复合垂直流人工湿地系统除磷研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为欧盟项目“热带、亚热带区域水质改善、回用与水生态系统重建的生物工艺学对策研究”的研究成果,复合垂直流人工湿地系统已经逐步开始应用于富营养化湖泊水体治理。本文以实验室研究为主,结合野外基地实验,在以下几个方面讨论了复合垂直流人工湿地的对磷的净化效率、净化机理,并对维持人工湿地系统的长效安全运行进行了初步的研究。
     1.通过比较八套组合工艺系统在400-1020mm/d的水力负荷下对磷的净化效率,发现下行流湿地——兼性塘组合工艺对总磷无机磷的平均去除效率最低仅为18.41%和6.95%。对无机磷去除效果最好下行流湿地——上行流湿地组合工艺,即复合垂直流人工湿地系统,去除率达到33.76%。对总磷去除效果最好的推流床——下行流湿地组合工艺,去除率达到40.35%,复合垂直流人工湿地系统对总磷的去除率也达到了39.68%。复合垂直流人工湿地系统对总磷无机磷的去除效率要略高于推流床工艺,推流床与复合垂直流人工湿地系统联用时,推流床后置能够小幅度提高系统的除磷能力,而塘系统与下行流湿地系统联用时,塘系统后置会除磷效果会降低20%以上。
     2.通过比较两年间六种湿地组合工艺系统不同层次出水中磷含量以及各主要理化因子的变化,发现好氧塘——下行流湿地组合工艺中无机磷的去除效率与溶解氧的含量显著相关(r2=0.994),而下行流湿地——兼性塘组合工艺(r2=0.840)、推流床——下行流湿地组合工艺(r2=0.745)、下行流湿地——推流床湿地组合工艺(r2=0.728)中总磷的去除效率与pH显著相关。在高水力负荷(1200mm/d)下,各套组合工艺系统表层对磷的积累增加,基质磷发生了不同程度的释放。好氧塘——下行流湿地组合工艺对磷的去除效率下降幅度最小,在水流方向上对磷的去除效率持续增加。
     3.通过对复合垂直流人工湿地系统进行分层采水,发现复合垂直流人工湿地系统上行池在系统除磷效能下降时出现了磷的释放,通过对基质磷总磷、有机磷以及无机磷的分级分离,发现人工湿地系统基质中磷的积累主要是铁磷和钙磷的积累造成。
     4.通过在实验室建立模拟柱试验的研究,对沸石、无烟煤、页岩、蛭石、陶粒、砾石、钢渣、圆陶粒等人工湿地填料进行筛选,发现钢渣具有最好的除磷效率,实验期间对总磷的去除率高于85%,在进水磷含量低于0.5mg/L的条件下也能保持高的除磷效率。
     5.通过对官桥人工湿地系统的研究,发现用草皮代替大型湿生植物作为湿地上行池主要植物的切实可行。
     6.通过人工湿地系统的三角湖工程示范的监测,总结了人工湿地系统在实际工程中运行的成功经验。
     本文首先比较了不同构型的人工湿地系统除磷的效率,发现复合垂直流人工湿地系统在高水力负荷下具有较好的净化磷的能力。通过比较不同构型组合的人工湿地去除磷的净化空间,得出了人工湿地系统组合的一些重要原则。并通过实验室和野外的结合研究,考察了复合垂直流人工湿地系统除磷的主要机理并深入讨论了复合垂直流人工湿地系统净化效率下降的主要原因,提出了人工湿地除磷效能下降时的解决方案。为了进一步提升复合垂直流人工湿地系统除磷能力,通过实验室模拟柱实验发现钢渣除磷效果最佳,是否能应用于工程实践还有待进一步的试验论证。
As a new designed constructed wetland developed by the EC project“Water quality improvement in tropical and subtropical areas for reuse and rehabilitation of aquatic ecosystems”, Integrated Vertical Flow Constructed Wetland (IVCW) has been widely used to the rehabiliatation of the eutrophic lake. Laboratory and field researches have been carried out in this dissertation. Performance and mechanism of phosphorus removal were investigated in pilot, medium and large scale. It was discussed how to lengthen the longevity of this kind of constructed wetland and how to keep the high removal performance on phosphorus in this paper. This dissertation concentrated on:
     1. Eight different combined processes of constructed wetlands were monitored mainly for their phosphorus removal abilities.Among the 8 systems, the best TP removal efficiency took place in plug flow bed-down flow chamber process. 39.68% was observed. The Down flow chamber-stabilization pond process removed the least phosphours, only 18.41% TP and 6.95% IP was removed. The best IP removal efficiency of 33.76% was observed in IVCW. Putting the plug flow after IVCW could minorly enhance the phophorus removal ability, however putting the stabilization pond after down flow chamber would decrease 20% in removing phosphorus.
     2. The spatial removal differences of six different combined processes were monitored in 2 years. Phosphorus removal efficiency in the stabilization pond-down flow chamber process significantly correlated to the DO value. Phosphorus removal efficiency in the down flow chamber-stabilization pond (r2=0.840), the down flow chamber-plug flow bed (r2=0.745), the plug flow bed- down flow chamber (r2=0.728) significantly correlated to the pH value. Under the high hydraulic load of 1200mm/d, the upper layer of the combined processes accumulated more phosphorus than the bottom. Phosphorus was released from the upper section. Phosphorus removal ability in the stabilization pond-down flow chamber process decreased least, increased along the water flow direction.
     3. Spatial outlet water was collected and analysed, the sequential separation of differed form phosphorus in the substrate was also performed. The accumulation of phosphorus in the substrate was mainly casued by the increase of Ca-P, Al-P.
     4. Eight constructed wetland media, zeolite, anthracite, shale, vermiculite, ceramic filter, gravel, blast furnace, biomaterial ceramic were studied for their phosphorus removal abilities in green house. Blast furnace was the best choice for the high performance removing phosphorus over 85% during the experiment stage even when the inlet phosphorus concentration lower than 0.5mg/L.
     5. Phosphorus removal in Guanqiao construted wetland was studied, using grass as the upflow chamber plant was a feasible choice.
     6. Through the practical use of constructed wetland in Sanjiaohu Lake, the experiences of practical use in treating eutrophic lake water were acquired.
