三种沉水植物对浮游植物的化感效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水生植物的化感作用对淡水生态系统中群落的组成和富营养化湖泊的生态修复具有非常重要的意义。本文选择三种常见沉水植物小茨藻、马来眼子菜和菹草,研究在共培养系统中对斜生栅藻、汉氏菱形藻和铜绿微囊藻的化感效应。同时研究三种植物的种植水对斜生栅藻、汉氏菱形藻和铜绿微囊藻生长的影响,并探讨在富营养化湖泊恢复过程中菹草是否存在化感作用。主要研究结果如下:
     1.在共培养实验中小茨藻明显抑制了两种不同起始密度斜生栅藻的生长(OD650、细胞数和叶绿素a)。仅在共培养结束当天斜生栅藻的光合作用和呼吸作用受到了3.75 g/L的小茨藻的影响。共培养结束时对斜生栅藻的一些生理指标和细胞形态进行了测试。对于起始低密度的斜生栅藻, 2.5 g/L的小茨藻明显促进了斜生栅藻丙二醛(MDA)含量的增加,刺激了三种抗氧化酶(超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和过氧化物酶(POD))、硝酸还原酶(NR)和碱性磷酸酶(APA)的活性;除影响抗氧化酶系统和APA的活性外,3.75 g/L的小茨藻还明显促进了斜生栅藻可溶性蛋白含量的增加,但凝胶电泳的结果显示其39.8 kDa的蛋白条带消失。对于起始高密度的斜生栅藻,两种生物量的小茨藻都明显促进了斜生栅藻可溶性蛋白含量的增加,影响了藻的抗氧化酶系统,抑制了与氮代谢相关的NR活性,使其39.8 kDa的蛋白条带消失。两种不同起始密度的斜生栅藻都是以四细胞形态为主。共培养结束时小茨藻叶绿素a含量未受到明显影响。小茨藻对斜生栅藻的生长和生理过程存在明显的化感效应。一次添加小茨藻种植水对斜生栅藻的生长没有表现出明显的抑制作用,而且缺氮、缺磷培养过的斜生栅藻并不比正常培养的更敏感。
     2.在共培养实验中马来眼子菜明显抑制了两种不同起始密度斜生栅藻的生长,并对光合作用也产生了明显的抑制作用。共培养结束当天对斜生栅藻的一些生理指标和细胞形态进行了测试。与两种生物量的马来眼子菜共培养的起始低密度斜生栅藻的三种抗氧化酶(SOD、CAT、POD)和APA的活性都明显增强,可溶性蛋白和MDA含量显著增加,某些蛋白条带消失(3.75 g/L马来眼子菜还促进了斜生栅藻的NR活性)。除不影响起始高密度斜生栅藻的SOD、NR和APA活性外,马来眼子菜对其它生理指标的影响依赖于马来眼子菜的生物量。两种不同起始密度的斜生栅藻都是以四细胞形态为主。抑制作用较强的共培养种植水(起始低密度斜生栅藻)对再接种的斜生栅藻的生长没有产生明显抑制作用。植物与起始低密度斜生栅藻共培养结束时叶绿素a含量增加。马来眼子菜对斜生栅藻的生长和生理过程存在明显的化感效应;起始低密度的斜生栅藻对马来眼子菜的叶绿素a含量有一定的促进作用。
     对马来眼子菜进行曝气处理或实验前对斜生栅藻进行缺氮、缺磷培养,一次添加的种植水都不能抑制斜生栅藻的生长。
     3.在共培养实验中菹草对两种不同起始密度斜生栅藻的生长都表现出明显的抑制作用。由于接种藻细胞形态的不同,植物处理中的起始高密度斜生栅藻在培养最初几天形成更多的多细胞形态,到培养结束时差异已不明显。植物对细胞形态也存在一定的影响。共培养结束当天对斜生栅藻的一些生理指标进行了测试。对于起始低密度的斜生栅藻,两处理组中的斜生栅藻可溶性蛋白含量都明显增加,POD和APA活性增强,较高生物量(3.75 g/L)的菹草还使斜生栅藻15.1 kDa的蛋白条带消失。对于起始高密度的斜生栅藻,3.75 g/L的菹草促进了斜生栅藻可溶性蛋白和MDA含量的增加,刺激了藻的CAT和APA活性,并抑制了NR活性;5 g/L的菹草促进了斜生栅藻可溶性蛋白含量的增加,影响了藻的抗氧化酶系统并抑制了APA活性。植物的叶绿素a含量在共培养结束时未受到明显影响。菹草对斜生栅藻的生长和生理过程表现出明显的化感效应。
     除菹草在不添加营养盐的条件下对无磷培养过的斜生栅藻表现了一定的抑制作用外,其它对植物或对藻的各种培养方式都对斜生栅藻的生长无明显抑制作用。4.在共培养实验中小茨藻对两种不同起始密度汉氏菱形藻的生长都表现出明显的抑制作用,处理组中起始低密度的汉氏菱形藻在实验开始1天后细胞数已非常少。共培养结束当天对起始高密度汉氏菱形藻的一些生理指标进行了测试。2.5 g/L的小茨藻抑制了汉氏菱形藻的CAT活性,使可溶性蛋白含量明显下降,但对蛋白条带没有产生影响;而3.75 g/L小茨藻使汉氏菱形藻的MDA含量降低。共培养结束时小茨藻的叶绿素a含量也明显减少。小茨藻对汉氏菱形藻的生长和生理过程表现出明显的化感效应;汉氏菱形藻对小茨藻的叶绿素a含量也表现出了一定的化感效应。小茨藻种植水未对汉氏菱形藻的生长产生抑制作用。
     与马来眼子菜共培养的两种不同起始密度的汉氏菱形藻在共培养第4天细胞已几乎全部死亡。
     在共培养实验中菹草对两种不同起始密度汉氏菱形藻的生长都表现出明显的抑制作用,处理组中起始低密度的汉氏菱形藻在实验开始的第3天细胞数已非常少。共培养结束当天对起始高密度汉氏菱形藻的一些生理指标进行了测试。2.5 g/L的的菹草使汉氏菱形藻可溶性蛋白含量下降并影响到蛋白条带,促进了抗氧化酶(SOD和POD)、NR和APA活性的增强。除不影响可溶性蛋白含量外,3.75 g/L的菹草影响了汉氏菱形藻的蛋白条带,并刺激了其抗氧化酶(CAT和POD)、NR和APA的活性。与汉氏菱形藻共培养的菹草叶绿素a含量在实验结束时未受到明显影响。菹草对汉氏菱形藻的生长和生理过程表现出明显的化感效应。不添加营养盐培养的菹草种植水对磷缺乏和正常培养的汉氏菱形藻都产生了抑制作用。
     5.小茨藻、马来眼子菜和菹草在共培养实验中都明显抑制了铜绿微囊藻的生长,共培养3-4天后处理组的细胞都表现为死亡。正常营养条件培养的三种植物种植水对铜绿微囊藻的生长均表现出明显的抑制作用。曝气培养较静止培养的马来眼子菜种植水对铜绿微囊藻抑制作用更明显。有根和无根的菹草种植水一次添加或半连续添加对铜绿微囊藻均表现出明显的抑制效果,但在营养盐缺乏条件下培养的菹草种植水对铜绿微囊藻有一定的促进作用。缺磷培养要比正常培养的铜绿微囊藻更敏感,菹草分泌的化感物质是整株植物共同作用的结果。三种植物对铜绿微囊藻的生长都表现出明显的化感效应。
     6.在菹草生长阶段(2004.12-2005.5),对武汉市月湖浮游植物进行逐月调查。结果表明,在营养盐浓度较高的条件下,浮游植物仍保持较低的生物量和密度,浮游植物生长与温度保持一定的相关性,但与湖水营养盐浓度并不存在相关关系。菹草和其它水生植物(主要是伊乐藻)组成的水生植物群落能使水体的透明度保持较高的状态。在不受营养和光照影响的条件下浮游植物组成中能形成水华的一些常见种类并未随温度升高而出现,可能与水生植物的存在改变了浮游植物群落的结构组成有关。
Allelopathy of aquatic macrophytes is of significance on composition of communities in freshwater ecosystems and ecological rehabilitation in eutrophic lakes. Allelopathic effects of three submerged macrophytes Najas minor, Potamogeton malaianus and Potamogeton crispus on Scenedesmus obliquus, Nitzschia hantzschiana and Microcystis aeruginosa were investigated in coexistence experiments and plants filtrates experiments under controlled laboratory conditions. A related field survey was conducted to determine the allelopathic effect of P. crispus on phytoplankton communities in situ. The main results are summarized as following:
     1. The OD650, cell numbers and Chl a-based growth of S. obliquus at two different initial cell densities was significantly inhibited by N. minor in the coexistence experiments. Only 3.75 g/L N. minor had inhibitory effects on photosynthetic rate (at the lower initial cell density) and respiratory rate (at the higher initial cell density) on the last day of the experiments. Total soluble protein, Lipid peroxidation (MDA), antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD)), nitrate reductase (NR), alkaline phosphatase (APA), protein electrophoretic pattern and morphology of S. obliquus were determined after the co-culture experiments were terminated. MDA content at the low initial algal cell density was increased, and the activities of SOD, CAT, POD, NR and APA were stimulated in 2.5 g/L N. minor treatment, while antioxidant enzymes systems