磁性壳聚糖改性研究及其在水处理中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁性壳聚糖具有良好的吸附性能,适于大规模吸附,且易于改性和再用。本课题考察了磁性壳聚糖及胺化羧甲基磁性壳聚糖对不同重金属离子的吸附分离性能。从磁性再生、吸附实验条件、热力学和动力学数据拟合、多元离子分离等多个方面,研究了磁性壳聚糖及其改性产品对重金属离子的吸附特性。
     利用化学共沉淀法制备了Fe_3O_4。考察了Fe~(3+)与Fe~(2+)摩尔比、溶液碱度和表面活性剂用量对Fe_3O_4成核过程的影响。制备的Fe_3O_4具有超顺磁性,容易单分散。
     利用戊二醛交联Fe_3O_4与壳聚糖制备了磁性壳聚糖微球。通过单因素和正交实验优化,制备的磁性壳聚糖粒径在220μm左右、表面均布10nm~22nm孔隙。通过优化溶液温度、pH、离子浓度等吸附条件,磁性壳聚糖对100mg/L铜离子的吸附容量能够达到68.9mg/g。
     利用快速简单的微波加热方法,先用氯乙酸羧甲基化磁性壳聚糖,再用二乙烯三胺胺化羧甲基产品,合成了胺化羧甲基磁性壳聚糖。产品的粒径和孔径与磁性壳聚糖大小相当,磁性能稳定。胺化后产品的C_2-NH_2含量大幅增加,化学吸附能力提高,其对100mg/L的Pt4+、Cr~(6+)和Cu~(2+)的吸附容量均超过110mg/g。解吸再生6次,吸附容量仍保持在80%以上。
     磁性壳聚糖、胺化羧甲基磁性壳聚糖对金属离子的吸附研究表明:在60mg/L~1600mg/L离子浓度条件下,吸附6小时达到平衡。使用四个热力学和三个动力学模型拟合分析实验数据。其中,Freundlich和Generalized热力学模型、Pseudo二级动力学模型相关性最高。吸附过程为:短时间内为极不稳定的单层吸附;之后发生多层吸附和柱填充;继续延长吸附时间,吸附剂官能团与金属离子的化学结合力逐渐稳固,吸附容量稳步增加,最终达到吸附平衡。
     灵活调节pH,磁性壳聚糖再用7次,可将430mg/L的铜铅二元离子选择性分离;胺化羧甲基磁性壳聚糖可将200mg/L的铜锌铬三元离子溶液选择性分离。
Magnetic chitosan beads were prepared by cross-linking Fe_3O_4 and chitosan with glutaraldehyde. Then magnetic amination chitosan beads were synthesized with diethylenetriamine. The products were used to study the adsorption capacity for various of heavy metal ions, such as Cu~(2+), Pb~(2+), Zn~(2+) and Cr~(6+). The effects of contact time, initial ion concentration, PH and temperature of the ion solution were discussed. And the selective adsorption of multicomponent ions solution was investigated by the products.
     The magnetic chitosan beads had sufficient magnetism to separate and collect themselves from water solution. By SEM and BET, the magnetic chitosan beads were spherical, and there was plenty of mesoporous on the surface. The structure of the product was characterized by FT-IR. The C_2-NH_2 and C_6-OH were the functional groups in the magnetic chitosan for the adsorption of heavy metal ions. The 430 mg/L Cu~(2+) and Pb~(2+) mixed solution was selectively separated by using the magnetic chtitosan beads. The adsorption capacity of the magnetic chitosan for the metal ions kept 80.6% after 7 times reuse.
     Compared with the magnetic chitosan, the magnetic amination chitosan had more C_2-OH positions, the better column filling and chemical adsorption capacity for heavy metal ions. After 7 times reuse, the adsorption capacity for metal ions kept 85.3%. In the way of regulating pH, the magnetic amination chitosan beads were used to selectively separate the 200mg/L Cu~(2+), Zn~(2+) and Cr~(6+) mixed solution.
     The products were used to analyze and describe the adsorption behavior and process of metal ions. In the adsorption experiment, the adsorption was performed at the concentration range of 30mg/L and 1600mg/L, and three temperatures. The equilibrium was reached at 6 h. Four thermodynamics and three kinetics models were used to analyze the adsorption date and describe the adsorption process.
     The Freundlich and Generalized models yielded the best fit than other models. The adsorption occurred in heterogeneous surfaces with a uniform energy distribution, and it is reversible. With the increase of adsorption time and initial concentration, more heavy metal ions were adsorbed by multilayer absorption and chemical adsorption.