     Phosphorus removal in different combined processed constructed wetlands were investigated, IVCW operates best under high hydrolic load rate and cold climate. Spatial sampling results from different combined processed wetlands revealed some important principles of combination of constructed wetland untis. Laboratory research and field research were performed on mechanisms of phosphorus in IVCW, the method avoiding the decrease of phosphorus removal rate was brought forward. In order to length the lifespan of phosphorus remove, 8 different media were investigated for their phosphorus removal ability. Blast furnace appered the best performance,. The pratical use needs further research.
引文
1. Ahn, C., Mitsch, W. J., Evaluating the use of recycled coal combustion products in constructed wetlands: an ecologic-economic modeling approach. Ecological Modelling. 2002, 150: 117-140.
    2. Ahn, C., Mitsch, W. J., Scaling considerations of mesocosm wetlands in simulating large created freshwater marshes. Ecological Engineering. 2002, 18: 327-342.
    3. Ahn, C., Mitsch, W. J., Wolfe, W. E., Effects of recycled FGD liner material on water quality and macrophytes of constructed wetlands: A mesocosm experiment. Water Research. 2001, 35: 633-642.
    4. Akratos, C. S., Tsihrintzis, V. A., Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands. Ecological Engineering. 2007, 29: 173-191.
    5.Amstrong, W., Root aeration in wetland condition. In: Hook DD,Crawford R M,eds. Plant life in anaerobic environments. Ann Arbor: Ann Arbor Science, MT.1978: 269-297.
    6. Ann, Y., Reddy, K. R., Delfino, J. J., Influence of chemical amendments on phosphorus immobilization in soils from a constructed wetland. Ecological Engineering. 1999, 14: 157-167.
    7. Ansola, G., Gonzalez, J. M., Cortijo, R., de Luis, E., Experimental and full-scale pilot plant constructed wetlands for municipal wastewaters treatment. Ecological Engineering 2003, 21: 43-52.
    8. Arheimer, B., Torstensson, G., Wittgren, H.B., Landscape planning to reduce coastal eutrophication: agricultural practices and constructed wetlands. Landscape and Urban Planning. 2004, 67: 205-215.
    9. Arias, C. A., Del Bubba, M., Brix, H., Phosphorus removal by sands for use as media in subsurface flow constructed reed beds. Water Research. 2001, 35: 1159-1168.
    10. Armstrong, W., Root aeration in wetland condition. In: Hook D D, Crawford RM, eds. Plant life in anaerobic environments,Ann Arbor:Ann Arbor Science, M I, 1978: 269 – 297.
    11. Aslan, S., Kapdan, I. K., Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecological Engineering. 2006, 28:64-70.
    12. Auvray, F., van Hullebusch, E. D., Deluchat, V., Baudu, M., Laboratory investigation of the phosphorus removal (SRP and TP) from eutrophic lake water treated with aluminium. Water Research. 2006, 40:2713-2719.
    13. Bellier, N., Chazarenc, F., Comeau, Y., Phosphorus removal from wastewater by mineral apatite. Water Research.2006, 40:2965-2971.
    14. Bojcevska, H., Tonderski, K., Impact of loads, season, and plant species on the performance of a tropical constructed wetland polishing effluent from sugar factory stabilization ponds. Ecological Engineering. In Press, Corrected Proof.
    15. Braskerud, B. C., Factors affecting phosphorus retention in small constructedwetlands treating agricultural non-point source pollution. Ecological Engineering. 2002, 19: 41-61.
    16. Braskerud, B. C., Factors affecting nitrogen retention in small constructed wetlands treating agricultural non-point source pollution. Ecological Engineering. 2002, 18: 351-370.
    17. Brix, H., Arias, C. A., Del B. M., Media selection for sustainable phosphorus removal in subsurface flow constructed wetlands. Water Sci Technol. 2001, 44: 47–54.
    18. Brix, H., Denmark. In: Vymazal, J., Brix, H., Cooper, P.F., Green, M.B., Haberl, R., Constructed Wetlands for Wastewater Treatment in Europe. Backhuys Publishers, Leiden, The Netherlands, 1998, 123–152.
    19. Brix, H., The applicabicability of the wastewater treatment plant in Othfresen as scientific documentation of the rootzone method. Wat.Sci. Technol. 1986, 19 (10): 19- 24.
    20. Brix, H., Teatment of wastewater in the rhizosphere of wetland plants-the rootzone method. Wat Sci Technol.1987, 19: 107-118.
    21. Bulc, T. G.., Long term performance of a constructed wetland for landfill leachate treatment. Ecological Engineering. 2006, 26 (4): 365-374.
    22. Cameron, K., Madramootoo, C., Crolla, A., Kinsley, C., Pollutant removal from municipal sewage lagoon effluents with a free-surface wetland. Water Research. 2003, 37 (12):2803-2812.
    23. Chimney, M. J., Wenkert, L., Pietro, K. C., Patterns of vertical stratification in a subtropical constructed wetland in south Florida (USA). Ecological Engineering. 2006, 27 (4): 322-330.
    24. Chimney, M. J., Pietro, K. C., Decomposition of macrophyte litter in a subtropical constructed wetland in south Florida (USA). Ecological Engineering. 2006, 27 (4): 301-321.
    25. Chris, C. Effect of loading rate planting on treatment of dairy farmwastewaters in constructed wetlands: Removal of nitrogen and phosphorous. Water Research. 1995, 29(1): 17-26.
    26. Cooper, P. F., European design and operation guidelines for reed bed treatment systems. EC/EWPCA Emergent Hydrophyte Treatment System Expert Contact Group. WRc Report UI 17, 1990, Swindon, UK.
    27. Coveney, M. F., Stites, D. L., Lowe, E. F., Battoe, L. E., Conrow, R., Nutrient removal from eutrophic lake water by wetland filtration. Ecological Engineering. 2002, 19 (2): 141-159.
    28. Devai, I., Delaune, R. D. Evidence for phosphine production and emissionfrom Louisiana and Florida marsh soils[J]. Organic Geochemistry,1995, 23(3): 277-279.
    29. Davies, T. H., Cottingham, P D., Phosphorus removal from wastewater in a constructed wetland . Boca Raton , FL : Lewis Publisher, 1993, 315-320.