and APA activity were affected, total soluble protein content was increased, but the 39.8 kDa protein disappeared in 3.75 g/L N. minor treatment. The content of total soluble protein at the high initial algal cell density was increased, antioxidant enzymes systems were affected, NR activities was inhibited, and the 39.8 kDa protein disappeared in N. minor treatments. The morphology of S. obliquus showed no difference in the macrophyte treatments and the controls, and the cultures were dominated by 4-celled coenobia. Chl a content of N. minor was not significantly affected. The results indicated N. minor had significant allelopathic effects on the growth and physiological processes of S. obliquus, while S. obliquus exhibited no allelopathic effect on Chl a content of N. minor.
     No allelopathic growth inhibition of S. obliquus was detected in the tests using culture filtrates of the macrophyte. P-limited or N-limited S. obliquus was no more sensitive to filtrates than nutrient-sufficient S. obliquus.
     2. The OD650, cell numbers and Chl a-based growth and photosynthetic rates of S. obliquus at two different initial cell densities were obviously suppressed by P. malaianus in the coexistence experiments. Moreover, the inhibition was dependent on the biomass density of P. malaianus. Total soluble protein, MDA, antioxidant enzymes (SOD, CAT and POD), NR, APA, protein electrophoretic pattern and morphology of S. obliquus were determined after the co-culture experiments were terminated. The activities of SOD, CAT, POD, and APA at the low initial algal cell density were stimulated, the contents of MDA and total soluble protein were increased, and some special protein bands disappeared in P. malaianus treatments, while NR activity rose only in 3.75 g/L P. malaianus treatment. The macrophyte had no effect on the activities of SOD, NR and APA at the high initial algal cell density, but significantly influenced other physiological parameters of S. obliquus with the increase of biomass density. Algal cell morphology showed no difference in the macrophyte treatments and the controls, and the cultures were dominated by 4-celled coenobia. The results indicated P. malaianus had significant allelopathic effects on the growth and physiological processes of S. obliquus, while S. obliquus at the lower initial cell density exhibited positive allelopathic effect on Chl a content of P. malaianus. Filtrates from plant co-cultured with S. obliquus at the low initial cell density exhibited no apparent growth inhibitory effect on S. obliquus.
     No allelopathic growth inhibition of S. obliquus was detected in the tests using culture filtrates of the macrophyte. The sensitivity of P-limited S. obliquus was not higher to filtrates than for P-sufficient S. obliquus.
     3. The OD650, cell numbers and Chl a-based growth of S. obliquus at two different initial cell densities was significantly inhibited by P. crispus in the coexistence experiments. S. obliquus at the high intial cell density forms more colonies in the treatments at the first 5 days incubation. The morphology of S. obliquus showed no difference in the macrophyte treatments and the controls on the last day of the experiments, and the cultures were dominated by 4-celled coenobia. Photosynthetic rate of S. obliquus at the lower initial cell density was inhibited with promotion of the biomass of P. crispus. The activities of POD and APA at the low initial algal cell density were stimulated, the content of total soluble protein was increased in 2.5 and 3.75 g/L P. crispus treatments (the 15.1 kDa protein disappeared in 3.75 g/L P. malaianus treatment). Total soluble protein and MDA contents at the high initial algal cell density were increased, CAT and APA activities were stimulated, and NR activity was inhibited in 3.75 g/L P. crispus treatment, while total soluble protein content was increased, antioxidant enzymes systems were affected, and APA activity was inhibited in 5 g/L P. crispus treatment. Chl a content of P. crispus was not significantly affected. The results indicated P. crispus had significant allelopathic effects on the growth and physiological processes of S. obliquus, while S. obliquus exhibited no allelopathic effect on Chl a content of P. crispus.
     Allelopathic growth inhibition of P-limited S. obliquus was detected in the tests using filtrates of the macrophyte cultivated in no nutrient.
