分配以5≤d<15 cm级别的最多,这个级别的树洞数量显著高于其它三个级别的(P<0.05),各样地均表现为随洞口直径增大,树洞密度明显减少。
     3.空心树树干内层和洞内木质残体的密度显著高于树干表层的(P<0.05),而树干内层和洞内木质残体的密度之间差异不显著(P >0.05)。空心树树干表层木质残体雨季呼吸速率显著高于树干内层和洞内的(P<0.05),在干季,树干表层、树干内层和洞内木质残体呼吸速率之间差异不显著(P>0.05)。含水量和呼吸速率存在季节差异,在树干表层和洞内雨季的含水量和呼吸速率显著高于干季的(P<0.05),而在树干内层季节差异不显著(P>0.05)。空心树三个部位木质残体密度与呼吸速率在雨季显著负相关(P<0.01),三个部位的含水量和呼吸速率在雨季和干季都显著正相关(P<0.01);木质残体的温度系数(Q10)大小顺序为:洞内(2.08)>树干表层(2.01)>树干内层(1.73),树洞内部木质残体对温度响应最敏感。木质含水量、密度和气温的综合作用对三个部位的空心树木质残体呼吸速率的影响显著(P<0.001)。哀牢山干季空心树木质残体较低的含水量和全年温凉的气候条件可能成为该区中山湿性常绿阔叶林空心树木质残体分解重要的限制因子。
Hollow-bearing tree is an essential component of forest ecosystems, which plays a key role in animal biodiversity of forest fauna in forest ecosystem. Many forest animals use cavities of hollow-bearing trees for nesting, resting, habitat and feeding sites. The formation of hollow-bearing tree is the result of a series of abiotic and biotic events after the wounding of trunk and branch tissue. Six representative plots (6 ha.) in Xujiaba of Ailao Mountains national nature reserve were chosen. The abundance, DBH (Diameter at Breast Height) class distribution and species composition of hollow-bearing tree, the abundance and composition of cavity were investigated. The distribution pattern of hollow-bearing tree in middle mountain moist evergreen broad-leaved forest of Ailao Mountains was analyzed. The woody debris of hollow-bearing tree was selected and its respiration rate was measured during the rainy season and the dry season in the middle mountain moist evergreen broad-leaved forest of Ailao Mountains, SW China. Furthermore, the correlations among respiration rate, wood density and moisture were analyzed and temperature sensitivity of the respiration rate was simulated. We regressed linearly respiration with wood density, moisture and air temperature in order to confirm the influencing and limiting factors of respiration of woody debris of hollow-bearing tree. The results were as following:
     1. The average density of hollow-bearing tree was 92.8±11.9 stems·hm-2 and there existed notable variation for different plots. The density and proportion of hollow-bearing tree differed significantly for living trees and standing dead wood (P<0.05). The density of living and standing dead hollow-bearing tree were 82.2±11.8 stems·hm-2 and 10.7±1.1 stems·hm-2 respectively. The proportion of hollow-bearing tree for standing dead wood (18.0±3.2%) was higher significantly than living trees (7.7±0.5) (P<0.05). The DBH class for the living hollow-bearing tree distributed mostly in the class (20≤DBH<40 cm) (28.4%) and least in the class (80≤DBH<100 cm) (3.2%). With the increasing of DBH, the proportion of the living hollow-bearing tree increased markedly. The DBH class for the standing dead hollow-bearing tree also distributed mostly in the class (20≤DBH<40 cm) (46.9%), which was higher significantly than other classes (P<0.05). The species composition of hollow-bearing tree was very abundant. The hollow-bearing tree belonged to 15 families and 34 tree species, which accounted for 83.3% of all families and 68.0% of tree species. The families of hollow-bearing tree distributed in Fagaceae, Theaceae, Lauraceae and Magnoliaceae that were dominating families. The species of hollow-bearing tree distributed mainly in Castanopsis wattii、Lithocarpus xylocarpus、Lithocarpus hancei、Manglietia insignis、Machilus yunnanensis、Schima noronhae and Hartia sinensis.
     2. The cavities distributed unevenly with their average density 140.3±19.2 hollows·hm-2. There were the most cavities for the type of Trunk middle and the type of Butt Hollow secondly. The cavities for the type of Trunk middle and the type of Butt Hollow were more significantly than the other four types (P<0.05). There was the most cavities for the entrance size class of 5≤d<15 cm, which was more than the other three classes (P<0.05). With the entrance size increasing, the density of cavities decreased dramatically.