    30. Del Bubba, M., Arias, C. A., Brix, H., Phosphorus adsorption maximum of sands for use as media in subsurface flow constructed reed beds as measured by the Langmuir isotherm. Water Research. 2003, 37(14): 3390-3400.
    31. Drizo, A., Frost, C. A., Grace, J., Smith, K. A., Physico-chemical screening ofphosphate-removing substrates for use in constructed wetland systems. Wat. Res. 1999, 33: 3595–3602.
    32. Ennabili, A., Ater, M., Radoux, M., Biomass production and NPK retention in macrophytes from wetlands of the Tingitan Peninsula. Aquatic Botany. 1998, 62(1): 45-56.
    33. Farahbakhshazad, N., Morrison, G. M., Salati, E., Nutrient removal in a vertical upflow wetland in Piracicaba, Brazil. Ambio. 2000, 29: 74–77.
    34. Faulkner, S. P., Richardson, C. J., Physical and chemical characteristics of freshwater wetland soils. In: Hammer, D.A., Constructed Wetlands for Wastewater Treatment.Municipal, Industrial and Agricultural. Lewis Publishers,Chelsea, MI, 1989, 41–72.
    35. Fytianos, K., Voudrias, E, Raikos, N., Modelling of phosphorus removal from aqueous and wastewater samples using ferric iron Environmental Pollution,1998, 101:123–130..
    36. Gaiser, E. E., Scinto, L. J., Richards, J. H., Jayachandran, K., Childers, D. L., Trexler, J. C., Jones, R. D., Phosphorus in periphyton mats provides the best metric for detecting low-level P enrichment in an oligotrophic wetland. Water Research. 2004, 38 (3): 507-516.
    37. Geller, G.., Horizontal subsurface flow systems in the German Speaking countries: Summary of long-term scientific and practical experience; recommendations. Wat Sci Tech , 1997, 35 (5):157~166.
    38. Gersberg, R. M., Elkins, B. V., Lyon, S. R., Role of Aquatic Plants in Waste water Ttreatment by Artificial Wetlands. Water Research.1986, 20 (3): 363-368.
    39. Gomez Cerezo, R., Suarez, M. L., Vidal-Abarca, M. R., The performance of a multi-stage system of constructed wetlands for urban wastewater treatment in a semiarid region of SE Spain. Ecological Engineering. 2001, 16(4): 501-517.
    40. Greenway, M., Woolley, A., Constructed wetlands in Queensland: Performance efficiency and nutrient bioaccumulation. Ecological Engineering. 1999, 12: 39-55.
    41.Gyllenberg, H.G., Eklund, E., The Organisms: Bacteria. In: Dickinson, C.H., Pugh, G.J.F., Biology of Plant Litter Decomposition. Academic Press, London, 1974, 245–269.
    42. Higgins, J. P., Hurd, S., Weil, C., The use of engineered wetlands to treat recalcitrant wastewaters. J. Environ. Sci. Heal. 2000,35: 1309–1334.
    43. House, C. H., Bergmann, B. A., Stomp, A. M., Frederick, D. J., Combining constructed wetlands and aquatic and soil filters for reclamation and reuse of water. Ecological Engineering. 1999, 12: 27-38.
    44. Jenkinson, D. S., Ladd, J. N., Microbial biomass in soil: measurement and turnover. In: Paul, E. A., Ladd, J. N., Soil Biochemistry. Marcel Dekker, New York, 1981, 5: 415–471.
    45. Ji, G., Sun, T., Zhou, Q., Sui, X., Chang, S., Li, P., Constructed subsurface flow wetland for treating heavy oil-produced water of the Liaohe Oilfield in China. Ecological Engineering. 2002, 18 (4): 459-465.
    46. Juston, J., DeBusk, T. A., Phosphorus mass load and outflow concentration relationships in stormwater treatment areas for Everglades restoration. EcologicalEngineering. 2006, 26(3): 206-223.
    47. Juwarkar, A. S., Oke, B., Juwarkar, A., Patnaik, S. M., Domestic wastewater treatment through constructed wetland in India. Water Science and Technology. 1995, 32 (3): 291-294.
    48. Kadlec, R. H., Detention and mixing in free water wetlands. Ecological Engineering. 1994, 3(4): 345-380.
    49. Kadlec, R. H., Knight, R. L., Treatment Wetlands. CRC Press/Lewis Publishers, Boca Raton, FL, 1996, 893.
    50. Kadlec, R. H., Overview: Surface flow constructed wetlands. Water Science and Technology. 1995, 32(3): 1-12.196.
    51. Kadlec, R.H., Newman, S., Everglades protection stormwater treatment area design support phosphorus treatment areas. Report to South FloridaWa. 1992.
    52. Kalin, M., Fyson, A., Wheeler, W. N., The chemistry of conventional and alternative treatment systems for the neutralization of acid mine drainage. Science of The Total Environment. 2006, 366:395-408.
    53. Karathanasis, A. D., Potter, C. L., Coyne, M. S., Vegetation effects on fecal bacteria, BOD, and suspended solid removal in constructed wetlands treating domestic wastewater. Ecological Engineering. 2003, 20(2): 157-169.
    54. Katsev, S., Tsandev, I., L'Heureux, I., Rancourt, D. G., Factors controlling long-term phosphorus efflux from lake sediments: Exploratory reactive-transport modeling. Chemical Geology. 2006, 234: 127-147.
    55. Kickuth, R., Degradation and Incorporation of Nutrients from RuralWastewater by Plant Rhizosphere under Limnic Conditions, Utilization of Manure by Land Spreading. London: Commu of the Euro Communities (EUR1 5672e), 1977, 1 335-343.
    56. Kickuth, S. K., Macrophytes and W ater Purification: Biological Control of Water Pollution. Ph iladelphia: Pensylvanis University Press, 1976
    57. Kim, E.-H., Lee, D.-W., Hwang, H.-K., Yim, S., Recovery of phosphates from wastewater using converter slag: Kinetics analysis of a completely mixed phosphorus crystallization process. Chemosphere. 2006, 63(2): 192-201.