     4. The growth of N. hantzschiana at two different initial cell densities was significantly inhibited by N. minor in the coexistence experiments, and the lower initial cell density was almost dead on day 1. Total soluble protein, MDA, antioxidant enzymes (SOD, CAT and POD), NR, APA and protein electrophoretic pattern of N. hantzschiana at the high initial cell density were measured after the co-culture experiment was terminated. Total soluble protein content of N. hantzschiana was decreased, and CAT activity was inhibited in 2.5 g/L N. minor treatment. MDA content was reduced in 3.75 g/L N. minor treatment. Other physiological parameters were not affected by the macrophyte. Chl a content of N. minor was significantly affected. The results indicated N. minor had significant allelopathic effects on the growth and physiological processes of N. hantzschiana, while N. hantzschiana exhibited negative allelopathic effect on Chl a content of N. minor. No allelopathic growth inhibition of S. obliquus was detected in the tests using culture filtrates of N. minor.
     The two different initial algal cell densities in P. malaianus treatments were almost dead on day 4.
     The growth of N. hantzschiana at two different initial cell densities was significantly inhibited by P. crispus in the coexistence experiments, and the lower initial cell density was almost dead on day 3. Total soluble protein, MDA, antioxidant enzymes (SOD, CAT and POD), NR, APA and protein electrophoretic pattern of N. hantzschiana at the high initial cell density were measured after the co-culture experiment was terminated. The activities of antioxidant enzymes (SOD and POD), NR and APA were stimulated, the content of total soluble protein was increased, and the 56.4 kDa protein disappeared in 2.5 g/L P. crispus treatment. Antioxidant enzymes (CAT and POD), NR and APA activities were significantly induced, and the 56.4 kDa protein disappeared in 3.75 g/L P. crispus treatment. Chl a content of P. crispus was not significantly affected. The results indicated P. crispus had significant allelopathic effects on the growth and physiological processes of N. hantzschiana, while N. hantzschiana exhibited no allelopathic effect on Chl a content of P. crispus. Allelopathic growth inhibition of P-sufficient and P-limited N. hantzschiana was detected in the tests using filtrates of the macrophyte cultivated in no nutrient.
     5. The growth of M. aeruginosa at two different initial cell densities was significantly inhibited by the three macrophytes in the coexistence experiments. The algal cells in the treatments died after 3 or 4 days of co-cultures.
     Allelopathic growth inhibition of M. aeruginosa was detected in the tests using culture filtrates of the three macrophytes. The filtrates of three macrophytes under nutrient-sufficient conditions showed significant allelopathic effects on the growth of M. aeruginosa. The filtrate of P. malaianus with aerated treatment was more significant growth inhibitory effect on M. aeruginosa than with not-aerated treatment. The initial or quasi-continuous addition filtrates of root-cutting and root-remaining P. crispus showed significant allelopathic effects on the growth of M. aeruginosa. However, under nutrient-limited conditions, the filtrate of P. crispus had positive allelopathic effect on the growth of M. aeruginosa. P-limited M. aeruginosa was more sensitive to filtrates than P-sufficient M. aeruginosa. Intact P. crispus showed inhibitory effect on the growth of M. aeruginosa.
     The results indicated that three macrophytes showed significant allelopathica effects on the growth of M. aeruginosa.
     6. From December, 2004 to May, 2005 phytoplankton was investigated monthly in the process of the aquatic vegetation rehabilitation in Lake Yuehu, Wuhan. The result indicated that, under the condition of the very high nutrition concentrations, phytoplankton was still maintained at the very low biomass and density; phytoplankton growth was positively correlated with the temperature, but not with nutrient concentrations. P. cripus (including Elodea canadensis) made water body maintain higher transparency. The species of water bloom did not appear with the increase of temperature under the condition of high nutrition concentrations and transparency. The phytoplankton community structure was possibly changed by aquatic plants.
引文
[1] Agami M and Waisel Y, 2002. Competitive relationships between two water plant species: Najas marina L. and Myriophyllum spicatum L.. Hydrobiologia, 482: 197-200.
    [2] Aliotta G, Della Greca M, Monaco P, et al., 1990. In vitro algal growth inhibition by phytotoxins of Typha latifolia L.. Journal of Chemical Ecology, 16 (9): 2637-2646.
    [3] Aliotta G, Monaco P, Pollio G, et al., 1991. Potential allelochemicals from Pistia Stratiotes L.. Journal of chemistry Ecology, 17: 2223-2234.
    [4] Aliotta G, Molinaro A, Monaco P, et al., 1992. Three biologically active phenylpropanoid glucosides from Myriophyllum verticillatum. Phytochemistry, 31: 109-111.
    [5] Aliotta G, Della Greca M, Monaco P, et al., 1996. Potential allelochemicals from aquatic weeds: their action on microalgae. In: Narwal, S.S., Tauro, P. (Eds.), Allelopathy: Field Observations and Methodology Vol. 1. Scientific Publishers, Jodhpur, pp: 243-254.
    [6] Anthoni U, Christophersen C, ?g?rd Madsen J, et al., 1980. Biologically active sulphur compounds from the green alga Chara globularis. Phytochemistry, 19: 1228-1229.
    [7] Baranenko VV, 200l. Pea chloroplasts under clino-rotation: lipid peroxidation and superoxide dismutase activity. Advanced Space Research, 27: 973-976.
    [8] Barberá O, Sanz JF, Sánchez-Parareda J, et al., 1986. Further flavonol glycosides from Anthyllis onobrychioides. Phytochemistry, 25: 2361-2365.
    [9] Baziramakenga R, Leroux GD, Simard RR, 1995. Effects of benzoic and cinnamic acids on membrane permeability of soybean roots. Journal of Chemical Ecology, 21: 1271-1285.
    [10] Baziramakenga R, Leroux GD, Simard RR, et al., 1997. Allelopathic effects of phenolic acids on nucleic acids and protein levels in soybean seedlings. Canadian Journal of Botany, 75: 445- 450.
    [11] Berger J and Schagerl M, 2003. Allelopathic activity of Chara aspera. Hydrobiologia, 501: 109-115.
    [12] Berman T, 1970. Alkaline Phosphatases and Phosphorus Availability in Lake Kinneret. Limnology and Oceanography, 15: 663-674.
    [13] Blindow I, 1987. The composition and density of epiphyton on several species of submerged macrophytes – the neutral substrate hypothesis tested. Aquatic Botany, 29: 157-168.
    [14] Blindow I and Hootsmans MJM, 1991. Allelopathic effects from Chara spp. on two species of unicellular green algae. In Hootsmans M J M and Vermaat J E (eds), Macrophytes, a Key to understanding changes caused by eutrophication in shallow freshwater ecosystems. IHE Reports Series 21, Delft, pp: 139-144.
    [15] Borner H, 1959. The apple replant problem I. The excretion of phlorizin from apple root residues and its role in the soil sickness problem. Contributions from Boyce Thompson Institute, 20: 39-56.
    [16] Bradford MM, 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254.
    [17] Brettum P, 1989. Algae as indicators of water quality. Phytoplankton. Norsk Institut for vannforskning. NINA-Rapport 0-86116: 1-111 (in Norwegian).
    [18] Brix H, 1997. Do macrophytes play a role in constructed treatment wetlands? Water and Science Technology, 35 (5): 11-17.
