人工湿地净化农田退水的工艺设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农田退水是农业面源污染的主要输出途径之一,水量较大,该污染源较稳定。大量的农田退水未经处理直接排入接纳水体,不仅浪费了水资源,而且污染了接纳水体环境。人工湿地污水处理技术是一种新型的生态方法,具有显著的生态环境效益。本文以东北农田退水为例,根据农田退水的水质和水量特征,结合出水水质要求,设计了一种净化农田退水水质的复合人工潜流湿地系统,构建了实验室模拟装置,通过对设计参数筛选,设计了实际工程运用中的人工湿地污水处理工艺流程与参数,给出了工艺系统构筑物布置图。通过研究得出以下结论:
     1、从人工湿地类型上看。该工艺中的人工湿地处理部分是由厌氧潜流人工湿地和好氧潜流人工湿地组成,好氧潜流人工湿地中的流态又分为垂直流和水平潜流。厌氧潜流人工湿地可将水温提升3℃左右,利于好氧部分对污染物的去除,而且湿地的占地面积可再利用。好氧潜流人工湿地充分利用了垂直流和水平潜流的优点,优于单一人工湿地模式。
     2、从人工湿地基质上看。选择填料的种类,包括:土壤、沸石、蛭石、炉渣、砾石。涉及到的设计参数为基质粒径、孔隙度和基质填充厚度。
     3、从人工湿地植物上看。好氧部分选择了芦苇。芦苇是湿地中典型的植物,生命力旺盛,利用价值较高。涉及到的设计参数为芦苇种植密度。
     4、从人工湿地设计构建参数上看。首先通过模型公式计算出各设计参数:水力停留时间、水力负荷、湿地几何尺寸、湿地水位和坡度,然后利用通过国内外潜流人工湿地数据训练好的人工神经网络模型优化人工湿地水力负荷参数,得到2个水力负荷值:0.03~0.037m3/(m2·d)和0.078~0.083m3/(m2·d)。利用试验验证人工湿地处理效果并确定构建工程的水力负荷为0.078~0.083m3/(m2·d)。
     5、从工艺主要构筑物上看。该工艺包括:格栅、调节池和人工湿地部分。利用中格栅以去除农田退水进入系统前所携带的固体悬浮物,避免系统堵塞。调节池的使用是用来调节水量变化较大的农田退水,减小系统所受的冲击负荷。
     6、从工程实践上看。该人工湿地工艺系统较适合温度偏低和水量变化较大的东北农田退水。对人工湿地工艺系统各个处理单元进行模拟实践设计,包括:选定设计参数、详细计算各参数值,绘制流程高程布置图。通过这次设计,为我国农田退水净化处理工程提供技术指导和参考。
Farmland drainage is one of the main output way for agriculturalnon-point source pollution. It is of high quantity, and is a stable pollutionsource. Large amounts of farmland drainage without any purificationdirectly discharge into receiving waters, It not only wastes waterresources, but also makes receiving waters pollution. Constructed wetlandis a new ecological method to purify wastewater, and is of significantenvironmental benefits. The northeast farmland drainage was chosen tostudy. Based on the characteristics of water quality and water quantity offarmland drainage, combined with the effluent quality requirements, ahybrid subsurface flow constructed wetland was designed. Devices in thelaboratory were built. Through filtering design parameters, the processand parameters of constructed wetland sewage treatment were designed,and a layout of the structures was drawn. The main conclusions wereshown as follows:
     1. From types of constructed wetlands: The part constructed wetlandwas composed of aerobic and anaerobic subsurface-flow constructedwetlands. The subsurface flow pattern of aerobic subsurface-flowconstructed wetland is divided into vertical flow and horizontal flow. Anaerobic constructed wetland can raise water temperatures of3℃,which is beneficial to removal of contaminants. The wetland area can bereused. Aerobic constructed wetland takes full advantage of the benefitsof vertical and horizontal subsurface flows that is better than a single flowpattern of constructed wetlands.
