平面系统极限环的局部分支
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究几类平面系统的焦点或中心在多项式扰动下极限环分支问题。利用幂级数及定性分析的方法,确定两类高次对称Liénard系统在奇点附近的小振幅极限环的最大个数,并讨论低次系统在全平面上的极限环个数;研究三次系统存在幂零中心的充要条件,以及一般的具有幂零中心的平面哈密顿系统在小扰动下的极限环分支,考察中心附近的一阶Melnikov函数的光滑性,及其展开式的前几项系数的具体表达式;利用开折及同宿轨改变稳定性方法讨论一类五次对称近哈密顿系统的极限环分支。
     全文的主要内容可概括如下:
     第一章概述了与本文相关的一些背景和预备知识。在§1.1中,介绍了Hilbert第16问题(后半部分)及弱Hilbert第16问题的研究进展;在§1.2中,介绍了平面系统的分支理论及研究方法;在§1.3中,介绍了我们的工作。
     第二章完整地解决了两类高次对称Liénard系统的在指标为+1的奇点的Hopf环性数。我们通过系统的等价变换,构造特殊函数,再借助于幂级数方法来确定Liénard系统在原点的Hopf环性数。我们避开了以改变焦点稳定性来获取极限环的传统方法,灵活地利用已知的定理,通过构造及论证定理的条件来达到我们的目的。另一方面,我们充分利用文献中已有的成果,讨论低次系统在全平面中的极限环最大个数。
     第三章讨论了具有幂零中心的平面哈密顿系统的极限环分支问题。首先给出三次系统存在退化的幂零中心的充要条件,其次对于一般的具有幂零中心的哈密顿系统,我们利用巧妙的变换和详细的分析研究了中心附近的一阶Melnikov函数的光滑性,并给出其展开式的前几项系数,最后给出了这类系统新的极限环分支定理及其应用。
     第四章讨论了五次扰动近哈密顿系统的极限环个数问题,是第三章幂零中心的其中一种情况。我们利用开折的方法将具有幂零中心的哈密顿系统转化为具有初等中心的哈密顿系统,再通过定性分析和分支理论的技巧,利用改变奇点及奇闭轨线的稳定性产生极限环的方法给出可以出现的极限环个数。通过改变扰动项的系数可以获得更多的极限环,所得结果大大改进了现有的结果。
In this paper, we investigate the bifurcation of limit cycles of several planar systems near a center or a focus. Using the method of power series and qualitative analysis, we obtain the Hopf cyclicity of two symmetric Liénard systems, and a global result is also presented. Next we consider the bifurcation of limit cycles of planar near-Hamiltonian systems near nilpotent centers, study the smooth properties of the first Melnikov function and its first coefficients, obtain a new bifurcation theorem, especially for a class of cubic systems we give the center conditions. Finally we deal with a quintic near-Hamiltonian system, and obtain larger number of limit cycles by using the method of stability-changing than that by a general method.
     In Chapter 1, we introduce some results of the second part of Hilbert's 16th problem and its weakened problem, the bifurcation theory and methods of dynamical systems, and then list our main work.
     In Chapter 2, we study the maximal number of limit cycles of two types of symmetric polynomial Liénard systems near two singular points of index +1. We make some equivalent transformations to simplify our systems, and using the method of power series, we obtain the Hopf cyclicity of these two systems. For some lower-degree systems, global results are given.
     In Chapter 3, we consider Hamiltonian systems with nilpotent centers. We first give nilpotent center conditions for cubic systems. Then for general perturbed Hamiltonian systems near nilpotent centers, we investigate the smooth properties of the first Melnikov function in detail and the first coefficients of its expansion, and obtain a new bifurcation theorem. Finally, we give an example as an application.
     In Chapter 4, we investigate limit cycles for a class of quintic near-Hamiltonian systems near nilpotent centers, which is one case of Chapter 3. By using the blowing-up technique and bifurcation theory, we obtain the number of limit cycles near the center, which is more than that by a known result.
引文
[1] Dulac H., Sur les cycles limits, Bull. Soc. Math. France, 1923, 51, 45 188.