    58. Knight, R. L., PayneJr, V. W. E., Borer, R. E., ClarkeJr, R. A., Pries, J. H., Constructed wetlands for livestock wastewater management. Ecological Engineering. 2000, 15: 41-55.
    59. Korner, S., Vermaat, J. E., 1998. The relative importance of Lemna gibba L., bacteria and algae for the nitrogen andphosphorus removal in duckweed-covered domestic wastewater. Water Res. 32: 3651–3661.
    60. Koskiaho, J., Ekholm, P., Raty, M., Riihimaki, J., Puustinen, M., Retaining agricultural nutrients in constructed wetlands--experiences under boreal conditions. Ecological Engineering. 2003, 20(1): 89-103.
    61.Kuschk, P., Wiebner, A., Kappelmeyer, U., Weibbrodt, E., Kastner,M., Stottmeister, U., Annual cycle of nitrogen removal bya pilot-scale subsurface horizontal flow in a constructedwetland under moderate climate. 2003, Water Res. 37: 4236–4242.
    62. Kyambadde, J., Kansiime, F., Gumaelius, L., Dalhammar, G., A comparative study of Cyperus papyrus and Miscanthidium violaceum-based constructed wetlands forwastewater treatment in a tropical climate. Water Research. 2004, 38 (2): 475-485.
    63. Lantzke, I. R., Mitchell, D. S., Heritage, A. D., Sharma, K. P., A model of factors controlling orthophosphate removal in planted vertical flow wetlands. Ecological Engineering. 1999, 12: 93-105.
    64. Lee, B. H., Scholz, M., What is the role of Phragmites australis in experimental constructed wetland filters treating urban runoff? Ecological Engineering. In Press, Corrected Proof.
    65. Liang, W., Wu, Z. b., Cheng, S. p., Zhou, Q. h., Hu, H. y., Roles of substrate microorganisms and urease activities in wastewater purification in a constructed wetland system. Ecological Engineering. 2003, 21: 191-195.
    66. Li, H. X.,Zhang, X. M., Liu, Y. J., Soil components affecting phosphate sorption parameters of acid paddy softs in Guangdong province.Pedosphere. 2000,10:317-32.
    67. Lin, Y. F., Jing, S. R., Lee, D. Y., Chang, Y. F., Chen, Y. M., Shih, K. C., Performance of a constructed wetland treating intensive shrimp aquaculture wastewater under high hydraulic loading rate. Environmental Pollution. 2005, 134 (3): 411-421.
    68. L. Rousseau, D. P., Vanrolleghem, P. A., Pauw, N. D., Constructed wetlands in Flanders: a performance analysis. Ecological Engineering. 2004, 23, (3), 151-163.
    69. Lockaby, B. G., Clawson, R. G., Flynn, K., Rummer, R., Meadows, S., Stokes, B., Stanturf, J., Influence of harvesting on biogeochemical exchange in sheetflow and soil processes in a eutrophic floodplain forest. Forest Ecology and Management. 1997, 90: 187-194.
    70. Lowe, E. F., Keenan, L. W., Managing phosphorus-based, cultural eutrophication in wetlands: a conceptual approach. Ecological Engineering. 1997, 9: 109-118.
    71. Luederitz, V., Eckert, E., Lange-Weber, M., Lange, A., Gersberg, R. M., Nutrient removal efficiency and resource economics of vertical flow and horizontal flow constructed wetlands. Ecological Engineering. 2001, 18(2): 157-171.
    72. Mandi, L., Bouhoum, K., Ouazzani, N., Application of constructed wetlands for domestic wastewater treatment in an arid climate. Water Science and Technology. 1998, 38, (1), 379-387.
    73. Mann, R. A., Phosphorus adsorption and desorption characteristics of constructed wetland gravels and steelworks by-products. J. Soil Res. 1997, 35: 375–380.
    74.Mantovi, P., Marmiroli, M., Maestri, E., Tagliavini, S., Piccinini, S., Marmiroli, N., Application of a horizontal subsurface flow constructed wetland on treatment of dairy parlor wastewater. Bioresource Technology. 2003, 88(2): 85-94.
    75. Martin, C. D., Johnson, K. D., Moshiri, G. A., Performance of a constructed wetland leachate treatment system at the Chunchula landfill, mobile county, Alabama. Water Science and Technology. 1999, 40(3): 67-74.
    76. Martin, C. D., Johnson, K. D., The use of extended aeration and in-series surface-flow wetlands for landfill leachate treatment. Water Science and Technology. 1995, 32(3): 119-128.
    77. Maehlum, T., Jenssen, P. D., Warner, W. S., Cold-climate constructed wetlands. Water Science and Technology. 1995, 32, (3), 95-101.
    78. Majer Newman, J., Clausen, J. C., Neafsey, J. A., Seasonal performance of a wetland constructed to process dairy milkhouse wastewater in Connecticut. Ecological Engineering. 1999, 14: 181-198.
    79. Mander, U., Mauring, T., Constructed wetlands for wastewater treatment in estonia. Water Science and Technology. 1997, 35(5): 323-330.
    80. McCormick, P. V., Shuford Iii, R. B. E., Chimney, M. J., Periphyton as a potential phosphorus sink in the Everglades Nutrient Removal Project. Ecological Engineering. 2006, 27(4): 279-289.
    81. Meuleman, A. F. M., Van Logtestijn, R., Rijs, G. B. J., Verhoeven, J. T. A., Water and mass budgets of a vertical-flow constructed wetland used for wastewater treatment. Ecological Engineering. 2003, 20(1): 31-44.
    82. Mhlum, T., Stlnacke, P., Removal efficiency of three cold-climate constructed wetlands treating domestic wastewater: Effects of temperature, seasons, loading rates and input concentrations. Water Science and Technology. 1999, 40(3): 273-281.
    83. Mitsch, W. J., Wise, K. M., Water quality, fate of metals, and predictive model validation of a constructed wetland treating acid mine drainage. Water Research. 1998, 32(6): 1888-1900.
    84. Moseman, S. M., Levin, L. A., Currin, C., Forder, C., Colonization, succession, and nutrition of macrobenthic assemblages in a restored wetland at Tijuana Estuary, California. Estuarine, Coastal and Shelf Science. 2004, 60(4): 755-770.