     2. From substrates in the constructed wetlands: Constructed wetlandbeds are filled with several materials: soil, zeolite, vermiculite, slag andgravel. Grain size, porosity and thickness of materials are designed.
     3. From plants in the constructed wetland: Aerobic subsurface flowconstructed wetland planted Phragmites. It is typical of wetland plants,strong vitality, and high using value. A design parameter for Phragmitesis planting density.
     4. From parameters of constructed wetlands: Design parameters arecalculated by model and formula. Then the optimization of hydraulicloading is worked with the artificial neural network that is trained bydates of domestic and international subsurface constructed wetlands. Theresult is two hydraulic loadings:0.03~0.037m3/(m2·d) and0.078~0.083m3/(m2·d). Finally, validation of the constructed wetlandsand determining0.078~0.083m3/(m2·d) as a hydraulic parameter valueengineered is by experiment.
     5. From the main structures: The constructed wetland process includes:grille, regulating reservoir and constructed wetland. The constructed wetland is integrated anaerobic subsurface flow with aerobic subsurfaceflow that is composed of horizontal subsurface flow and vertical flow.
     6. From engineered: The constructed wetland system is more suitablefor Northeast farmland drainage featured by low water temperature andobviously varies water quantity. Each part was engineered, which mainlyincludes: selecting and calculating design parameters, mapping a relevantprocess elevation plan. It aims to provide a technical guidance andreference for drainage purification projects.
引文
Agudelo R. M., Jaramillo M. L., et al. Comparison of the removal of chlorpyrifos and dissolvedorganic carbon in horizontal sub-surface and surface flow wetlands. Science of the totalenvironment,2012,431:271-277.
    Agudelo R. M., Machado C., et al. Optimal conditions for chlorpyrifos and dissolved organiccarbon removal in subsurface flow constructed wetlands. International Journal ofEnvironmental Analytical Chemistry,2011,91(7-8):668-679.
    Amado L, Albuquerque A, Espírito Santo A. Influence of stormwater infiltration on the treatmentcapacity of a LECA-based horizontal subsurface flow constructed wetland. EcologicalEngineering,2012,39:16-23.
    ávila C, Pedescoll A, Matamoros V, et al. Capacity of a horizontal subsurface flow constructedwetland system for the removal of emerging pollutants: An injection experiment.Chemosphere,2010,81(9):1137-1142.
    Bernardes R., Spanjers H., et al. Modelling respiration rate and nitrate removal in anitrifying-denitrifying SBR treating domestic wastewater. Bioresource technology,1999,67(2):177-189.
    Boers P C M. Nutrient Emission from Agriculture in the Netherlands, Causes and Remedies.Water Science and Technology,1996,33(4):183-189.
    Braskerud B. Factors affecting phosphorus retention in small constructed wetlands treatingagricultural non-point source pollution. Ecological Engineering,2002,19(1):41-61.
    Calheiros C. S. C., Rangel A., et al. Constructed wetland systems vegetated with different plantsapplied to the treatment of tannery wastewater. Water research,2007,41(8):1790-1798.
    Camacho J. V., Martinez A. D. L., et al. A comparative study of five horizontal subsurface flowconstructed wetlands using different plant species for domestic wastewater treatment.Environmental technology,2007,28(12):1333-1343.
    Cheng X Y, Chen W Y, Gu B H, et al. Morphology, ecology, and contaminant removal efficiencyof eight wetland plants with differing root systems. Hydrobiologia,2009,623(1):77-85.
    Chun Y. M., Choi Y. D. Expansion of Phragmites australis (cav.) trin. ex steud.(common reed) intoTypha spp.(cattail) wetlands in northwestern Indiana, USA. Journal of Plant Biology,2009,52(3):220-228.
    Davies L, Pedro I, Novais J, et al. Aerobic degradation of acid orange7in a vertical-flowconstructed wetland. Water research,2006,40(10):2055-2063.