    [2] Petrovskii I. G., Landis E.M., On the number of limit cycles of the equation dy/dx = P(x,y)/Q(x,y) where P and Q are polynomials of the second degree (Russian), Mat. Sb. N. S. 1955, 37(79), 209 250.
    [3] Petrovskii I. G., Landis E. M., On the number of limit cycles of the equation dy/dx = P(x;y)/Q(x;y), where P and Q are polynomials (Russian), Mat. Sb. N.S. 1957, 85, 149-168.
    [4] Chen L., Wang M., The relative position and number of limit cycles of quadratic differential system, Aeta Math. Sinica, 1979, 22, 751-758.
    [5] Shi S., A concrete example of the existence of four limit cycles for plane quadratic systems, Sci. Sinica, 1980, A23, 153-158.
    [6] Ilyashenko Yu. S., Singular points and limit cycles of differential equations in the real and the complex planes, NIVTS AN SSSR, Pushehino 1982, 38.
    [7] Ilyashenko Yu. S., Dulce's memoir "On limit cycles" and related questions of the local theory of differential equations (Russian), Uspekhi Mat. Nauk, 1985, 40(6), 41-78.
    [8] Ilyashenko Yu. S., Finiteness for limit cycles, Transl. Math. Monographs, 1991, 94.
    [9] Ecalle J., Introduction aux Functions Analysables et Preuve Constructive de la Conjecture de Dulac, Hermann Pulb, Paris, 1992.
    [10] 叶彦谦等,极限环论,上海:上海科学技术出版社,1965.
    [11] 叶彦谦,多项式微分系统定性理论,上海:上海科学技术出版社,1995.
    [12] Bamon R., The solution of Dulac's problem for quadratic vector fields, Ann. Acad. Bris. Cienc., 1985, 57, 111-142.
    [13] Hart M., Uniqueness of limit cycles of quadratic system of type (Ⅲ)_n=0 around a focus of order 2, Chin. Ann. Math., 1985, 6A(6), 661-668.
    [14] Li C., Non-existence of limit cycle around a weak focus of order three for any quadratic system, Chin. Ann. Math., 1986, B7(2), 174-190.
    [15] 张平光,赵申琪,二次系统(Ⅲ)_n=0一阶细焦点外围极限环的惟一性,高校应用数学学报,2001,A16(1),43-50.
    [16] Dumortier F., Roussarie R., Rousseau C., Hilbert's 16th problem for quadratic vector fields, J.Differential Equations, 1994, 110, 86 133.
    [17] Dumortier F., Roussarie R., Rousseau C., Elementary graphics of eyelieity one and two, Nonlinearity, 1994, 7, 1001-1043.
    [18] Dumortier F., El Morsalami M., Rousseau C., Hilbert's 16th problem for quadratic systems and eyelieity of elementary graphics, Nonlinearity, 1996, 9, 1209-1261.
    [19] Guzman A., Rousseau C., Generieity conditions for eyelieity of elementary graphies, Differential Equations, 1999, 155(1), 44-72.
    [20] Rousseau C., Swirszez G., Zoladek H., Cyelieity of graphics with semi-hyperbolic points inside quadratic systems, Dynam. Control Systems, 1988, 4(2), 149-189.
    [21] Rousseau C., Hilbert's 16th problem for quadratic vector fields and eyelieity of graphics, Nonlin. Anal., 1997, 30, 437-445.
    [22] Rousseau C., Zhu H., PP-graphies with a nilpotent elliptic singularity in quadraticsystems and Hilbert's 16th problem, J. Differential Equations, 2004, 196, 169-208.
    [23] Dumortier F., IlyashenkoYu., Rousseau C., Normal forms near a saddle-node and applications to finite eyelieity of graphics, Ergodie Theory and Dynamical Systems, 2002, 22, 783-818.
    [24] Li J., Li C., Planar cubic Hamiltonian systems and distribution of limit cycles of (E3), Acta Math. Sin., 1985, 28(4), 509-521.
    [25] Yu P., Han M., Twelve limit cycles in a cubic order planar system with Z_(2-) symmetry, Communications on Pure and Applied Analysis, 2004, 3, 515-526.