    85. Murray-Gulde, C., Heatley, J. E., Karanfil, T., Rodgers, J. J. H., Myers, J. E., Performance of a hybrid reverse osmosis-constructed wetland treatment system for brackish oil field produced water. Water Research. 2003, 37(3): 705-713.
    86. Nash, D. M., Halliwell, D. J., Tracing phosphorous transferred from grazing land to water. Water Research. 2000, 34(7): 1975-1985.
    87. Neralla, S., Weaver, R. W., Lesikar, B. J., Persyn, R. A., Improvement of domestic wastewater quality by subsurface flow constructed wetlands. Bioresource Technology. 2000, 75(1): 19-25.
    88. Newman, S., Pietro, K., Phosphorus storage and release in response to flooding: implications for Everglades stormwater treatment areas. Ecological Engineering. 2001, 18(1): 23-38.
    89. Nguyen, L. M., Organic matter composition, microbial biomass and microbial activity in gravel-bed constructed wetlands treating farm dairy wastewaters. Ecological Engineering. 2000, 16(2): 199-221.
    90. Olila, O. G., Reddy, K. R., Stites, D. L., Influence of draining on soil phosphorus forms and distribution in a constructed wetland. Ecological Engineering. 1997, 9: 157-169.
    91. Pant, H. K., Reddy, K. R., Potential internal loading of phosphorus in a wetland constructed in agricultural land. Water Research. 2003, 37(5): 965-972.
    92. Parfitt, R. L., Phosphate adscorption on an oxisol Soi. Sci Soc Am J. 1977, 41: l064-l067.
    93. Pant, H. K., Reddy, K. R., Lemon, E., Phosphorus retention capacity of root bed media of sub-surface flow constructed wetlands. Ecological Engineering. 2001,17(4): 345-355.
    94. Ran, N., Agami, M., Oron, G., A pilot study of constructed wetlands using duckweed (Lemna gibba L.) for treatment of domestic primary effluent in Israel. Water Research. 2004, 38(9): 2241-2248.
    95 Rash, J. K., Liehr, S. K., Flow pattern analysis of constructed wetlands treating landfill leachate. Water Science and Technology. 1999, 40(3): 309-315.
    96. R. Bhamidimarri et al., Constructed Wetlands for wastewaterTreatment:the New Zealand Experience. Water. Sci. Tech. 1991, 24(5): 247-253.
    97. Reed, S. C., Crites, R. W., Middlebrooks, E. J., Natural systems for waste management and treatment(2nd ED). McGraw Hill Inc,1995.
    98. Richardson, C.J., Mechanisms controlling phosphorus retention capacity in freshwater wetlands. Science. 1985, 228, 1424–1427.
    99. Richardson, C.J., Qian SS. Long-term phosphorus assimilative capacity in freshwater wetlands : a new paradigm for sustaining ecosystem structure and function. Envi ron Sci & Tech , 1999, 33 (10): 1545-1551.
    100. Roger, L. P., Roger, J. A.,The mechanism of phosphate fixation by iron oxides. Soil Sci. Soc..Amar.Proc. 1975, 39: 83-84
    101. Sawaittayothin, V., Polprasert, C., Nitrogen mass balance and microbial analysis of constructed wetlands treating municipal landfill leachate. Bioresource Technology 2007, 98(3): 565-570.
    102. Sakadevan, K., Bavor, H. J., Phosphate adsorption characteristics of soils, slags and zeolite to be used as substrates in constructed wetland systems. Water Research. 1998, 32(2): 393-399.
    103. Sawaittayothin, V., Polprasert, C., Nitrogen mass balance and microbial analysis of constructed wetlands treating municipal landfill leachate. Bioresource Technology. 2007, 98(3): 565-570.
    104. Schaafsma, J. A., H. Baldwin, A., Streb, C. A., An evaluation of a constructed wetland to treat wastewater from a dairy farm in Maryland, USA. Ecological Engineering. 1999, 14: 199-206.
    105. Schonborn, A., Zust, B., Underwood, E., Long term performance of the sand-plant-filter schattweid (Switzerland). Water Science and Technology. 1997, 35 (5): 307-314.
    106. Scholz, M., Xu, J., Performance comparison of experimental constructed wetlands with different filter media and macrophytes treating industrial wastewater contaminated with lead and copper. Bioresource Technology. 2002, 83(2): 71-79.
    107. Scholz, M., Xu, J., Comparison of constructed reed beds with different filter media and macrophytes treating urban stream water contaminated with lead and copper. Ecological Engineering. 2002, 18(3): 385-390.
    108. Scott, W., Advanced designs for constructed wetlands.Biocycle. 2001, 42 (6) :40 - 43.
    109. Shalla, G., John, K., Paul R., Angus, M., The nutrient assimilative capacity of maerlas a substrate in constructed wetland systems for waste treatment. Wat.res. 2000, 34(8): 2183-2190.
    110. Silvan, N., Vasander, H., Karsisto, M., Laine, J., Microbial immobilisation of added nitrogen and phosphorus in constructed wetland buffer. Applied Soil Ecology. 2003, 24(2): 143-149.
    111. Simi, A. L., Mitchell, C. A., Design and hydraulic performance of a constructed wetland treating oil refinery wastewater. Water Science and Technology. 1999, 40(3): 301-307.
    112. Siobhan, F. M., Cronk, J. K., Mitsch, W. J., Macrophyte productivity and community development in created freshwater wetlands under experimental hydrological conditions. Ecological Engineering. 1994, 3(4): 469-484.
    113. Smith, T. J.,Sanchez, P. A., Efects of time,sihcate,and phosphorus applicatians to an oxisol on phosphorus sorption and ion retention. Soil Sci Soc Am J. 1980, 44: 500-505.
    114. Sobolewski, A., Metal species indicate the potential of constructed wetlands for long-term treatment of metal mine drainage. Ecological Engineering. 1996, 6(4): 259-271.
    115. Solano, M. L., Soriano, P., Ciria, M. P., Constructed Wetlands as a Sustainable Solution for Wastewater Treatment in Small Villages. Biosystems Engineering. 2004, 87(1): 109-118.
    116. Sposito, G., The Surface Chemistry of Soils. Oxford University Press, New York, NY. 1984.
    117. Steer, D., Fraser, L., Boddy, J., Seibert, B., Efficiency of small constructed wetlands for subsurface treatment of single-family domestic effluent. Ecological Engineering. 2002, 18(4): 429-440.