    Dordio A., Pinto J., et al. Atenolol removal in microcosm constructed wetlands. InternationalJournal of Environmental Analytical Chemistry,2009,89(8-12):835-848.
    Dzakpasu M., O. Hofmann, et al. Nitrogen removal in an integrated constructed wetland treatingdomestic wastewater. Journal of Environmental Science and Health Part A,2011,46(7):742-750.
    Edwards K. R., i ková H., et al. Plant growth and microbial processes in a constructed wetlandplanted with Phalaris arundinacea. Ecological Engineering,2006,27(2):153-165.
    EI Hamouri B., Nazih J., et al. Sub surface-horizontal flow constructed wetland for sewagetreatment under Moroccan climate conditions. Desalination,2007,215(1-3):153-158.
    Fibbi D, Doumett S, Colzi I, et al. Total and hexavalent chromium removal in a subsurfacehorizontal flow (h-SSF) constructed wetland operating as post-treatment of textilewastewater for water reuse. Water science and technology: a journal of the InternationalAssociation on Water Pollution Research,2011,64(4):826-831.
    Goncalves R. and Rogalla F. Optimising the A/O cycle for phosphorus removal in a submergedbiofilter under continuous feed. Water Science and Technology,2000:503-508.
    Gross A., Sklarz M., et al. Small scale recirculating vertical flow constructed wetland (RVFCW)for the treatment and reuse of wastewater. Water Science and Technology,2008,58(2):487-494.
    Ham J., Yoon C. G., et al. Modeling the effects of constructed wetland on nonpoint sourcepollution control and reservoir water quality improvement. Journal of EnvironmentalSciences,2010,22(6):834-839.
    Hashimoto T., Onda K., et al. Comparison of natural estrogen removal efficiency in theconventional activated sludge process and the oxidation ditch process. Water research,2007,41(10):2117-2126.
    Headley T. R., Herity E., et al. Treatment at different depths and vertical mixing within a1-m deephorizontal subsurface-flow wetland. Ecological Engineering,2005,25(5):567-582.
    Huett D. O., Morris S. G., et al. Nitrogen and phosphorus removal from plant nursery runoff invegetated and unvegetated subsurface flow wetlands. Water research,2005,39(14):3259-3272.
    Hunt P, Stone K, Humenik F, et al. In-stream wetland mitigation of nitrogen contamination in aUSA coastal plain stream. Journal of Environmental Quality,1999,28(1):249-256.
    Idris S. M., Jones P. L., et al. Evaluation of the giant reed (Arundo donax) in horizontal subsurfaceflow wetlands for the treatment of dairy processing factory wastewater. EnvironmentalScience and Pollution Research,2012,19(8):3525-3537.
    Jou C. J., Chen S. W., et al. Efficiency and ecological benefits of purifying Wu-Lo Creek with aconstructed wetland system. Environmental Engineering Science,2009,26(1):97-102.
    Juwarkar A, Oke B, Juwarkar A, et al. Domestic wastewater treatment through constructedwetland in India. Water Science and Technology,1995,32(3):291-294.
    Kadlec, R. H. and Wallace S. Treatment wetlands, CRC.2008.
    Katsenovich Y. P., Hummel-Batista A., et al. Performance evaluation of constructed wetlands in atropical region. Ecological Engineering,2009,35(10):1529-1537.
    Katsoyiannis A. and Samara C. Persistent organic pollutants (POPs) in the conventional activatedsludge treatment process: fate and mass balance. Environmental Research,2005,97(3):245-257.
    Knox A S, Nelson E A, Halverson N V, et al. Long-Term Performance of a Constructed Wetlandfor Metal Removal. Soil and Sediment Contamination,2010,19(6):667-685.
    Kucuk O, Sengul F, Kapdan I. Removal of ammonia from tannery effluents in a reed bedconstructed wetland. Water science and technology: a journal of the InternationalAssociation on Water Pollution Research,2003,48(11-12):179-186.