    [26] Yu P., Han M., Twelve limit cycles in a cubic ease of the 16th Hilbert problem, Int. J. Bifurcations and Chaos, 2005, 15(7), 2191-2205.
    [27] Yu P., Han M., Small limit cycles bifurcating from fine focus points in cubic order Z_2-equivariant vector fields, Chaos Solitons and Fractals, 2005, 24, 329-348.
    [28] Zhang T., Han M., Zang H., Meng X., Bifurcations of limit cycles for a cubic Hamiltonian system under quartie perturbations. Chaos Solitons and Fractals, 2004, 22, 1127-1138.
    [29] Christopher C., Estimating limit cycle bifurcations from center, Differential equations with symbolic computation, Trends Math., Birhauser, Basel, 2005, 23-25.
    [30] Li J., Chan H., Chung K., Bifurcations of limit cycles in a Z6-equivariant planar vector field of degree 5, Sci. China (Series A), 2002, 45, 817-826.
    [31] Wang S., Yu P., Bifurcation of limit cycles in a quintic Hamiltonian system under a sixth-order perturbation, Chaos Solitons and Fractals, 2005, 26, 1317-1335.
    [32] Li J., Zhang, M., Bifurcations of limit cycles in a Z_8-equivariant vector field, J. Diff. Eqs. Dyn. Syst., 2004, 16, 1123-1139.
    [33] Wang S., Yu P., Li J., Bifurcation of limit cycles in a Z_(10)-equivariant vector fields of degree 9, Int. J. Bifurcation and Chaos, 2006, 16(8), 2309-2324.
    [34] Wang S., Yu P., Existence of 121 limit cycles in a perturbed planar polynomial Hamiltonian vector field of degree 11, Chaos Solitons and Fractals, 2006, 30(3), 606-621.
    [35] Christopher C. J., Lloyd N. G., Polynomial systems: A lower bound for the Hilbert numbers, Proc. Royal Soc. London Ser., 1995, A450, 219-224.
    [36] Li J., Chan H., Chung K., Some lower bounds for H(n) in Hilbert's 16th problem, Qualitative Theory of Dynamical Systems, 2003, 3(44), 345-360.
    [37] Itenberg I., Shustin E., Singular points and limit cycles of planar polynomial vector fields, Duke Math. J., 2000, 102(1), 1-37.
    [38] Arnold V. I., Loss of stability of self-oscillations close to resonance and versal deformations of equivariant vector fields, Funct. Anal. Appl., 1977, 11, 85-92.
    [39] Roussarie R., Bifurcation of planar vector fields and Hilbert's Sixteenth problem, Progress in Mathematics 164, Birkh(a|¨)user Verlag, Basel, 1998.
    [40] Han M., Chen G., On the number of limit cycles of near-Hamiltonian polynomial systems, The First International Conference on Recent Advances in Bifurcation Theory and Applications of Dynamical Systems, Jinhua, Zhejiang, PRC, June 2005.
    [41] Iliev I. D., The cyclicity of the period annulus of the quadratic Hamiltonian triangle, J. Diff. Eqns., 1996, 128, 309-326.
    [42] Gavrilov L., Iliev I. D., Second order analysis in polynomially perturbed reversible quadratic Hamiltonian systems, Erg. Th. Dyn. Syst., 2000, 20(6), 1671-1686.
    [43] Zhao Y., Zhang Z., Linear estimate of the number of zeros of Abelian integrals for a kind of quartic Hamiltonians, J. Diff. Eqns., 1999, 155, 73-88.
    [44] Zhao Y., Zhu S., Perturbations of the non-generic quadratic Hamiltonian vector fields with hyperbolic segment, Bull. Sci. Math., 2001, 125(2), 109-138.
    [45] Chow S. N., Li C., Yi Y., The cyclicity of period annulus of degenerate quadratic Hamiltonian system with elliptic segment, Erg. Th. Dyn. Syst. 2002, 22(4), 1233 1261.
    [46] Chow S., Hale J., Methods of Bifurcation Theory, Spring, NY, 1982.
    [47] Hale J., Kocak H., Dynamics and Bifurcations, New York Berlin Heidelberg: Springer-Verlag, 1996.