     3. The density of woody debris of inner layer of trunk and hollow was higher significantly than surface layer of trunk of hollow-bearing tree (P<0.05), but the difference of density between inner layer of trunk and hollow was not significant (P >0.05). The respiration rate of surface layer of trunk during rainy season was significantly higher than that of inner layer of trunk and hollow (P<0.05), but the difference of respiration rate during dry season was not significant for three positions (P>0.05). The wood moisture and respiration rate of the surface layer, the inner layer and the hollow were higher during the rainy season than the dry season, and the difference was significant (P<0.01) for the surface layer and hollow,but not significant (P>0.05) for the inner layer. There was negative correlation between wood density and respiration rate, and the correlations for three different positions during rainy season were significant (P<0.01). There was positive correlation between wood moisture and respiration rate for the three different positions during both rainy season and dry season. The temperature coefficient (Q10) for three positions ranks as: Hollow (2.08) > Surface layer (2.01)> Inner layer (1.73), which shows wood debris of hollow was the most sensitive to temperature. The respiration rate of woody debris of hollow-bearing tree was significantly due to the integrative effect of wood moisture, density and air temperature (P<0.001). The low wood moisture during dry season and the cold climate during whole year were key limiting factors for the decomposition of woody debris of hollow-bearing tree in the middle mountain moist evergreen broad-leaved forest of Ailao Mountains, SW China.
引文
邓纯章,侯建萍,李寿昌,赵恒康,付昀.1993.哀牢山北段主要森林类型凋落物的研究.植物生态学与地植物学学报,17(4):364-370.
    冯光钦,古锦汉,罗振炯,梁亦肖,黄华高.2007.热带北缘地区12个桉树无性系初期生长比较.福建农林科技,34(2):106-108.
    甘健民,赵恒康,薛敬意.1999.哀牢山常绿阔叶林林冠对降雨的再分布.林业科技,24(4):16-18.
    郝占庆,吕航.1989.木质物残体在森林生态系统中的功能评述.生态学进展,6(3):179-183.
    何永涛,李贵才,曹敏,唐勇.2003a.云南哀牢山栎类次生林树种多样性特征研究.热带亚热带植物学报,11(2):104-108.
    何永涛,李贵才,曹敏,唐勇.2003b.哀牢山中山湿性常绿阔叶林林窗更新研究.应用生态学报,14(9):1399-1404.
    扈克明.1989.哀牢山北段西坡不同植被类型中的蝽类及其群落结构.昆虫学报,32(4):427-432.
    金振洲. 1983.论哀牢山徐家坝地区常绿阔叶林的特征和性质.见:中国科学院昆明分院生态研究室编.云南哀牢山森林生态系统研究.昆明:云南科技出版社, 204-215.
    李贵才,韩兴国,黄建辉.2001.哀牢山木果柯林及其退化植被下土壤无机氮库的干季动态特征.植物生态学报,25(2):210-217.
    李贵才,何永涛,韩兴国.2003.哀牢山中山湿性常绿阔叶林林窗特征研究.生态学杂志,22(3):13-17.
    李凌浩,党高地,汪铁军,赵雷刚.1998.秦岭巴山冷杉林粗死木质残体研究.植物生态学报, 22(5):434-440.
    刘文耀,谢寿昌,谢克金,杨国平.1995.哀牢山中山湿性常绿阔叶林凋落物和粗死木质残体的初步研究.植物学报, 37(10):807-814.
    刘玉洪,马友鑫,张一平,李佑荣.1996a.哀牢山(西南季风山地)空气湿度资源的分布特征.自然资源学报,11(4):347-354.
    刘玉洪,张克映,马友鑫,张一平,李佑荣.1996b.哀牢山气温时空分布特征.山地研究,14(4):230-234.
    刘玉洪.1993a.哀牢山常绿阔叶林地的气候特征研究.林业科学, 29: 547-551.
    刘玉洪.1993b.哀牢山北段山地的地温气候资源分析.自然资源学报,8(2):158-165.
    马友鑫,张克映,张一平.1992.哀牢山北段光资源特征初步分析.山地研究,10(3):161-166.