    [19] Cangiano T, Della Greca M, Fiorentino A, et al., 2001. Lactone diterpenes from the aquatic plant Potamogeton natans. Phytochemistry, 56: 469- 473.
    [20] Cangiano T, Della Greca M, Fiorentino A, et al., 2002. Effect of ent-labdane diterpenes from Potamogetonaceae on Selenastrum capricornutum and other aquatic organisms. Journal of Chemical Ecology, 28: 1091-1102.
    [21] Czeczuga B and Chomutowska H, 2000. Effect of aquatic macrophytes on the quantity of bacterioplankton. Rocz Akad Med Bialymst, 45: 78-86.
    [22] Dayan FE, Watson SB, Galindo JCG, et al., 1999. Phytotoxicity of quassinoids: physiological responses and structural requirements. Pesticide Biochemistry and Physiology, 65 (1): 15-24.
    [23] Della Greca M, Mangoni L and Molinaro A, 1990. (20s)-4-α-methyl-24 -methylenech olest-7-en-3β-ol, an allelopathic sterol from Typha latifolia. Phytochemistry, 29 (6): 1797-1798.
    [24] Della Greca M, Lanzetta R, Mangoni L, et al., 1991. A bioactive benzoindenonefrom Eichhornia crassipes Solms. Bioorganic and Medicinal Chemistry Letters, 1: 599-600.
    [25] Della Greca M, Fiorentio A and Monaco P, 1996. Action of antialgal compounds from Juncus effuses L. on Selenastrum capricornutum. Journal of Chemical Ecology, 22 (3): 587-603.
    [26] Della Greca M, Ferrara M and Fiorentino A, 1998. Antialgal compounds from Zantrdeschia aethiopica. Phytochemistry, 49 (5): 1299-1304.
    [27] Della Greca M, Fiorentino A, Isidori M, et al., 2000. Antialgal ent-labdane diterpenes from Ruppia maritime. Phytochemistry, 55: 909-913.
    [28] Della Greca M, Fiorentino A, Isidori M, et al., 2001. Antialgal furano-diterpenes from Potamogeton natans L. Phytochemistry, 58: 299-304.
    [29] Della Greca M, Fiorentio A and Isidori M, 2002. Phenanthrenoids from the wetland Juncus acutus. Phytochemistry, 60: 633-638.
    [30] Dias MA and Costa MM, 1983. Effect of low salt concentrations on nitrate reductase and peroxidase of sugar beet leaves. Journal of Experimental Botany, 34: 537-543.
    [31] Douglas DJ and Bates SS, 1991. Production of domoic acid, a neuro toxic amino acid, by an axenic culture of the marine diatom Nitzchia pungens f. multiseries Hasle. Canadian Journal of Fisheries and Aquatic Sciences, 49: 85-90.
    [32] Elakovich SD, 1989. Allelopathic aquatic plants for aquatic weed management. Biologia Plantarum, 31: 479-486.
    [33] Elakovich SD and Wooten JW, 1989. Allelopathic potential of 16 aquatic and wetland plants. Journal of Aquatic Plant Management, 27: 78-84.
    [34] Environment Canada, 1992. Biological test method: growth inhibition test using the freshwater alga Selenastrum capricornutum. Environmental Protection Series 1/RM/25.
    [35] Erhard D and Gross EM, 2006. Allelopathic activity of Elodea canadensis and Elodea nuttallii against epiphytes and phytoplankton. Aquatic Botany, 85: 203-211.
    [36] Farjalla VF, Anesio AM, Bertilsson S, et al., 2001. Photochemical reactivity of aquatic macrophyte leachates; abiotic transformations and bacterial response. Aquatic Microbiology Ecology, 24: 187-195.
    [37] Ferrier MD, Butler BR Sr, Terlizzi DE, et al., 2005. The effects of barley straw (Hordeum vulgare) on the growth of freshwater algae. Bioresource Technology, 96: 1788-1795.
    [38] Fitzgerald GP, 1969. Some factors in the competion or antagonism among bacteria, algae and aquatic weeds. Journal of Phycology, 5: 351-359.
    [39] Forsberg C, Kleiven S and Willén T, 1990. Absence of allelopathic effects of Chara on phytoplankton in situ. Aquatic Botany, 38: 289-294.
    [40] Galindo JCG, Hernbndez A, Dayan FE, et al., 1999. Dehydrozaluzanin C, a natural sesquiterpenolide, causes rapid plasma membrane leakage. Phytochemistry, 52: 805-813.
    [41] Gallardo MT, Martin BB and Martin DF, 1998. Inhibition of water fern Salvinia minima by cattail (Typha domingensis) extracts and by 2-chlorophenol and salicylaldehyde. Journal of Chemical Ecology, 24: 1483-1490.
    [42] Gallardo MT, Martin BB and Martin DF, 1999. An annotated bibliography of allelopathic properties of cattails, Typha spp.. Florida Scientist, 61: 52-58.
    [43] Gallardo-Williamsa MT, Geigerb CL, Pidalaa JA, et al., 2002. Essential fatty acids and phenolic acids from extracts and leachates of southern cattail (Typha domingensis P.). Phytochemistry, 59: 305-308.
    [44] Giannoplities CN and Ries SK, 1977. Superoxide dismutase purification and quantitative relationship with water soluble protein in seedling. Plant Physiology, 59: 315-318.
    [45] Godmaire H and Planas D, 1986. Influence of Myriophyllum spicatum on the species composition biomass and primary productivity of phytoplankton. Aquatic Botany, 23: 299-308.
    [46] Gopal B and Goel U, 1993. Competition and allelophathy in aquatic plant communities. The Botanical Review, 59 (3): 155-210.
    [47] Grancliand W and Solander D, 1988. Influence of aquatic macrophytes on phosphorus cycling in lakes. Hydrohiologia, 70: 245-266.
    [48] Gross EM and Sütfeld R, 1994. Polyphenols with algicidal activity in the submerged macrophyte Myriophyllum spicatum L. Acta Horticulturae, 381: 710-716.
    [49] Gross EM, 1995. Allelopathic action by submersed macrophytes on epiphytes and phytoplankton: Algicidal hydrolysable polyphenols from Myriophyllum spicatum [D] Kid: Christian Albrechts University.
    [50] Gross EM, Meyer H and Schilling G, 1996. Release and ecological impact of algicidal hydrolysable polyphenols in Myriophyllum spicatum. Phytochemistry, 41: 133-138.
    [51] Gross EM, 1999. Allelopathy in benthic and littoral areas: case studies on allelochemicals from benthic cyanobacteria and submerged macrophytes. In: Inderjit Dakshini KMM, Foy CL (eds.), Principles and Practices in Plant Ecology: Allelochemical Interactions. CRC Press, Boca Raton, FL.