    [48] 李继彬,冯贝叶,稳定性、分支与混沌,云南:云南科学出版社,1995.
    [49] 韩茂安,动力系统的周期解与分支理论,北京:科学出版社,2002.
    [50] 张芷芬,李承治等,向量场的分岔理论基础,北京:高等教育出版社,1997.
    [51] Wiggins S., Globle Bifurcation and Chaos: Analytical Methods, New York Berlin Heidelberg: Springer-Verlag, 1988.
    [52] Wiggins S., Introduction to Applied Nonlinear Dynamical Systems and Chaos, New York Berlin Heidelberg: Springer-Verlag, 1990.
    [53] Bautin N., On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type, Mat. Sb.(N. S.), 1952, 30(72), 181-196.
    [54] Sibirskii K., On the number of limit cycles in a neighborhood of singular points, Diff. Eq., 1965, 1, 36-7.(in Russian)
    [55] Lloyd N., Blows T., Kalenge M., Some cubic systems with several limit cycles, Nonlinearity, 1988, 1, 653-669.
    [56] Hart M., Lin Y., Yu P., A study on the existence of limit cycles of a planar system with third-degree polynomials, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2004, 14, 41-60.
    [57] James E., Lloyd N., A cubic system with eight small-amplitude limit cycles, IMA J. Appl. Math., 1991, 47, 163-171.
    [58] Gasull A., Torregrosa J., A new approach to the computation of the Lyapunov constants, Comput. Appl. Math. 2001, 20, 149-177.
    [59] Christopher C., Lynch S., Small-amplitude limit cycle bifurcations for Liénard systems with quadratic or cubic damping or restoring forces, Nonlinearity, 1999, 12, 1099-1112.
    [60] Christopher C., Lloyd N., Small-amplitude limit cycles in polynomial Liénard systems, Nonlinear Diff. Eqns. Appl., 1996, 3, 183-190.
    [61] 蔡燧林,马晖,广义Liénard方程的奇点的中心焦点判定问题,浙江大学学报,1991,25(4),562-589.
    [62] 杜乃林,曾宪武,计算焦点量的一类递推公式,科学通报,1994,39(19),1742-1744.
    [63] Huang Q., Wei J., Wu J., Hopf bifurcations of some second-order FDEs with infinite delay and their applications. Chinese Science Bulletin, 1995, 40(4), 273-277.
    [64] Shen J., Jing Z., A new detecting method of conditions for the existence of Hopf bifurcation, In "Dynamical Systems", Nankai Series in Pure, Apl. Math. and Theor. Phy., World Scientific Publishing, Singapore, 1993, 4, 188-203.
    [65] 刘一戎,李继彬,论复自治微分系统的奇点量,中国科学(A辑),1989,3,245-255.
    [66] Leontovich FA, On the creation of limit cycles from a separatrix, Dokl Akad Nauk SSSR, 1951, 78, 641-644.
    [67] Roussarie R., On the number of limit cycles which appear by perturbation of separatrix loop of planar vector fields, Bol. Soc. Bras. Mat., 1986, 17, 67-101.
    [68] 马知恩,汪儿年,鞍点分界线环的稳定性及产生极限环的条件,数学年刊,1983,4A(1),105-110.
    [69] 冯贝叶,钱敏,鞍点分界线圈的稳定性及其分支出极限环的条件,数学学报,1985,28(1),53-70.
    [70] Joyal P., Rousseau C., Saddle quantities and applications, J. Diff. Eqns., 1989, 78, 374-399.
    [71] Hart M., Hu S., Liu X., On the stability of double homoclinic and heteroclinic cycles, Nonlinear Anal. 2003, 53, 701-713.
    [72] Hart M., Wu Y., The stability of double homoclinic loops, Appl. Math. Lett., 2004, 17, 1291-1298.
    [73] Han M., Zhu H., The Loop Quantities and Bifurcations of Homoclinic Loops, J. Differential Equations, 2007, 234(2), 339-359.
    [74] Zhu D., A general property of Quadratic differential system, Chin. Ann. Math., 1989, 10B, 26-32.
    [75] Cai S., Guo G., Saddle values and limit cycles generated by separatrix of quadratic system, Proceedings of Asian Math Conference'90, World Scientific, 1992, 25-31.