    邱学忠,谢寿昌.1998.哀牢山森林生态系统研究.昆明:云南科技出版社.
    盛才余,谢寿昌.1991.哀牢山地区滇山杨生长规律及演替状况的研究.西南林学院学报,10(1):33-40.
    施济普,赵崇奖,朱华.2005.哀牢山西坡主要植被类型的特征与物种组成.应用与环境生物学报,11(1):1-7.
    孙明荣,李克庆,朱九军,考持聪,周作山,孙晓君.2002.三种啄木鸟的繁殖习性及对昆虫的取食研究.森林害虫与疾病,21(2):12-14.
    唐旭利,周国逸,周霞,温达志,张倩媚,尹光彩.2003.鼎湖山季风常绿阔叶林粗死木质残体的研究.植物生态学报,27(4):484-489.
    唐旭利,周国逸.2005.南亚热带典型森林演替类型粗死木质残体贮量及其对碳循环的潜在影响.植物生态学报,29(4):559-568.
    王海涛,高玮,万冬梅,刘多,邓文洪.2003.利用天然树洞繁殖的五种鸟的巢位特征及繁殖成功率.生态学报,23(7):1377-1385.
    王海涛,高玮.2002.次级洞巢鸟对次生林天然树洞的利用.动物学研究,23(2):136-140.
    王直军.1989.哀牢山云南松林冬季鸟类群落与地理环境的关系.地理环境研究,1(1):61-70.
    吴邦兴,范家瑞.1990.哀牢山徐家坝中山湿性常绿阔叶林区系结构.林业科学,28(5):396-401.
    吴德林,罗成昌.1993.人类活动对云南哀牢山小型兽类群落结构的影响.动物学研究,14(1):35-41.
    谢寿昌,刘文耀,李寿昌,杨国平.1996.云南哀牢山中山湿性常绿阔叶林生物量的初步研究.植物生态学报,20(2):167-176.
    谢寿昌,盛才余,李寿昌.1997.哀牢山中山湿性常绿阔叶林主要树种的物候研究.生态学报,17(1):51-60.
    徐海清,刘文耀.2005.云南哀牢山山地湿性常绿阔叶林附生植物的多样性和分布.生物多样性,13(2):137-147.
    闫恩荣,王希华,黄建军.2005.森林粗死木质残体的概念及其分类.生态学报,25(1):158-167.
    袁春明,刘文耀,杨国平.2008.哀牢山湿性常绿阔叶林林窗木质藤本植物的物种组成和多样性.山地学报,26(1):29-35.
    张光明,谢寿昌.2000.哀牢山木果石栎群落优势种的生态位宽度与重叠.云南植物研究,22(4):431-446.
    张克映,刘玉洪,马友鑫.1995.哀牢山逆温特征.山地研究,13(2):91-97.
    张克映.1983.哀牢山北段山地气候特征.见:吴征镒,等.云南哀牢山森林生态系统研究.昆明:云南科技出版社, 20-29.
    张一平,马友鑫,刘玉洪,尹利伟.2001.哀牢山北部常绿阔叶林林窗小气候空间分布特征.北京林业大学学报,23(4):80-83.
    赵学农.1991.哀牢山木果石栎林种群调节与竞争的初步研究.植物生态学与地植物学学报,15(2):183-190.
    朱元龙.2003.黑枕绿啄木鸟生态习性的初步观察.中国生物防治,19(1):45-46.
    杨礼攀.2007.哀牢山山地湿性常绿阔叶林木质残体的贮量、组成和生态学功能研究.中国科学院研究生院博士学位论文.
    Ambrose, G. J. 1982. An ecological and behavioural study of vertebrates using hollows in eucalypt branches. Ph.D. thesis, La Trobe University, Melbourne, Victoria, 447 pp.
    Andrzej, B. 2002. Living stands and dead wood in the Bialowieza forest: suggestions for restoration management. Forest Ecology and Management, 165 (1):125-140.
    Atkinson, P. R., Nixon, K. M., Shaw, M. J. P. 1992. On the susceptibility of Eucalyptus species and clones to attack by Macrotermes natalensis Haviland. Forest Ecology and Management, 48(2):15-30.
    Bj?rn, N., Frank, G., Marie, T. 2004. Dead wood in semi-natural temperatebroadleaved woodland: contribution of coarse and fine dead wood, attached dead wood and stumps . Forest Ecology and Management, 194(2):235-248.