    Laber J., Perfler R., et al. Two strategies for advanced nitrogen elimination in vertical flowconstructed wetlands. Water Science and Technology,1997,35(5):71-77.
    Langergraber G, Leroch K, Pressl A, et al. A two-stage subsurface vertical flow constructedwetland for high-rate nitrogen removal. Water Science and Technology,2008,57(12):1881-1888.
    Lavrova S, Koumanova B. Influence of recirculation in a lab-scale vertical flow constructedwetland on the treatment efficiency of landfill leachate. Bioresource technology,2010,101(6):1756-1761.
    Leba B V. Nutrient preserving in riverine transitional strip. Journal of Human Environment,1994,3(6):342-347.
    Lesage E., Rousseau D. P. L., et al. Effects of sorption, sulphate reduction, and Phragmitesaustralis on the removal of heavy metals in subsurface flow constructed wetlandmicrocosms. Water Science and Technology,2007,56(3):193-198.
    Melián J, Rodríguez A, Arana J, et al. Hybrid constructed wetlands for wastewater treatment andreuse in the Canary Islands. Ecological Engineering,2010,36(7):891-899.
    Meutia A A.2001. Treatment of laboratory wastewater in a tropical constructed wetlandcomparing surface and subsurface flow. Water Science and Technology,2001,44(11-12):499-506.
    Nakamura Y., M. Ishiksws, et al. An improvement of an oxidation ditch process for the lowalkalinity wastewater treatment and various influent conditions. Environmentaltechnology,1997,18(6):655-662.
    Nivala J, Hoos M, Cross C, et al. Treatment of landfill leachate using an aerated, horizontalsubsurface-flow constructed wetland. Science of the total environment,2007,380(1):19-27.
    O Luanaigh N., Goodhue R., et al. Nutrient removal from on-site domestic wastewater inhorizontal subsurface flow reed beds in Ireland. Ecological Engineering,2010,36(10):1266-1276.
    Rousseau D. P. L., Vanrolleghem P. A., et al. Model-based design of horizontal subsurface flowconstructed treatment wetlands: a review. Water research,2004,38(6):1484-1493.
    Saktaywin W., Tsuno H., et al. Advanced sewage treatment process with excess sludge reductionand phosphorus recovery. Water research,2005,39(5):902-910.
    Sklarz M., Gross A., et al. A recirculating vertical flow constructed wetland for the treatment ofdomestic wastewater. Desalination,2009,246(1):617-624.
    Stone K., Poach M., et al. Marsh-pond-marsh constructed wetland design analysis for swinelagoon wastewater treatment. Ecological Engineering,2004,23(2):127-133.
    Trang N. T. D., Konnerup D., et al. Kinetics of pollutant removal from domestic wastewater in atropical horizontal subsurface flow constructed wetland system: Effects of hydraulicloading rate. Ecological Engineering,2010,36(4):527-535.
    US Environmental Protection Agency. Non-Point source pollution from agriculture.http://www.epa.gov/region8/water/nps/npsurb.html.2003
    Verhoeven J T A, Meuleman A F M. Wetlands for wastewater treatment: Opportunities andlimitations. Ecological Engineering,1999,12(1):5-12.
    Vrhov ek D, Kukanja V, Bulc T. Constructed wetland (CW) for industrial waste water treatment.Water research,1996,30(10):2287-2292.
    Vymazal, J. Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewatertreatment. Ecological Engineering,2005,25(5):478-490.
    Vymazal, J. Removal of heavy metals in a horizontal sub-surface flow constructed wetland.Journal of Environmental Science and Health,2005,40(6-7):1369-1379.
    Vymazal J., Kr pfelová L. Wastewater treatment in constructed wetlands with horizontalsub-surface flow, Springer Verlag.2008.
    Yang Y, Chen Y., Zhang X L, Ongley E, Zhao L. Methodology for agricultural and rural NPSpollution in a typical county of the North China Plain. Environmental Pollution.2012,168:170-176.