    118. Sun, G., Gray, K. R., Biddlestone, A. J., Allen, S. J., Cooper, D. J., Effect of effluent recirculation on the performance of a reed bed system treating agricultural wastewater. Process Biochemistry. 2003, 39(3): 351-357.
    119. Tanner, C. C., Clayton, J. S., Upsdell, M. P., Effect of loading rate and planting on treatment of dairy farm wastewaters in constructed wetlands--II. Removal of nitrogen and phosphorus. Water Research. 1995, 29(1): 27-34.
    120. Tanner, C. C., Plants for constructed wetland treatment systems - A comparison of the growth and nutrient uptake of eight emergent species. Ecological Engineering. 1996, 7(1): 59-83.
    121. Tanner, C. C., Sukias, J. P. S., Upsdell M P. Relationships between loading rates and pollution removal during maturation of gravel2bed constructed wetlands. Journal of Environmental Quality. 1998, 27 :448-458.
    122. Tao, W., Hall, K. J., Dynamics and influencing factors of heterotrophic bacterial utilization of acetate in constructed wetlands treating woodwaste leachate. Water Research 2004, 38: 3442-3448.
    123. Tilley, D. R., Brown, M. T., Wetland networks for stormwater management in subtropical urban watersheds. Ecological Engineering. 1998, 10(2): 131-158.
    124. Tilley, D. R., Badrinarayanan, H., Rosati, R., Son, J., Constructed wetlands as recirculation filters in large-scale shrimp aquaculture. Aquacultural Engineering. 2002, 26(2): 81-109.
    125. U S EPA., Guiding principles for constructed treatment wetlands: providing forwater quality and wildlife habit. Washington DC: US EPA ,Office of Wetlands ,Oceans and Watershed ,2000.
    126. Vymazal, J., Brix, H., Cooper, P. F., Constructed Wetlands forWastewater Treatment in Europe.Leiden :Backhuys Publishers ,1998.
    127. Vymazal, J., Brix H, Cooper, P. F., emoval mechanisms and types of constructed wetlands//Vymazal J, Brix H,Cooper P F, et al., Eds. Constructed wetlands for wastewatertreatment in Europe. Leiden: Backhuys Publishers, 1998:17-66.
    128. Vymazal, J., Constructed wetlands for wastewater treatment in the Czech Republic the first 5 years experience. Water Science and Technology. 1996, 34(11): 159-164.
    129. Vymazal, J., Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment. Ecological Engineering. 2005, 25(5): 478-490.
    130. Vymazal, J., Removal of phosphorus in constructed wetlands with horizontal sub-surface flow in the Czech Republic. In: Vymazal, J. (Ed.), Nutrient Cycling and Retention in Natural and Constructed Wetlands. Backhuys Publishers, Leiden, The Netherlands, 1999b, 73–83.
    131. Vymazal, J., The use of sub-surface constructed wetlands for wastewater treatment in the Czech Republic: 10 years experience. Ecological Engineering. 2002, 18(5):633-646
    132. Vymazal, J., Nitrogen removal in constructed wetlands withhorizontal sub-surface flow—can we determine the key process? In: Vymazal, J. (Ed.), Nutrient Cycling and Retention in Natural and Constructed Wetlands. Backhuys Publishers,Leiden, 1999,1–17.
    133. Walling, D. E., Owens, P. N.,Carter, J., Storage of Sediment-Associated Nutrients and Contaminants in River Channel and Floodplain Systems. Applied Geochemistry. 2003, 18: 195-220..
    134. Wang, H., Jawitz, J. W., White, J. R., Martinez, C. J., Sees, M. D., Rejuvenating the largest municipal treatment wetland in Florida. Ecological Engineering. 2006, 26(2): 132-146.
    135. Wang, N., Mitsch, W. J., A detailed ecosystem model of phosphorus dynamics in created riparian wetlands. Ecological Modelling. 2000, 126: 101-130.
    136. Wang, Y., Han, T., Xu, Z., Bao, G., Zhu, T., Optimization of phosphorus removal from secondary effluent using simplex method in Tianjin, China. Journal of Hazardous Materials. 2005, 121: 183-186.
    137. Whitehead, P. G., Prior, H., Bioremediation of acid mine drainage: an introduction to the Wheal Jane wetlands project. Science of The Total Environment. 2005, 338: 15-21.
    138. Wiener, A., Kuschk, P., Stottmeister, U., Struckmann, D., Jank, M., Treating a lignite pyrolysis wastewater in a constructed subsurface flow wetland. Water Research. 1999, 33(5): 1296-1302.
    139. Wong, T. H. F., Geiger, W. F., Adaptation of wastewater surface flow wetland formulae for application in constructed stormwater wetlands. Ecological Engineering. 1997, 9: 187-202.
    140. Wong, T. H. F., Fletcher, T. D., Duncan, H. P., Jenkins, G. A., Modelling urbanstormwater treatment-A unified approach. Ecological Engineering. 2006, 27(1): 58-70.
    141. Woulds, C., Ngwenya, B. T., Geochemical processes governing the performance of a constructed wetland treating acid mine drainage, Central Scotland. Applied Geochemistry. 2004, 19(11): 1773-1783.
    142. Xu, D., Xu, J., Wu, J., Muhammad, A., Studies on the phosphorus sorption capacity of substrates used in constructed wetland systems. Chemosphere. 2006, 63(2): 344-352.
    143. Yang, B., Lan, C. Y., Yang, C. S., Liao, W. B., Chang, H., Shu, W. S., Long-term efficiency and stability of wetlands for treating wastewater of a lead/zinc mine and the concurrent ecosystem development. Environmental Pollution. 2006, 143(3): 499-512.
    144. Yang, Y., Xu, Z., Hu, K., Wang, J., Wang, G., Removal efficiency of the constructed wetland wastewater treatment system at Bainikeng, Shenzhen. Water Science and Technology. 1995, 32(3): 31-40.
    145. Zhao, H. W., Mavinic, D. S., Oldham, W. K., Koch, F. A., Factors affecting phosphorus removal in a two-stage intermittent aeration process treating domestic sewage. Water Science and Technology. 1998, 38(1): 115-122.