    Bond-Lamberty, B., Wang, C., Gower, S.T. 2002. Annual carbon flux from woody debris for a boreal black spruce fire chronosequence . Journal of Geophysical Reserch, 108: 8220-8228.
    Braithwaite, L. W., Turner, J., Kelly, J. 1984. Studies on the arboreal marsupial fauna of eucalypt forests being harvested for woodpulp at Eden, N.S.W. III.
    Relationships between faunal densities, eucalypt occurrence and foliage nutrients and soil parent material. Australian Wildlife Research, 11: 41-48.
    Brandeis, T. J., Newton, M., Filip, G. M., Cole, E. C. 2002. Cavity-nester habitat development in artificially made Douglas-firs nags. Journal of Wildlife Management, 66:625-633.
    Calder, T.G., Gelding, B.G. and Manderson, A.D., 1983. Management for arboreal species in the Wombat State Forest. Environmental Report No. 16. Monash
    University. Graduate School Environmental Science, Melbourne. Vie., 108 pp.
    Carlson, A., Sandstr?m, U., Olsson, K. 1998. Availability and use of natural tree holes by cavity nesting birds in a Swedish deciduous forest. Ardea, 86:109-119.
    Chamber, J. Q., Schimel, J. P., Nobre, A. D. 2001. Respiration from coarse wood litter in central Amazon forests . Biogeochemistry, 52(2): 115-131.
    Conner, R. N., Rudolph, D. C., Saenz, D., Schaefer, R. R. 1994. Heartwood, sapwood, and fungal decay associated with red-cockaded woodpecker cavity trees. Journal of Wildlife Management, 58: 728-734.
    Dix, N. J. 1985. Changes in relationship between water content and water potential after decay and its significance for fungal successions. Transactions of the British Mycological Society, 85: 649-653.
    Dobkin, D.S., Rich, A.C., Pretare, J.A. and Pyle, W.H., 1995. Nest–site relationships among cavity-nesting birds of the riparian and snowpocket aspen woodlands in the northwestern Great Basin. Condor, 1995, 97:694-707.
    Fan, Z. F., Shifley, S. R., Spetich, M. A. 2003. Distribution of cavity trees in midwestern old-growth and second-growth forests. Canadian Journal of ForestReseach, 33:1481-1494.
    Gibbons, P. 1999. Habitat-tree retention in wood production forests. Ph.D thesis.The Australian national university, Canberra.
    Gibbons, P., Lindenmayer, D. B. 1996. Issues associated with the retention of hollow-bearing trees within eucalypt forests managed for wood production. Forest Ecology and Management, 83(3):245-279.
    Gibbons, P., Lindenmayer, D. B., Barry, S. C., Tanton, M. T. 2000. The effects of slash burning on the mortality and collapse of trees retained on logged sites in south-eastern Australia. Forest Ecology and Management, 139(3):51-61.
    Gibbons, P., Lindenmayer, D. B., Barry, S. C., Tanton, M. T. 2002. Hollow selection by vertebrate fauna in forests of southeastern Australia and implications for forest management. Biological Conservation, 103(1):1-12.
    Gill, A. M. 1974. Toward an understanding of fire-scar formation: filed observation and laboratory simulation. Forest Science, 20(3): 198-205.
    Gough, C. M., Vogel, C. S., Kazanski, C.2007.Coarse woody debris and the carbon balance of a north temperature forest. Forest Ecology and Management, 244:60-67.
    Graves, A.T., Fajvan, M. A., Miller G. W. 2000. The effects of thinning intensity on snag and cavity tree abundance in an Appalachian hardwood stand. Canadian Journal of Forest Research, 30(8):1214-1220.
    Harmon, M. E., Franklin, J. F., Swanson, F. J.1986. Ecology of coarse woody debris in temperate ecosystems. Advances in Ecological Research, 15(3):133–302.
    Harper, M. J., McCarthy, M.A., van der Ree, R.2005. The abundance of hollow-bearing trees in urban dry sclerophyll forest and the effect of wind on hollow development. Biological Conservation, 122(2):181-192.
    Harper, M.J., McCarthy, M. A., van der Ree, R., Fox, J. C.2004. Overcoming bias in ground-based surveys of hollow-bearing trees using double-sampling. Forest Ecology and Management, 190(2):291-300.