    Yates C. R., Prasher S. O. Phosphorus reduction from agricultural runoff in a pilot-scalesurface-flow constructed wetland. Ecological Engineering,2009,35(12):1693-1701.
    Zapater M., Gross A., et al. Capacity of an on-site recirculating vertical flow constructed wetlandto withstand disturbances and highly variable influent quality. Ecological Engineering,2011.
    Zurita F., De Anda J., et al. Treatment of domestic wastewater and production of commercialflowers in vertical and horizontal subsurface-flow constructed wetlands. EcologicalEngineering,2009,35(5):861-869.
    白晓慧,王宝贞.人工湿地污水处理技术及发展应用.哈尔滨建筑大学学报,1999,32(6):88-91.
    曹杰.人工湿地对农村生活污水的处理效果研究,浙江大学,2007.
    程波,张泽,陈凌,等.太湖水体富营养化与流域农业面源污染的控制.农业环境科学学报,2005(S1):118-24.
    成水平,况琪军,夏宜睁.香蒲、灯心草人工湿地的研究──Ⅰ.净化污水的效果.湖泊科学,1997,9(4):351-358.
    陈会,王康,周祖昊.基于排水过程分析的水稻灌区农田面源污染模拟.农业工程学报,2012,28(6):112-119.
    陈福坤,喻泽斌,张丽薇,等.柊叶波式潜流人工湿地处理生活污水的研究.河南师范大学学报:自然科学版,2012,40(5):118-120.
    陈进军,郑翀,郑少奎.表面流人工湿地中水生植被的净化效应与组合系统净化效果.环境科学学报,2008,28(10):2029-2035.
    陈腾殊,白少元,王敦球,等.基质结构对水平潜流人工湿地净化效果影响.环境工程学报,2012,6(10):3449-3454.
    陈永华,吴晓芙,郝君,等.人工湿地植物应用现状与问题分析.中国农学通报,2011,27(31):88-92.
    崔芳.人工湿地净化城市湖泊水体实验研究,西安理工大学,2008.
    崔健,马友华,赵艳萍,等.农业面源污染的特性及防治对策.中国农学通报,2006(1):335-341.
    戴媛媛.水平潜流芦苇人工湿地脱氮机理研究,南京农业大学,2008.
    邓欢欢,葛利云,顾国泉,等.水平潜流和组合人工湿地水处理研究进展.工业用水与废水,2007,38(2):1-4.
    丁疆华,舒强.人工湿地在处理污水中的应用.农业环境保护,2000,19(5):320-封三.
    范旭红.人工湿地污水处理系统及其应用,东南大学,2006.
    高锋,杨朝晖,李晨,等.秋茄人工湿地净化循环海水养殖废水效果.农业工程学报,2012,28(17):192-198.
    耿琦鹏,洪剑明.垂直流芦苇人工湿地对化粪池出水净化效果的研究.污染防治技术,2007,20(1):28-30.
    宫宇周,徐建宇.氧化沟工艺的发展及特点.广西轻工业,2009,(4):106-107+182.
    何小娟,李旭东.沸石潜流湿地去除氨氮的运行模式研究.化工环保,2004,24(S1):70-72.
    籍国东,孙铁衍,李顺.人工湿地及其在工业废水处理中的应用.应用生态学报,2002(2):224-228.
    梁继东,周启星,孙铁珩.人工湿地污水处理系统研究及性能改进分析.生态学杂志,2003,22(2):49-55.
    廖维敏,龙举,王婧,等.表面流人工湿地处理生活污水研究——以浙江省舟山城北水库人工湿地为例.安徽农业科学,2011,39(3):1649-1650.
    李军,王忠民,张宁,等污泥焚烧工艺技术研究.环境工程,2005,23(6):48-52+44.