    146. Zhu, T., Jenssen, P. D., Mhlum, T., Krogstad, T., Phosphorus sorption and chemical characteristics of lightweight aggregates (LWA) -potential filter media in treatment wetlands. Water Science and Technology 1997, 35(5): 103-108.
    147. Zuo, P., Wan, S. W., Qin, P., Du, J., Wang, H., A comparison of the sustainability of original and constructed wetlands in Yancheng Biosphere Reserve, China: implications from emergy evaluation. Environmental Science & Policy. 2004, 7(4): 329-343.
    148. 白晓慧、王宝贞, 人工湿地污水处理技术及其发展应用. 哈尔滨建筑大学学报, 1999(6): 88-92.
    149. 张忠祥、钱易,城市可持续发展与水污染防治对策(第二版). 2005 年 12 月,
    291-192.
    150. 成水平、吴振斌等, 人工湿地植物研究. 湖泊科学, 2002, (2): 179-184.
    151. 成水平、夏宜琤, 香蒲, 灯心草人工湿地的研究: Ⅲ .净化污水的机理. 湖泊科学,1998, (2), 66-71.
    152. 陈长太、阮晓红等, 人工湿地植物的选择原则. 中国给水排水, 2003, (3): 65-65.
    153. 陈玉成编, 污染环境生物修复工程. 北京:化学工业出版社, 2003, 30-52.
    154. 崔理华、朱夕珍、骆世明等, 煤渣-草炭基质垂直流人工湿地系统对城市污水的净化效果. 应用生态学报, 2003 ,14(4) : 597-600.
    155. 许保玖编, 当代给水与废水处理原理(第三版). 1991 年 4 月.
    156. 丁文明、黄霞, 废水吸附法除磷的研究进展. 环境污染治理技术与设备, 2002, (10): 23-27.
    157. 丁文明、黄霞, 铁-钙水合氧化物吸附剂除磷的间歇试验研究. 重庆环境科学, 2005, 25(11): 65-67..
    158. 丁文明、黄霞, 铁-钙复合除磷剂的合成及高效吸附机理. 中国给水排水, 2004, 20(9): 5-83.
    159. 傅伟军、唐亚, 植物在人工湿地中的作用及物种选择. 四川环境, 2005, (6): 45-49.
    160. 郭长城、王国祥、喻国华, 天然泥沙对富营养化水体中磷的吸附特性研究. 中国给水排水, 2006, (9): 10-13.
    161. 郭强、柴晓利、赵由才, 矿化垃圾除磷特性及其影响因素的研究. 环境污染与防治, 2006, (2): 93-95,120.
    162. 国家环境保护总局文件. 环发〔2006〕123 号. 关于印发的通知.
    163. 国家环保局《水和废水监测分析方法》编写组, 水和废水监测分析方法. 北京: 中国环境科学出版社, 1989, 230-351.
    164. 黄瑾晖, 新型除磷剂-海泡石复合吸附剂的研制与应用工业水处理, 1998, 18(2): 17-18.
    165. 何成达、王惠民、钱小青、季俊杰、陈娟、钱晓晴, 波式潜流人工湿地基质与污水磷素去除 农业环境科学学报, 2004(4): 175-178
    166. 黄时达、冷冰, 污水的人工湿地系统处理技术. 四川环境, 1993(2): 48-51.
    167. 籍国东、李顺等, 人工湿地及其在工业废水处理中的应用. 应用生态学报, 2002(2): 224-228.
    168. 籍国东、隋欣等, 自由表面流人工湿地处理超稠油废水. 环境科学, 2001(4): 95-99.
    169. 籍国东、孙铁珩等, 稠油采出水的人工湿地塘床处理系统设计. 中国给水排水, 2002, (5): 62-64.
    170. 贾晓燕, 废水除磷技术的研究进展. 重庆环境科学, 2003, (12): 191-192.
    171. 李旭东、周琪、张荣社、张旭、李广贺, 三种人工湿地脱氮除磷效果比较研究. 地学前缘, 2005,11(4): 73-76.
    172. 李志炎、唐宇力、杨在娟等, 人工湿地植物研究现状. 浙江林业科技, 2004, 24(4): 56-59
    173. S·华莱士、G·帕金、C·考思、张林、张海良, 寒冷地区污水处理的人工湿地设计与运行. 中国环保产业, 2003, (6): 40-42.
    174. 李敏、倪晋仁、王光谦等, 环境因素对长江口水域沉积物吸附磷酸盐的影响研究. 应用基础与工程科学学报, 2005, 13(1): 19-25.
    175. 李亚峰、刘佳、王晓东、孙浩诚、关晓野, 垂直流人工湿地在寒冷地区的应用. 沈阳建筑大学学报: 自然科学版, 2006, (2): 281-284.
    176. 梁威、胡洪营, 人工湿地净化污水过程中的生物作用. 中国给水排水, 2003, (10): 28-31.
    177. 梁威、吴振斌, 人工湿地对污水中氮磷的去除机制研究进展. 环境科学动态, 2000,(3): 32-37.
    178. 缪绅裕、陈桂珠等, 人工湿地中的磷在模拟秋茄湿地系统中的分配与循环. 生态学报, 1999 , (2): 236-241.
    179. 刘超翔、胡洪营等, 人工复合生态床处理低浓度农村污水. 中国给水排水 2002, (7): 1-4.
    180. 刘衍君, 人工湿地在污水处理中的应用及其展望. 新疆环境保护, 2003,(3): 24-26.
    181. 鲁敏、曾庆福, 七种植物的人工湿地处理生活污水的研究. 武汉科技学院学报. 2004, 17(2): 32-35.
    182. 牛晓君, 我国人工湿地植物系统的研究进展. 四川环境, 2005,(5): 45-47.
    183. 彭超英、朱国洪等, 人工湿地处理污水的研究. 重庆环境科学, 2000,(6): 43-45.
    184. 沈昌明、谭章荣、董秉直、许立群、将福彤, 往复流人工湿地处理城市污水的效能研究. 中国给水排水, 2006, (9): 90-92,96
    185. 沈耀良、王宝贞, 人工湿地系统的除污机理. 江苏环境科技, 1997, (3): 1-6.