    [76] Han M., Zhang Z., Cyclicity 1 and 2 conditions for a 2-polycycle of integrable systems on the plane, J. Diff. Eqns., 1999, 155, 245-261.
    [77] Zoladek H., The cyclicity of triangles and segments in quadratic systems, J. Diff. Eqns., 1995, 122, 13-159.
    [78] Jebrane JM, Zoladek H., Abelian integrals in nonsymmetric perturbations of symmetric Hamiltonian vector fields, Adv. In Appl. Math., 1994, 15(1), 1-12.
    [79] Han M., Bi P., Bifurcation of limit cycles from a double homoclinic loop with a rough saddle. Chinese Ann. Math. Ser. B, 2004, 25(2), 233-242.
    [80] Zhang T., Han M., Zang H., Perturbation from an asymmetric cubic Hamiltonian, J. Math. Anal. Appl., 2005, 305(2), 61-630.
    [81] Zang H., Zhang T., Han. M., Bifurcations of limit cycles from quintic Hamiltonian systems with a double figure eight loop, Bulletin des Sciences Mathématiques, 2006, 130(1), 71-86.
    [82] 韩茂安,朱德明,微分方程分支理论,北京:煤炭工业出版社,1994.
    [83] Hart M., On Hopf cyclicity of plane systems, J. Math. Anal. Appl., 2000, 245, 404-422.
    [84] Han M., Ye Y., On the coefficients in the expansion of Melnikov functions, Ann. Diff. Eqns., 1998, 14(2), 156-162.
    [85] Jiang Q., Han M., Melnikov functions and perturbation of a planar Hamiltonian system, Chinese Ann. Mathh. Ser. B, 1999, 20, 233-246.
    [86] 韩茂安,陈健,双同宿分支中极限环的个数,中国科学(A),2000,5,401-414.
    [87] Li J., Lin Y., Global bifurcations in a perturbed cubic system with Z_2-symmetry, Acta Math. Appl. Sin. (English Ser.) 1992, 8, 131-143.
    [88] Li J., Huang Q., Bifurcations of limit cycles forming compound eyes in the cubic system, Chin. Ann. Math., 1987, BS, 391-403.
    [89] Li J., Liu Z., Bifurcation set and limit cycles forming compound eyes in a perturbed Hamiltonian system, Publ. Math. 1991, 35, 48-506.
    [90] Li J., Liu Z., Bifurcation set and compound eyes in a perturbed cubic Hamiltonian system, in Ordinary and Delay Differential Equations, Pitman Research Notes in Mathematics Ser., 1991, 272, 116-128.
    [91] Han M., Cyclicity of planar homoclinic loops and quadratic integrable systems, Sci. China Ser.A, 1997, 40, 1247-1258.
    [92] Han M., Ye Y., Zhu D., Cyclicity of homoclinic loops and degenerate cubic Hamiltonian, Sci. China Ser. A, 1999, 42, 607-617.
    [93] Zhang T., Zang H., Hart M., Bifurcations of limit cycles in a cubic system, Chaos Solitons Fractals, 2004, 20, 629-638.
    [94] Wu Y., Hart M., On the study of limit cycles of the generalized Rayleigh-Liénard oscillator, Internat. J. Bifur. Chaos App1. Sci. Engrg., 2004, 14, 2905-2914.
    [95] Han M., Bifurcations of limit cycles from a heteroclinic cycle of Hamiltonian systems, Chin. Ann. Math. B, 1998, 19, 189-196.
    [96] Han M., Zhang Z., Cyclicity 1 and 2 conditions for a 2-polycycle of integrable systems on the plane, J. Diff. Eqns. 1999, 155, 245-261.
    [97] Han M., Wu Y., Bi P., Bifurcation of limit cycles near polycycles with n vertices, Chaos Solitons Fractals, 2004, 22, 383-394.
    [98] Wu Y., Han M., Chen X., On the study of limit cycles of the generalized Rayleigh-Liénard oscillator, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2004, 8, 2905-2914.