    [52] Gross EM, 2000. Seasonal and spatial dynamics of allelochemicals in the submersed macrophyte Myriophyllum spicatum L. Verh. Internat. Verein. Limnol., 27: 1-4.
    [53] Gross EM, Erhard D and Iványi E, 2003. Allelopathic activity of Ceratophyllum demersum L. and Najas marina ssp. intermedia (Wolfgang) Casper. Hydrobiologia, 506-509: 583-589.
    [54] Gross EM, 2003. Allelopathy of aquatic autotrophs. Critical Reviews in Plant Sciences, 22: 313-339.
    [55] Ha K, Jang MH and Joo GJ, 2002. Spatial and temporal dynamics of phytoplankton communities along a regulated river system, the Nakdong river, Korea. Hydrobiologia, 470: 235-245.
    [56] Hagmann L, Jutmer F, and Fischerellin A, 1996. A novel photosystem-II-inhibiting allelochemical of the Cyanobaterium Fischerella muscicola with antifungal and herbicidal activity. Tetrahedron Letters, 37 (36): 6539-6542.
    [57] Harrison PG and Durance CD, 1985. Reductions in photosynthetic carbon uptake in epiphytic diatoms by water-soluble extracts of leaves of Zostera marina. Marine Biology, 90: 117-119.
    [58] Hasler AD and Jones E, 1949. Demonstration of the antagonistic action of large aquatic plants on algae and rotifers. Ecology, 30: 359-364.
    [59] Heath RL and Parker L, 1968. Photoperoxidation in isolated chloroplasts kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125: 189-198.
    [60] Hilt S, 2006. Allelopathic inhibition of epiphytes by submerged macrophytes. Aquatic Botany, 85: 252-256.
    [61] Hong SS, Bang SW and Han MS, 2002. Effects of rainfall on the hydrological conditions and phytoplankton community structure in the riverine zone of the Pal’tang Reservoir, Korea. Journal of Freshwater Ecology, 17: 507-519.
    [62] Hootsmans MJM and Blindow I, 1994. Allelopathic limitation of algal growth by macrophytes. In: Van Vierssen W, Hootsmans M J M, Vermaat J E (eds.), Lake Veluwe, A macrophyte-dominated system under eutrophication stress. Kluwer,Dordrecht, pp: 175-192.
    [63] Howard-Williams C, 1978. Growth and reproduction of aquatic macrophytes in a south temperate saline lake. Verh. int. Ver. Limnol., 20: 1153-1158.
    [64] Hutchinson GE, 1975. A treatise on Limnology, Vol.3. Limnological Botany, John Wiley & Sons, New York, pp: 660.
    [65] Jasser I, 1994. Influence of Ceratophyllum demersum on phytoplankton community in experimental conditions. Verh. int. Ver. theor. angew. Limnol., 25: 2291-2295.
    [66] Jasser I, 1995. The influence of macrophytes on a phytoplankton community in experimental conditions. Hydrobiologia, 306: 21-32.
    [67] Jin Q and Dong SL, 2003. Comparative studies on the allelopathic effect of two different strains of Ulva pertusa on Heterosigma akashiuo and Alexandrium tamarense. Journal of Experimental Marine Biology and Ecology, 293: 41-55.
    [68] Kumar Saha S, Uma L and Subramanian G, 2003. Nitrogen stress induced changes in the marine cyanobacterium oscillatoria willei; BDU 130511. FEMS Microbiology Ecology, 45: 263-272.
    [69] Kamaya Y, Kurogi Y and Suzuki K, 2003. Acute toxicity of fatty acid to the freshwater green alga Selenastrum capricornutum. Environmental Toxicology, 18: 289-294.
    [70] Keating KI, 1978. Blue-green algal inhibition of diatom growth: transition from mesotrophic to eutrophic community structure. Science, 199: 971-973.
    [71] Kenneth SB, Hostetter HP and David MM, 1997. Copper dispersal in a water-supply reservoir. Water Research, 11: 539-544.
    [72] Kittakoop P, Wanasith S, Watts P, et al., 2001. Potent antiviral potamogetonyde and potamogetonol, new furanoid labdane diterpenes from Potamogeton malaianus. Journal of Natural Products, 64: 385-388.
    [73] K?rner S and Nicklisch A, 2002. Allelopathic growth inhibition of selected phytoplankton species by submerged macrophytes. Journal of Phycology, 38: 862-871.
    [74] Kohl JG and Nicklisch A, 1988. ?kophysiologie der Algen. Wachstum und Ressourcennutzung. Akademie-Verlag, Berlin and FischerVerlag, Stuttgart, 253 pp.
    [75] Kogan SI, Chinnova GA and Kravchenko ME, 1972. The effect of macrophytes on certain algae in joint cultivation. Izv. Akad. Nauk. Turkm. SSR Ser. Biol. Nauk., 3: 3-8.
    [76] Krivtsov V, Bellinger EG, Sigee DC, et al., 1998. Application of SEM XRMA data to lake ecosystem modelling. Ecological Modelling, 113 (1-3): 95-123.
    [77] Krivtsov V, Bellinger EG and Sigee DC, 2000. Changes in the elemental composition of Asterionella formosa during the diatom spring bloom. Journal of Plankton Research, 22 (1): 169-184.
    [78] Laemmli UK, 1970. Clevage of the structural proteins during the assembly of the head of the bacteriophage T4. Nature, 277: 680.
    [79] Lauridsen TL, Sandsten H and M?ller PH, 2003. The restoration of a shallow lake by introducing Potamogeton spp.: The impact of waterfowl grazing. Lakes Reservoirs Research Management, 8: 177-187.
    [80] Leitao M, 1995. Eutrophication du Loir et son incidence surl’usine d’eau potable de la Fleche (Sar the). Technology of Science Methods, 1: 31-37.
    [81] Li FM and Hu HY, 2005. Isolation and characterization of a novel antialgal allelochemical from Phragmites communis. Applied and Environmental Microbiology, 71: 6545-6553.
    [82] Leu E, Krieger-Liszkay A, Goussias C, et al., 2002. Polyphenolic allelochemicals from the aquatic angiosperm Myriophyllum spicatum inhibit photosystem II. Plant Physiology, 130: 2011-2018.
    [83] Lürling M, 2003. Phenotypic plasticity in the green algae Desmodesmus and Scenedesmus with special reference to the induction of defensive morphology. Annales De Limnologie-International Journal of Limnology, 39 (2): 85-101.
    [84] Lürling M, van Geest G and Scheffer M, 2006. Importance of nutrient competition and allelopathic effects in suppression of the green alga Scenedesmus obliquus by the macrophytes Chara, Elodea and Myriophyllum. Hydrobiologia, 556: 209-220.
    [85] Maestrini SY and Bonin DJ, 1981. Allelopathic relationships between phytoplankton species. In: Platt, T. (eds), Physiological bases of phytoplankton ecology. Canadian Bulletin of Fisheries and Aquatic Sciences, 210: 323-338.