    李诗殷,蔡信德,陈泽涛.生物塘-人工湿地处理河源市新农村生活污水.环境工程,2012,30(S2):30-31+134.
    刘飞.人工湿地生态工程水力学参数的设计.环境科学与管理,2011,36(4):137-149.
    刘芬芬,王德建.垂直流人工湿地出水口位置与植物种类对农村生活污水净化效果的影响.中国生态农业学报,2011,19(4):912-917.
    刘淑芳.人工湿地处理污水技术的应用.科技情报开发与经济,2008,201(24):203-204.
    刘树元.人工湿地净化水田排水的模拟研究.中国科学院研究生院,2011.
    刘树元,阎百兴,王莉霞.潜流人工湿地中植物对氮磷净化的影响.生态学报,2011,31(6):1538-1546.
    刘晓琎,杨云龙.浅谈污水生物处理AB法.科技情报开发与经济,2007,17(2):146-147.
    刘晓强,李亚新.AB法污水处理工艺.科技情报开发与经济,2005,15(16):124-126.
    刘振英.乌梁素海农田面源入湖量的核算研究,内蒙古大学,2004.
    刘作云.农田退水的植物修复技术研究,湖南农业大学,2011.
    李修仓,胡顺军,李岳坦,等.干旱区旱生芦苇根系分布及土壤水分动态.草业学报,2008,17(2):97-101.
    李志刚,李素丽,梅利民,等.美人蕉(Canna indica Linn.)和芦苇(Phragmites australis L.)人工湿地对含铬生活污水的净化效果及植物的生理生态变化.农业环境科学学报,2011,30(2):358-365.
    李志炎,唐宇力,杨在娟,等.人工湿地植物研究现状.浙江林业科技,2004,24(4):57-59+63.
    卢伟伟,姜明.小叶章湿地系统对污水中磷的净化模拟研究.湿地科学,2009,7(1):5-10.
    宁静,鲁敏,裴翡翡,等.人工湿地植物受污水胁迫存在的问题与解决对策.山东建筑大学学报,2011,26(2):149-152.
    牛晓音,葛滢,常杰,等.黑麦草在净化富营养化水的人工湿地生态工程中的应用.湿地科学,2004,2(3):202-207.
    潘乐,茆智,董斌,等.塘堰湿地减少农田面源污染的试验研究.农业工程学报,2012,28(4):130-135.
    漆璐,周仲魁,孙占学,等.人工湿地生态系统污水净化研究新进展.四川环境,2007,26(2):92-95.
    任珺,付朝文,陶玲,等.芦苇、菖蒲和水葱对水体中Zn2+的富集效应研究.湿地科学,2011,9(4):322-327.
    宋蕾,王永胜.关于抽渭灌区农田表面源污染对渭河水体的影响.环境保护,2001,(8):24-26.
    孙广友,王海霞.园林湿地——一种独特的人工湿地类型.湿地科学,2007,5(1):7-12.
    孙亚兵,冯景伟,田园春,等.自动增氧型潜流人工湿地处理农村生活污水的研究.环境科学学报,2006,26(3):404-408.
    谭茂兰,方荣杰.表面流人工湿地控制农田排水污染物的作用.水利科技与经济,2011,17(1):15-17+26.
    王宝贞.水污染治理新技术一新工艺,新概念.北京:科学出版社,2004.
    王蓓,张旭,李广贺,等.芦苇根系对土壤中石油污染物纵向迁移转化的影响.环境科学学报,2007,27(8):1281-1287.
    王丽影,肖许沐,曾令奎,等.潜流人工湿地水力设计浅议.珠江现代建设,2010,(1):34-36.
    王培京,葛鹏,廖日红,等.水平潜流人工湿地处理北方低浓度生活污水研究.安徽农业科学,2011,39(35):22000-22002.
    王宜明.人工湿地净化机理和影响因素探讨.昆明冶金高等专科学校学报,2000,16(2):1-6.
    王志雄. SBR工艺的优点及发展现状.科技创新导报,2008,(26):95.