    Hollands, D.1991. Birds of night.Reed, Sydney, N.S.W., 224 pp.
    Inions, G. B., Tanton, M. T., Davey, S. M. 1989. Effects of fire on theavailability of hollows in trees used by the Common Brushtail Possum,
    Trichosurus uulpecula Kerr, 1792. and the Ringtail Possum, Pseudocheirus peregrinus Boddaerts, 1785. Australian Wildlife Research, 16:449-458.
    Jacobs, M. R. 1955. Growth habits of the Eucalypts. Common-wealth of Australia Government Printer, Canberra, Australia.
    Jenkins, B., Kitching, R. L.1990. The ecology of water-filled treeholes in Australian rainforests: food web reassembly as a measure of community recovery after disturbance. Australian Journal of Ecology, 15: 199-205.
    Li, K., Li, F. Z.1992. Variation of biochemical and ecological properties of fallen trees during decomposition process. Research of forest ecosystem, 6: 222-226.
    Li, Z., Dai, L. M., Gu, H. Y. 2007. Review on the decomposition and influence factors of coarse woody debris in forest ecosystem. Journal of Forest Research, 18(1): 48-54.
    Lindenmayer, D. B., Cunningham, R. B., Pope, M. L., Gibbons, P., Donnelly, C.F. 2000. Cavity sizes and types in Australian eucalypts from wet and dry forest types–a simple of rule of thumb for estimating size and number of cavities. Forest Ecology and Management, 137(1):139-150.
    Lindenmayer, D. B., Cunningham, R. B., Tanton, M. T., Smith, A. P., Nix, H. A.1991. Characteristics of hollow-bearing trees occupied by arboreal marsupials in the montane ash forests of the Central Highlands of Victoria, south-east Australia. Forest Ecology and Management, 40(2):289-308.
    Lindenmayer, D. B., Ough, K.2006. Salvage Logging in the Montane Ash Eucalypt Forests of the Central Highlands of Victoria and Its Potential Impacts on Biodiversity. Conservation Biology, 20(4):1005-1015.
    Lindenmayer, D.B., Cunningham, R.B., Donnelly, C.F.,Tanton, M.T., Nix, H.A., 1993. The abundance and development of cavities in Eucalyptus trees—a case study in the montane forests of Victoria, southeastern Australia. Forest Ecology and Management , 60,77–104.
    Lindenmayer, D.B., Norton, T.W. and Tanton, M.T., 1990.Differences between the effects of wildfire and clearfelling in montane ash forests of Victoria and itsimplications for fauna dependent on tree hollows. Australian Forestry, 53:61-68.
    Liu, W. Y., Fox, J. E. D., Xu, Z. F. 2000. Leaf litter decomposition of canopy trees, bamboo and moss in montane moist evergreen broad-leaved forest on Ailao Mountain, Yunnan, south-west China. Ecological Reserch, 15(4):435–447.
    Liu, W. Y., Fox, J. E. D., Xu, Z. F. 2002. Biomass and nutrient accumulation in montane evergreen broad-leaved forest (Lithocapus xylocarpus type) in Ailao Mountains, SW China. Forest Ecology and management, 158:223-235.
    Luck G.W., 2002.The habitat requirements of the rufous treecreeper (Climacteris rufa).Ⅰ. Preferential habitat use demonstrated at multiple spatial scales. Biological Conservation, 105:383-394.
    Mackensen, J., Bauhus, J. Density loss and respiration rates in coarse woody debris of Pinus radiata, Eucalyptus regnans and Eucalyptus maculata. Soil Biology and Biochemistry, 2003, 35:177-186.
    Mackowski, C. M. 1984. The ontogeny of hollows in blackbutt (Eucalyptus pilularis) and its relevance to the management of forests for possums, gliders and timber. In: Smith A.P., Hume I.D. (Eds.), Possums and Gliders. Surrey Beatty & Sons, Sydney, 553-567 pp.
    Mawson, P.R. and Long, J.L., 1994. Size and age parameters of nest trees used by four species of parrot and one species of cockatoo in south-west Australia. Emu, 94: 149-155.
    McComb, W. C., Noble, R. E.1981. Nest-box and natural cavity use in three mid-south forest habitats. Journal of Wildlife Management, 45 (1): 93-101.