    [86] Mjelde M and Faafeng B, 1997. Ceratophyllum demersum (L.) hampers phytoplankton development in some small Norwegian lakes over a wide range of phosphorus level and geographic latitude. Freshwater Biology, 37: 355-365.
    [87] Molish H, 1937. Der Einfluss einer Pflanze auf die andere-Allelopathie, Fischer, Jena.
    [88] Mulderij G, Van Donk E and Roelofs JGM, 2003. Differential sensitivity of greenalgae to allelopathic substances from Chara. Hydrobiologia, 491: 261-271.
    [89] Mulderij G, Mooij WM, Smolders AJ, et al., 2005a. Allelopathic inhibition of phytoplankton by exudates from Stratiotes aloides. Aquatic Botany, 82: 284-296.
    [90] Mulderij G, Van Donk E and Roelofs JGM, 2005b. Allelopathic growth inhibition and colony formation of the green alga Scenedesmus obliquus by the aquatic macrophyte Stratiotes aloides. Aquatic Ecology, 39: 11-21.
    [91] Mulderij G, 2006. Chemical warfare in freshwater. PhD Thesis, Radboud Universiteit Nijmegen, pp: 157-170.
    [92] Nakai S, Inoue Y, Hosomi M, et al., 1999. Growth inhibition of blue-green algae by allelopathic effects of macrophytes. Water Science and Technology, 39: 47-53.
    [93] Nakai S, Inoue Y, Hosomi M, et al., 2000. Growth inhibition of blue-green algae (Microcystis aeruginosa) by Myriophyllum spicatum-releasing four polyphenols. Water Research, 34: 3026-3032.
    [94] Nakai S,Inoue Y,Hosomi M,et al., 2001. Algal growth inhibition effects and inducement modes by plant-producing phenols. Water Research, 35: 1855-1859.
    [95] Nakai S, Inoue Y and Hosomi M, 2005. Anti-cyanobacterial fatty acids released from Myriophyllum spicatum. Hydrobiologia, 543: 71-78.
    [96] Neori A, Reddy KR, Ciskova-Koncalova H, et al., 2000. Bioactive chemicals and biological-biochemical activities and their functions in rhizospheres of wetland plants, Botany Review, 66: 350-378.
    [97] Newman JR and Barrett PRF, 1993. Control of Microcystis aeruginosa by decomposing barley straw. Journal of Aquatic Plant Management, 31: 353-355.
    [98] Norman AG, 1955. The effect of polymyxin on plant roots. Archives of Biochemistry and Biophysics, 58: 461-477.
    [99] Norman AG, 1961. Microbial products affecting root development. Trans 7th Congr Intern Soil Soc, Wisconsin, 2: 531-536.
    [100] Otten JH, Willemse MTM, 1988. First steps to periphyton. Archiv für Hydrobiologie, 112: 177-195.
    [101] Planas D, Sarhan F, Dube L, et al., 1981. Ecological significance of phenolic compounds of Myriophyllum spicatum. Verh. Int. Ver. Limnol., 21: 1492-1496.
    [102] Politycka B, 1996. Peroxidase activity and lipid peroxidation in roots of cucumber seedlings influenced by derivatives of cinnamic and benzoic acids. Acta physiologiae plantarum, 18: 365-370.
    [103] Rao MV, Paliyath G and Ormrod DP, 1996. Ultraviolet-B and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiology, 110: 125-136.
    [104] Rice EL, 1974. Allelopathy, New York: Academic Press.
    [105] Rice EL, 1984. Allelopathy, 2nd Ed. Academic Orlando, FL.
    [106] Riegman R and van Boekel W, 1996. The ecophysiology of Phaeocystis Globosa, a review. Journal of Sea Research, 35: 235-242.
    [107] Roginsky V and Barsukova T, 2001. Superoxide dismutase inhibits lipid peroxidation in micelles. Chemistry and Physics of Lipids, 111: 87-91.
    [108] Schagerl M, Unterrieder I and Angeler D, 2001. Allelopathic interactions among Anabaena torulosa (Cyanoprokaryota) and other algae isolated from Lake Neusiedlersee (Austria). Algological Study, 103: 117-130.
    [109] Schreiter T, 1928. Untersuchungen über den Einfluss einen Helodeawucherung auf das Netzplankton des Hirschberger Grossteiches in B?hmer in den Jahren 1921 bis 1925 incl V. Praze. Prague.
    [110] Schriver P, BФestrand J, Jeppesen E, et al., 1995. Impact of submerged macrophytes on fish-zooplankton-phytoplankton interactions: large-scale enclosure experiments in a shallow eutrophic lake. Freshwater Biology, 33: 255-270.
    [111] SФdergaard M and Moss B, 1998. Impact of submerged macrophytes on phytoplankton in shallow freshwater lakes. In Jeppesen E, SФdergaard M and Christoffersen K (eds): The Structuring Role of Submerged Macrophytes in Lakes. Ecological Studies, 131: 115-132.
    [112] Somes NIG, Breen PF and Wong THF, 1996. Integrated hydrologic and botanical design of stormwater control wetlands. Preprints of the 5th International Conference on wetland System for Water Contro1.University Bodenkultur Wien. Vienna, Austria, pp: 1-8.
    [113] Srivastava A, Juttner F and Strasser RJ, 1998. Action of the allelochemical, fischerenllin A, on photosystem II. Biochimica et Biophysica Aeta/ Bioenergetics, 1364 (3): 326-336.
    [114] Steemann-Nielsen E, 1973. Hydrobiologi.-Polyteknisk Forlag, Lyngby.
    [115] Steward CA and Wetzel RG, 1986. Cryptophytes and other microflagellate as couplers in plankton community dynamics. Archive für Hydrobiology, 106: 1-19.
    [116] Sun XX, Choi JK and Kim EK, 2004. A preliminary study on the mechanism ofharmful algal bloom mitigation by use of sophorolipid treatment. Journal of Experimental Marine Biology and Ecology, 304: 35- 49.
    [117] Timms RM and Moss B, 1984. Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing, in the presence of zooplanktivorous fish, in a shallow wetland ecosystem. Limnology and Oceanography, 29: 472-486.
    [118] Trainor FR, 1998. Biological aspects of Scenedesmus (Chlorophyceae)-phenotypic plasticity. Nova Hedwigia, Beiheft 117, 1-367.
    [119] Uchida T, Yamaguchi M, Matsuyama Y, et al., 1995. The red-tide dinoflagellate Heterocapsa sp. kills Gyrodinium instriatum by cell contact. Marine Ecology Progress Series, 118: 301-303.
    [120] Uehida T, Toda S, Matsuyama Y, et al., 1999. Interactions between the red tide dinoflagellates Heterocapsa circularisquama and Gymnodinium mikinotoi in laboratory culture. Journal of Experimental Marine Biology and Ecology, 241: 285-299.