    闻岳,周琪,蒋玲燕,等.水平潜流人工湿地对污水中有机物的降解特性.中国环境科学2007,27(4):508-512.
    吴军,崔远来,赵树君,等.沟塘湿地对农田面源污染的降解试验.水电能源科学,2012,30(10):107-109+149.
    吴振斌,成水平,贺锋,等.垂直流人工湿地的设计及净化功能初探.应用生态学报,2002,13(6):715-718.
    项学敏,杨洪涛,周集体,等.人工湿地对城市生活污水的深度净化效果研究:冬季和夏季对比.环境科学,2009,30(3):713-719.
    解东,胡锋平.氧化沟工艺在污水处理中的应用研究进展.江苏科技信息,2010,(01):29-32.
    谢龙,汪德爟.花叶芦竹水平潜流人工湿地脱氮性能研究.环境工程学报,2009,3(010):1759-1762.
    郗敏,吕宪国.三江平原湿地多级沟渠系统底泥可溶性有机碳的分布特征.生态学报,2007,27(4):1434-1441.
    修海峰.水平潜流人工湿地氮循环微生物效应及生态模型研究,内蒙古农业大学,2011.
    徐驰.浅谈城市生活污水处理发展现状和工艺.江西农业学报,2010,(01):160-162.
    徐丽花,周琪.人工湿地控制暴雨径流污染的实验研究.上海环境科学,2002,21(5):274-277+321.
    杨敦,徐丽花,周琪.潜流式人工湿地在暴雨径流污染控制中应用.农业环境保护,2002(4):334-336.
    杨旭,于水利,修春海,等.微污染水源水人工湿地预处理效能与机理研究.工业水处理,2009,29(10):24-27.
    鄢璐,王世和,黄娟,等.潜流型人工湿地对污染物去除效果的研究.电力环境保护,2005,21(4):53-55.
    尹炜,李培军,裘巧俊,等.植物吸收在人工湿地去除氮、磷中的贡献.生态学杂志,2006(2):218-221.
    余波平.垂直流人工湿地净化湖水的应用研究.哈尔滨工业大学,2006.
    余波平,彭立新.垂直流人工湿地净化湖水的除磷研究.环境科学导刊,2011,(03):53-56+60.
    于峰,史正涛,彭海英.农业非点源污染研究综述.环境科学与管理,2008(8):54-59.
    于洪贤,姚云龙.湿地概论.北京:中国农业出版社.2011.
    于少鹏,王海霞,万忠娟,等.人工湿地污水处理技术及其在我国发展的现状与前景.地理科学进展,2004,23(1):22-29.
    张甲耀,夏盛林,崔克辉,等.潜流型人工湿地污水处理系统中芦苇的生长特性及净化能力.水处理技术,1998,24(6):55-59.
    张平宇.东北区域发展报告2008.北京:科学出版社.2008.
    张清.人工湿地的构建与应用.湿地科学,2011,9(4):373-379.
    张迎颖,丁为民,钱玮燕,等.人工湿地污水处理技术的工艺与设计.工业用水与废水,2009,40(1):5-10.
    张永健,邢旭.传统活性污泥法与吸附-再生活性污泥法的比较.环境保护与循环经济,2008,28(8):22-24.
    赵桂瑜,杨永兴,杨长明.人工湿地污水处理系统工艺设计研究.四川环境,2005,24(6):24~27+35.
    赵冉,马永胜,等.灌溉-排水-人工湿地系统生态环境效应试验研究.中国农村水利水电,2009,(7):43-44+47.
    郑雅杰.人工湿地系统处理污水新模式的探讨.环境科学进展,1995,3(5):1-7.
    周素芬,胡静.人工湿地在生态城市建设中的作用.氨基酸和生物资源,2006,28(1):12-15.
    朱洁,陈洪斌.人工湿地堵塞问题的探讨.中国给水排水,2009,25(6):24~28+33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700