    [99] Han M., Yang C., On the cyclicity of a 2-polycycle for quadratic systems, Chaos, Solitons and Fractals, 2005, 23, 1787-1794.
    [100] Hilbert D., Mathematical problems, Bull. Amer. Math. Soc., 1902, 8, 437-479.
    [101] Li J., Hilbert's 16th problem and bifurcations of planar polynomial vector fields, International Journal of Bifurcation and Chaos, 2003, 13, 47-106.
    [102] Yu Ilyashenko, Centennial history of Hilbert's 16th problem, Bull. Amer. Math. Soc. (N.S.), 2002, 39, 301-354.
    [103] Han M., Zhang T., Some Bifurcation Methods of Finding Limit Cycles, Mathematical Biosciences and Engineering, 2006, 3(1), 67-77.
    [104] 韩茂安,上海市数学会年会大会报告,2005.
    [105] DumortierF., Fiddelaers P., Quadratic models for generic local 3-parameter bifurcations on the plane, Trans AMS, 1991, 326 101-126.
    [106] Li C., Li W., Llibre J., Zhang Z., Polynomial systems: a lower bound for the weakened 16th Hilbert problem, Extracta Mathematicae, 2001, 16(3), 441-447.
    [107] Llibre J., Zhang X., On the number of limit cycles for some perturbed Hamiltonian polynomial systems. Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis, 2001, 8, 161-181.
    [108] Rayleigh J., The theory of sound, New York, Dover, 1945.
    [109] van der Pol B., On relaxation-oscillations, Philos Mag 1926, 7, 901-912.
    [110] Lienard A., Etude des oscillations entrenues, Revue Generale de l'Electricite, 1928, 23, 946-954.
    [111] Agarwal A., Ananthkrishnan N., Bifurcation analysis for onset and cessation of surge in axial flow compressors, Int. J. Turbo and Jet-Engings, 2000, 17(3), 207-217.
    [112] Lynch S., Christopher C. J., Limit cycles in highly nonlinear differential equations, J. Sound and Vib., 1999, 224(3), 505-517.
    [113] Owens D. B., Capone F. J., Hall R. M., Brandon J. M. and Chambers J. R., Transonic free-to-roll analysis of abrupt wing stall on military aircraft, J. Aircraft, 2004, 41(3), 474-484.
    [114] Yuan Y., Yu P., Librescu L., Marzocca P., Aeroelasticity of time-delayed feedback control of two-dimensional supersonic lifting surfaces, J. Guidance, Control, and Dynamics, 2004, 27(5), 795-803.
    [115] Blows T. R., Lloyd N. G., The number of small-amplitude limit cycles of Lienard equations, Proc. Camb. Phil. Soc., 1984, 95, 359-366.
    [116] Lloyd N., Lynch S., Small-amplitude limit cycles of certain Lienard systems, Proc. Royal Society of London (A), 1988, 418, 199-208.
    [117] Han M., Liapunov constants and Hopf cyclicity of Lienard systems, Ann. Diff. Eqns., 1999, 15, 113-126.
    [118] Gasull A., Torregrosa J., Small-amplitude limit cycles in Lienard systems via multiplicity, J. Diff. Eqns., 1999, 159, 186-211.
    [119] Lloyd N., Pearson J., Symmetry in planar dynamical systems, J Symbol Comput, 2002, 33, 357-366.
    [120] Yu P., Han M., On limit cycles of the Lienard equations with Z_2 symmetry, Chaos, Solitons, & Fractals, 2007, 31(3), 617-630.
    [121] Lins A., deMelo W., Pugh C., On Liénard's equation, geometry and topology, 335-357, Lecture notes in Math., 1977, 597, Springer, Berlin.
    [122] Luo D., Wang X., Zhu D., Han M., Bifurcation Theory and Methods of Dynamical Systems, Advanced Series in Dynamical Systems 15, World Scientific, Singapore, 1997.
    [123] Roussarie R., Cyclicite finie des lacets et des points cuspidaux, Nonlinearity 1989, 2, 73-117.
    [124] Dumortier F., Roussarie R., Sotomayor S., Bifurcations of cuspidal loops, Nonlinearity, 1997, 10(6), 1369-1408.