    186. 孙家寿, 交联膨润土吸附磷行为研究. 化学工业与工程技术, 1998, 19(2): 1-5.
    187. 孙家寿, 天然沸石复合吸附剂处理含磷废水的研究离子交换与吸附关系研究. 农业环境科学学报, 2006(1): 175-178.
    188. 谈玲, 一种新型的改进潜流人工湿地处理生活污水的研究. 云南环境科学 2005, (3): 48-50.
    189. 田宝珍、汤鸿霄, Fe(Ⅲ)水解过程中无机阴离子的影响作用. 环境化学, 1993, 12, (5): 365-372.
    190. 田宝珍、汤鸿霄, 含磷酸盐的三氯化铁水解溶液的化学特征. 环境化学, 1995, 14, (4): 329-337.
    191. 土壤农业化学常规分析方法. 科学出版社,1983.
    192. 王庆安、任勇等, 成都市活水公园人工湿地塘床系统的生物群落. 重庆环境科学, 2001, (2): 52-55.
    193. 王翠兰、董婵、杨少华、赵立辉、朱宝英, 两级逆向垂直潜流人工湿地去除营养物的效能. 吉林建筑工程学院学报, 2005, (4): 15-17.
    194. 王朝辉, 应用水网藻在不同环境条件下对氮磷的吸收能力. 中国环境科学, 1999,19(3): 257~261.
    195. 王大力、尹澄清, 植物根孔在土壤生态系统中的功能. 生态学报, 2000, 20(5): 869-874.
    196. 王光火、朱祖祥, pH 对土壤吸附磷酸盐的影响及其原理. 土壤学报, 1991, (2): 1-6.
    197. 王虹扬、何春光、盛连喜, 人工湿地处理污水技术在吉林省城市生态建设中的展望. 中国环境管理, 2003, (5): 39-40
    198. 王久贤, 白泥坑人工湿地水利学计算研究. 广东水利水电, 1997, (6): 502-521.
    199. 王立立、刘焕彬等, 生活污水二级生物处理后的铁盐混凝除磷试验研究. 环境污染与防治, 2002, 24(6): 361-364.
    200. 王永秀、彭立新、刘继平、雷志洪, 高效垂直流人工湿地在景观湖水循环净化中的应用-以天津东丽湖景观湖水循环净化工程为例. 云南环境科学, 2006.(B06): 72-75,90.
    201. 王志丰、朱洪清, 浅谈人工湿地在苏南农村水环境生态治理中的应用. 江苏水利 2006, (5):37-38.
    202. 吴建强、丁玲, 不同植物的表面流人工湿地系统对污染物的去除效果. 环境污染与防治, 2006, (6): 432-434.
    203. 吴振斌、陈辉蓉, 人工湿地系统去除藻毒素研究. 长江流域资源与环境, 2000, (2): 242-247.
    204. 吴振斌、陈辉蓉、成水平等, 人工湿地磷的去除研究. 水生生物学报, 2001, 25 (1) : 28- 35.
    205. 吴振斌、李谷、付贵萍、贺锋、成水平, 基于人工湿地的循环水产养殖系统工艺设计及净化效能. 农业工程学报 2006, 22(1): 129-133.
    206. 吴晓磊, 人工湿地废水处理机理. 环境科学,1995(3): 83-86.
    207. 吴亚英, 人工湿地在新西兰的应用. 江苏环境科技, 2000, (3): 32-33.
    208. 夏瑶、娄运生等, 几种水稻土对磷的吸附与解吸特性研究. 中国农业科学 2002, (11):1369-1374.
    209. 谢爱军、周炜、年跃刚、黄民生, 人工湿地技术及其在富营养化湖泊污染控制中的应用. 净水技术 2005, (6): 49-52.
    210. 阳承胜、蓝崇钰、张干, N、P、K 在宽叶香蒲人工湿地系统中的分布与积累. 深圳大学学报: 理工版 2005, (3): 264-268.
    211. 伊连庆、张建军、董树军等, 粉煤灰基质人工湿地系统净化污水的研究. 华北电力大学学报,1999, 26 (4): 762-791.
    212. 尹炜、李培军、裘巧俊、宋志文、席俊秀, 植物吸收在人工湿地去除氮、磷中的贡献. 生态学杂志 2006, (2):218-221.
    213. 尹炜、李培军、叶闽、韩小波、余秋梅、雷阿林, 复合潜流人工湿地处理城市地表径流研究. 中国给水排水, 2006, (1): 5-8.
    214. 袁东海、景丽洁、张孟群等, 几种人工湿地基质净化磷素的机理. 中国环境科学, 2004, 24(5): 614-617.
    215. 詹德昊、吴振斌、张晟、成水平、傅贵萍、贺峰, 堵塞对复合垂直流湿地水力特征的影响. 中国给水排水, 2003, (2): 1-4.
    216. 张甲耀、崔克辉, 潜流型人工湿地污水处理系统中芦苇的生长特性及净化能力. 水处理技术, 1998, (6): 363-367.
    217. 张甲耀、夏盛林, 潜流型人工湿地污水处理系统氮去除及氮转化细菌的研究. 环境科学学报, 1999, (3): 323-327.
    218. 曾薇、彭永臻, 以溶解氧浓度作为 Sbr 法模糊控制参数. 中国给水排水, 2000, 16, (4): 5-10.
    219. 邓辅唐、邓辅商、孙珮石、李强、吴广、徐颂军、傅兵, 滇池治理人工湿地适用水生植物的引种研究. 中国水土保持, 2005, (7): 8-10.
    220. 赵海洋、王国平、刘景双、张桂珍, 三江平原湿地土壤磷的吸附与解吸研究. 生态环境, 2006, 15(5): 930-935.
    221. 赵建刚、杨琼、陈章和、黄正光, 几种湿地植物根系生物量研究. 中国环境科学, 2003 (3): 290-294.
    222. 赵晓齐、鲁如坤, 施用石灰对土壤吸附磷的影响. 土壤,1991, (7): 82-86.
    223. 朱广伟、秦伯强、高 光, 强弱风浪扰动下太湖的营养盐垂向分布特征.水科学进展, 2004,15(6): 775-780.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700