    [121] Van Aller RT, Pessoney G, Rogers VA, et al., 1985. Qxygenated fatty acids: a class of allelochemicals from aquatic plants. In: Thompson AC Ed. The Chemistry of Allelopathy. Washington D.C.: American Chemistry Society, pp: 337-386.
    [122] Van den Berg MS, Coops H, Meijer ML, et al., 1998. Clear water associated with dense Chara vegetation in the shallow and turbid lake Veluwemeer, The Netherlands. In Jeppesen E, SФdergaard M and Christoffersen K (eds), The Structuring Role of Submerged Macrophytes in Lakes. Ecological Studies, 131: 339-352.
    [123] Van den Berg MS, 1999. Charophyte colonization in shallow lakes: processes, ecological effects and implications for lake management. Thesis, Free University, Amsterdam, 138 pp.
    [124] Waridel P, Wolfender JL, Lachavanne JB, et al., 2003. ent-Labdane diterpenes from the aquatic plant Potamogeton pectinatus. Phytochemistry, 64: 1309-1317.
    [125] Waridel P, Wolfender JL, Lachavanne JB, et al., 2004. ent-Labdane glycosides from the aquatic plant Potamogeton lucens and analytical evaluation of the lipophilic extract constituents of various Potamogeton species. Phytochemistry, 65: 945-954.
    [126] Whittaker RH and Feeny PD, 1971. Allelochemics: Chemical interaction between species. Science, 191 (3973): 757-770.
    [127] Willis RJ, 1985. The historical bases of the concept of allelopathy. Journal of theHistory of Biology, 18: 71-102.
    [128] Wium-Andersen S, Christophersen C and Houen G, 1982. Allelopathic effects on phytoplankton by substances isolated from aquatic macrophytes (Charales). Oikos, 39: 187-190.
    [129] Wium-Andersen S, Anthoni U and Houen G, 1983. Elemental sulphur, a possible allelopathic compound from Ceratophyllum demersum. Phytochemistry, 22: 2613.
    [130] Wium-Andersen S, 1987. Allelopathy among aquatic plants. Ergebnisse der Limnologie: Archiv fur Hydrobiologie Beihefte, 27: 167-172.
    [131] Wu H, Pratley J, Lemerle D, et al., 1999. Crop cultivars with allelopathy capability. Weed Research, 39: 17l-180.
    [132] Middlebrook EJ 等.1986.杨文进等译.废水稳定塘的设计和运行.北京:中国建筑工业出版社.
    [133] 宝月欣二,网西良治,营原久枚.1960.浮游植物与有根的水生植物之间的拮抗关系.陆水学杂志,21:124-131.
    [134] 曹萃禾.1987.水生维管束植物在太湖生态系统中的作用.生态学杂志,6(1): 3-39.
    [135] 陈大庆,邱顺林,刘绍平等.1998.老江河水生植被.中国水产科学,5(1):62-67.
    [136] 陈德辉,刘永定,宋立容.2004.蓖齿眼子菜对栅藻和微囊藻的他感作用及其参数.水生生物学报,28(2):163-168.
    [137] 陈坚,顾林娣,章宗涉等.1994.马来眼子菜抑制藻类增长及其抑制系数的计算.上海师范大学学报,23(1):69-73.
    [138] 陈建勋,王晓峰.2002.植物生理学实验指导.广州:华南理工大学出版社.
    [139] 大棚晃.1984.国立公害研究所研究报告.第 52 号:19-74.
    [140] 戴树桂,赵凡,金朝辉等.1997.香蒲植物提取物的抑藻作用及其分离鉴定.环境化学,16(3):268-271.
    [141] 国家环境保护局编辑委员会.1989.水和废水监测分析方法第 3 版.北京:中国环境科学出版杜,pp:246-285.
    [142] 顾林娣,陈坚,陈卫华等.1994.苦草种植水对藻类生长的影响.上海师范大学学报,23(1):62-68.
    [143] 何池全,叶居新,陈少风.1999.石菖蒲的克藻效应.植物生态学报,23(4): 379-384.
    [144] 贺锋,吴振斌,邱东茹.2002.东湖围隔中菹草与藻类生化他感作用初步研究.水生生物学报,26(4):421-424.
    [145] 和丽忠,陈锦玉,董宝生等.2001.国内植物化感作用研究概况.云南农业科技, (1):37-41.
    [146] 胡飞,孔垂华.1997.胜红蓟化感作用研究(Ι)-水溶物的化感作用及其化感物质分离鉴定.应用生态学报,8(3):304-308.
    [147] 黄文成.1994.沉水植物在治理滇池草海污染的作用.植物资源与环境,3(4): 29-33.
    [148] 黄文成,徐延志.1994.试论沉水植物在治理滇池草海中的作用.广西植物,14(4): 331-337.
    [149] 季成,王崇效,余叔文.1989.凤眼莲超氧化物歧化酶活性与抗寒性的关系.植物生理学报,15(2):133-136.
    [150] 金相灿,屠清瑛.2001.湖泊富营养化调查规范.北京:化学工业出版,pp:1-199.
    [151] 雷泽湘,徐德兰,黄沛生等.2006.太湖沉水和浮叶植被及其水环境效应研究.生态环境,15(2):239-243.
    [152] 李锋民,胡洪营.2004.芦苇抑藻化感物质的分离及其抑制蛋白核小球藻效果研究.环境科学,25(5):89-92.
    [153] 李锋民,胡洪营.2003.大型水生植物浸出液对藻类的化感抑制作用.中国给水排水,12(11):18-21.
    [154] 李德耀,叶济宁.1980.薄膜氧电极的制作与呼吸或光合控制的测定.植物生理学通讯,16(1):35-40.
    [155] 李寿田,周健民,王火焰等.2001.植物化感机理的研究进展.农村生态环境, 17(4):52-55.
    [156] 李雪梅,杨中艺,简曙光等.2000.有效微生物群控制富营养化湖泊蓝藻的效应.中山大学学报,39(1):81-85.
    [157] 刘保元,邱东茹,吴振斌.1997.富营养浅湖水生植被重建对底栖动物的影响.应用与环境生物学报,3(4):323-327.
    [158] 马剑敏,2005.受污染城市水体水生植被重建研究与工程实践[学位论文].中国科学院水生生物研究所,pp:8-9.
    [159] 彭海清,谭章荣,高乃云等.2002.给水处理中藻类的去除.中国给水排水, 18(2):29-31.
    [160] 蒲云海,李伟.1999.中国竹叶眼子菜的生态学研究.武汉植物学研究,17(增刊):65-72.
    [161] 钱志萍,孙莉,王全喜.2004.几种水生高等植物对铜绿微囊藻生长的影响.上海师范大学学报,33(校庆特刊):108-112.