    McKenney, D.W., Lindenmayer, D.B., 1994. An economic assessment of a nest box strategy for the conservation of an endangered species. Canadian Journal of Forest Research, 24: 2012-2019.
    Moriarty, J. J. and McComb, W.C., 1983. The long-term effect of timber stand improvement on snag and cavity densities in the Central Appalachians. In: J.W. Davis, G.A. Goodwin and R.A.Gckenfisls (Editors), Snag Habitat Management. Proceedmgs of the Symposium, 7-9 June 1983, Northern Arizona Unniversity, Flagstaff AZ, pp. 40-44.
    Morten, C., Katrine, H., Edward, P. M. 2005. Dead wood in European beech (Fagus sylvatica) forest reserves . Forest Ecology and Management, 210(2), 267-282.
    Nogueira, E. M., Nelson, B. W., Fearnside P. M.2006. Volume and biomass of trees in central Amazonia: influence of irregularly shaped and hollow trunks. Forest Ecology and Management, 227(2):14-21.
    Progar, R. A., Schowalter, T. D., Freitag, C. M.2000. Respiration from coarse woody debris as affected by moisture and saprotroph functional diversity in Western Oregon. Oecologia, 124:426-431.
    Ranius, T. 2002. Influence of stand size and quality of tree hollows on saproxylic beetles in Sweden. Biological Conservation, 103(1):85-91.
    Remm, J., Lohmus, A., Remm, K.2006. Tree cavities in riverine forests: What determines their occurrence and use by hole-nesting passerines? Forest Ecology and Management, 221(3):267-277.
    Rendell, W. B., Robertson, R. J.1989. Nest-site characteristics, reproductive success and cavity availability for tree swallows breeding in natural cavities. Condor, 91(4):875-885.
    Saunders, D. A, Smith, G.. T., Rowley I. 1982. The availability and dimensions of tree hollows that provide nest sites for cockatoos (Psittaciformes) in Western Australia. Australian Wildlife Research, 1982, 9:541-556.
    Sedgeley, J.A., 2001.Quality of cavity microclimate as a factor influencing selection of maternity roosts by a tree-dwelling bat, Chalinolobus tuberculatus, in New Zealand. Journal of Applied Ecology, 38: 425-438.
    Swift, M. J.1973. The estimation of mycelial biomass by determination of the hexoamine content of wood tissue decayed by fungi. Soil Biology and Biochemistry, 5: 321-332.
    Thibault, L., Peter, N., Yvonne, C. 2006. Dead wood and saproxylic beetle assemblages in a semi-deciduous forest in Southern Benin. Forest Ecology and Management, 225(1):27-38.
    Tidematm, C. R., Flavel, S. C. 1987. Factors affecting choice of diurnal roost site by tree-hole bats (Microchiroptera) in south-eastern Australia. Wildlife Research,14(4):459-473.
    Wang, C., Bond-Lamberty, B., Gower, S. T. 2002. Environmental controls on carbon dioxide flux from black spruce coarse woody debris.Oecologia, 132: 374-381.
    Wang, Z. J., Chris, C., Stephen, S. Y. 2000. Bird distribution and conservation in the Ailao Mountains, Yunnan. Biological Conservation, 92(1): 45-57.
    Wilkes, J.1982. Stem decay in deciduous hardwoods: an overview. Australian Forestry, 45(1):42-50.
    Wolfgang, W., Timo, H., Christoph, B. 2005. Coarse woody debris in a montane forest in Ecuador: mass, C and nutrient stock, and turnover. Forest Ecology and Management, 205(1), 139-147.
    Wormington, K. R., Lamb, D., McCallum, H. I., Moloney, D. J.2002. Habitat requirements for the conservation of arboreal marsupials in the dry sclerophyll forests of southeast Queensland, Australia. Forest Science, 48(2):217-227.
    Wormington, K.R., Lamb, D., McCallum, H. I., Moloney, D. J.2003. The characteristics of six species of living hollow-bearing trees and their importance for arboreal marsupials in the dry sclerophyll forests of southeast Queensland, Australia. Forest Ecology and Management, 182(3):75-92.
    Yang, L. P., Liu, W. Y., Ma, W. Z. Woody debris stocks in different secondary and primary forests in the subtropical Ailao Mountains, southwest China. Ecological Research. (In press).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700