    [125] Ilyashenko, Yu S., Finiteness theorems for limit cycles, Russian Math. Surveys, 1990, 40, 143-200.
    [126] Zhu H., Rousseau C., Finite cyclicity of graphics with a nilpotent singularity of saddle or elliptic type, J. Differential Equations, 2002, 178(2), 325-436.
    [127] Morsalani M., Mourtada A., Degenerate and non-trivial hyperbolic 2-polycycles: two independant Ecalle-Roussarie compensators and Khovanskii's theory, Nonlinearity, 1994, 7, 1593-1604.
    [128] Roussarie R., On the number of limit cycles which appear by perturbation of separatrix loop of planar vector fields, Bol. Soc. Bras. Mat., 1986, 17, 67-101.
    [129] Chen H., Liu Y., Linear recursion formulas of quantities of singular point and application, Appl. Math. Comput., 2004, 1(148), 163-171.
    [130] Gasull A., Manosa V., el al., An explicit expression of the first Liapunov and period constants with applications, J. Math. Anal. Appl., 1997, 211, 190-212.
    [131] Gobbet F., Williamowski K., Liapunov approach to multiple Hopf bifurcation, J. Math. Anal. Appl., 1979, 171 (2), 333-350.
    [132] Lyapunov A. M., Stability of Motions, Academic, London, 1966.
    [133] 张芷芬,丁同仁等,微分方程定性理论,北京:科学出版社,1985.pp.102-119.
    [134] Andreev A., Investigation of the behaviour of the integral curves of a system of two differential equations in the neighbourhood of a singular point, Am. Math. Soc. 1958, 8, 183-207.
    [135] Andronov A., Leontovich E., el al., Qualitative Theory of Second Order Dynamic Systems, Wiley, New York, 1973.
    [136] Moussu R., Symétrie et forme normale des centers et foyers dégénérés, Ergodic Theory Dynam. Syst., 1982, 2, 241-251.
    [137] Alvarez M., Gasull A., Generating limit cycles from a nilpotent critical point via normal forms, J. Math. Anal. Appl., 2006, 318(1), 271-287.
    [138] Chavarriga J., Giacomini H., el al., Local analytic integrability for nilpotent centers, Ergod. Th. Dyn. Syst.,2003, 23, 417-428.
    [139] Arnold V I., Geometric methods in the theory of ordinary differential equations, Springer-Verlag, NY 1983.
    [140] Han M., Existence of at most 1,2 or 3 zeros of a Melnikov function and limit cycles, J. Differential Equations, 2001, 170, 325-343.
    [141] Horozov E., Iliev I D., On the number of limit cycles in perturbations of quadratic Hamiltonian systems, Proc. London Math. Soc., 1994, 69(3), 198-224.
    [142] Horozov E., Iliev I D., Linear estimate for the number of zeros of Abelian integrals with cubic Hamiltonians, Nonlinearity, 1998 11, 1521-1537.
    [143] Han M., Wu Y., Bi P., A new cubic system having eleven limit cycles, Discrete Contin. Dyn. Syst., 2005, 12(4), 675-686.
    [144] Liu Z., Yang Z., Jiang T., The same distribution of limit cycles in five perturbed cubic Hamiltonian systems, Internat. J. Bifur. Chaos App1. Sci. Engrg., 2003, 13(1), 243-249.
    [145] Hart M., Chen J., On the number of limit cycles in double homoclinic bifurcations, Sci. China Ser. A, 2000, 43, 914-928.
    [146] He Y, Li C. On the number of limit cycles arising from perturbations of homoclinic loops of quadratic integral systems. Diff Eqns Dyn Syst 1997, 5, 303-316.
    [147] Hart M, et al., Handbook of differential equations, Ordinary Differential Equations, Vol. 3, Chapter 4, Bifurcation Theory of Limit Cycles of Planar System, Edited by Canada A., drabek P. and Fonda A., 2006.
    [148] Gasull A., Guillamon A., An explicit expression of the first Liapunov and period constants with applications, J. Math. Anal. Appl., 1997, 211, 190-212.
    [149] 韩茂安,范春燕,一类四次系统极限环的个数与分布,数学年刊,2005,26A(6),825-834.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700