    [162] 钱志萍,冯燕,孙莉等.2006.金鱼藻对铜绿微囊藻生长的抑制作用研究.植物研究,26(1):79-83.
    [163] 强胜,李扬汉.1994.安徽沿江圩丘农区水稻田杂草区系及草害的研究.安徽农业科学,22(2):135-138.
    [164] 秦伯强,胡维平,陈伟民等.2004.太湖水环境演化过程与机理.北京:科学出版社,pp:257-262.
    [165] 邱冬茹,吴振斌,刘保元等.1997.武汉东湖水生植被恢复的试验研究.湖泊科学, 9(2):168-174.
    [166] 全国自然科学名词审定委员会.1992.植物学名词.北京:科学出版杜,pp:83.
    [167] 苏胜齐,沈盎绿,姚维志.2002.菹草着生藻类的群落结构与数量特征初步研究.西南农业大学学报,24(3):255-258.
    [168] 孔 垂 华 .1998. 植 物 化 感 作 用 研 究 中 应 注 意 的 问 题 . 应 用 生 态 学报,9(3):332-336.
    [169] 孔垂华,徐涛,胡飞.2000.环境胁迫下植物的化感作用及其诱导机制.生态学报, 20(5):849-854.
    [170] 孙文浩,俞子文,余叔文.1988.水葫芦对藻类的克制效应.植物生理学报,14(3): 294-300.
    [171] 孙文浩,俞子文,余叔文.1989.城市富营养水域的生物治理和凤眼莲抑制藻类生长的机理.环境科学学报,9(2):188-195.
    [172] 孙文浩,俞子文,邰根福等.1990.凤眼莲无菌培养及其克藻效应.植物生理学报, 16(3):301-305.
    [173] 孙文浩,俞子文,郭克勤等.1991.凤眼莲克藻化合物的生物检测.植物生理学通讯,27(6):433-436.
    [174] 孙文浩,余叔文.1992.相生相克效应及其应用.植物生理学通讯,28(2):81-87.
    [175] 孙文浩,余叔文,杨善元.1993.凤眼莲根系分泌物中的克藻化合物.植物生理学报,19(1):92-96.
    [176] 谭仁祥.2003.植物成分功能.北京:科学出版社,pp:35-63.
    [177] 唐汇娟.2002.武汉东湖浮游植物生态学研究[学位论文].中国科学院水生生物研究所,pp:51.
    [178] 唐萍,吴国荣,陆长梅等.2000.凤眼莲根系分泌物对栅藻结构及代谢的影响.环境科学学报,20(3):355-359.
    [179] 唐萍,吴国荣,陆长梅等.2001.太湖水域几种高等水生植物的克藻效应.农村生态环境,1(3):42-44.
    [180] 王斌,周莉苹,李伟.2002.不同水质条件下菹草的净化作用及其生理反应初步研究.武汉植物学研究,20(2):150-152.
    [181] 王朝晖,陈菊芳,徐宁等.2005.大亚湾澳头海域硅藻、甲藻的数量变动及其与环境因子的关系.海洋与湖沼,36(2):186-192.
    [182] 王国祥,濮培民.1999.若干人工调控措施对富营养化湖泊藻类种群的影响.环境科学,20(3):71-74.
    [183] 王进闯,潘开文,李富华.2004.分子水平和土壤系统化感作用研究现状与展望.生态学杂志,23(6):235-240.
    [184] 王利群,王勇,董英等.2003.硝酸盐对硝酸还原酶活性的诱导及硝酸还原酶基因的克隆.生物工程学报,19:632-635.
    [185] 王立新,吴国荣,王建安等.2004.黑藻(Hydrilla verticillata)对铜绿微囊藻(Microcystis aeruginosa)抑制作用.湖泊科学,16(4):337-342.
    [186] 王文林,马婷,李强等.2006.水生高等植物季相交替群落对富营养化水体净化效果调查.环境监测管理与技术,18(1):16-19.
    [187] 吴晓辉.2005.常见眼子菜科沉水植物对浮游藻类的化感作用研究[学位论文].中国科学院水生生物研究所.
    [188] 吴玉树.1990.杞簏湖水生生态系统中重金属的迁移积累.环境科学,10(3): 197-201.
    [189] 吴振斌,张兵之,张丽萍等.2006.叶绿素-a、?-胡萝卜素及脱镁叶绿酸-a 的高效液相色谱检测.分析化学,(9):3159.
    [190] 袁冬梅,王若南,彭莉等.2002.汉氏菱形藻(硅藻)对银的吸附效应研究.云南大学学报,24(2):144-146.
    [191] 袁峻峰,章宗涉.1993.金鱼藻(Ceratophyllum demersum Kom.)对藻类的生化干预作用.生态学报,13(1):45-50.
    [192] 杨善元,俞子文,孙文浩等.1992.凤眼莲根系中抑藻类物质分离与鉴定.植物生理学报,18(4):399-402.
    [193] 夏宜琤,况琪军.1993.综合生物塘中的藻类研究 Ι.水生生物学报,17(1):75-82.
    [194] 鲜啟鸣,陈海东,邹惠仙等.2005.四种沉水植物的克藻效应.湖泊科学,17(1): 75-80.
    [195] 鲜啟鸣,陈海东,邹惠仙等.2006.沉水植物中挥发性物质对铜绿微囊藻的化感作用.生态学报,26(11):3549-3554.
    [196] 谢平.2005.浅水湖泊内源磷负荷季节变化的生物驱动机制.中国科学 D辑,35(增刊 II):11-23.
    [197] 阎飞,杨振明,韩丽梅.2000.植物化感作用及其作用物的研究方法.生态学报, 20(4):692-696.
    [198] 杨清心.1998.东太湖水生植被的生态功能及调节机制.湖泊科学,10(1):67-72.
    [199] 余叔文.1990.植物生理与分子生物学.北京:科学出版社,pp:210-343.
    [200] 余叔文.1992.植物生理与分子生物学.北京:科学出版社,pp:376-393.
    [201] 俞子文,孙文浩,郭克勤等.1992.几种高等水生植物的克藻效应.水生生物学报, 16(1):1-7.
    [202] 袁冬梅,王若南,彭莉等.2002.汉氏菱形藻(硅藻)对银的吸附效应研究.云南大学学报,24(2):144-146.
    [203] 章宗涉,黄祥飞.1991.淡水浮游生物研究方法.北京:科学出版杜,pp:333-344.
    [204] 章宗涉.1998.水生高等植物-浮游植物关系和湖泊营养状态.湖泊科学,10(4):83-86.
    [205] 中国水资源公报.2004.北京:中华人民共和国水利部.
    [206] 庄源益,赵凡,戴树桂等.1995.高等水生植物对藻类生长的克制效应.环境科学进展,6(31):44-49.
    [207] 朱斌,陈飞.2002.利用水生植物净化富营养化水体的研究进展.上海环境科学,21(9):564-567.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700