     The Dubinin-Radushkevich model was chosen to estimate the characteristic porosity and the apparent free energy of adsorption. When the concentration reached a threshold value, adsorption by layering on the surface turned into volume filling. In this experiment, the volume filling rate was approximate 14.37%.
     The pseudo second-order equation indicated that the rate limiting step was chemical adsorption. At the beginning, the adsorption process was a physical adsorption, which occurred very rapidly, but very unstable. After that, the chemical adsorption capacity raised steadily through the sharing or exchange of electrons, coordination and chelation, until the adsorption capacity reached equilibrium.
引文
[1] Ko?odyńska D. The effect of the novel complexing agent in removal of heavy metal ions from waters and waste waters. Chemical Engineering Journal, 2010, 165(3):835-845.
    [2] Qu R, Sun C, Wang M, Ji C, Xu Q, Zhang Y, Wang C, Chen H, Yin P. Adsorption of Au(III) from aqueous solution using cotton fiber/chitosan composite adsorbents. Hydrometallurgy, 2009, 100(1-2):65-71.
    [3] Chen A-H, Yang C-Y, Chen C-Y, Chen C-Y, Chen C-W. The chemically crosslinked metal-complexed chitosans for comparative adsorptions of Cu(II), Zn(II), Ni(II) and Pb(II) ions in aqueous medium. Journal of Hazardous Materials, 2009, 163(2-3):1068-1075.
    [4] Kalmykova Y, Str?mvall A-M, Steenari B-M. Adsorption of Cd, Cu, Ni, Pb and Zn on Sphagnum peat from solutions with low metal concentrations. Journal of Hazardous Materials, 2008, 152(2):885-891.
    [5] Chen S, Hsu B, Hung L. Chromate reduction by waste iron from electroplating wastewater using plug flow reactor. Journal of Hazardous Materials, 2008, 152(3):1092-1097.
    [6] Boricha AG, Murthy ZVP. Preparation, characterization and performance of nanofiltration membranes for the treatment of electroplating industry effluent. Separation and Purification Technology, 2009, 65(3):282-289.
    [7]潘凌潇,许吉仁,杨源.物理化学法在处理矿山废水中的应用.中国科技财富, 2010, 8:140-140.
    [8]边天亮.矿山废水的净化与资源化.内蒙古煤炭经济, 2005, 2:63-65.
    [9]李阳,杨高英,雷兆武.重金属废水处理与资源化利用现状.电力环境保护, 2009, 4:50-51.
    [10] Panayotova T, Dimovatodorova M, Dobrevsky I. Purification and reuse of heavy metals containing wastewaters from electroplating plants. Desalination, 2007, 206(1-3):135-140.
    [11]刘绍忠.有色金属工业重金属废水重复利用综合技术分析.湖南有色金属,2009, 25(6):48-50.
    [12] Tanaka Y. A computer simulation of feed and bleed ion exchange membrane electrodialysis for desalination of saline water. Desalination, 2010, 254(1-3):99-107.
    [13] Grabowski A, Zhang G, Strathmann H, Eigenberger G. The production of high purity water by continuous electrodeionization with bipolar membranes: Influence of the anion-exchange membrane permselectivity. Journal of Membrane Science, 2006, 281(1-2):297-306.
    [14]彭位华,桂和荣.国内铁氧体法处理重金属废水应用现状.水处理技术, 2010, 36(5):22-27.
    [15] Pan X, Redding JE, Wiley PA, Wen L, McConnell JS, Zhang B. Mutagenicity evaluation of metal oxide nanoparticles by the bacterial reverse mutation assay. Chemosphere, 2010, 79(1):113-116.
    [16] Post JW, Hamelers HVM, Buisman CJN. Influence of multivalent ions on power production from mixing salt and fresh water with a reverse electrodialysis system. Journal of Membrane Science, 2009, 330(1-2):65-72.
    [17]刘绍忠.电化学法处理重金属废水的应用研究.工业水处理, 2010, 2:86-88.
    [18]罗志勇,张胜涛,郑泽根,邓银.电化学法处理重金属废水的研究进展.中国给水排水, 2009, 16:6-10.
    [19] Yin P, Xu Q, Qu R, Zhao G, Sun Y. Adsorption of transition metal ions from aqueous solutions onto a novel silica gel matrix inorganic-organic composite material. Journal of Hazardous Materials, 2010, 173(1-3):710-716.
    [20] Sepehrian H, Ahmadi SJ, Waqif-Husain S, Faghihian H, Alighanbari H. Adsorption Studies of Heavy Metal Ions on Mesoporous Aluminosilicate, Novel Cation Exchanger. Journal of Hazardous Materials, 2010, 176(1-3):252-256.
    [21] Salehi E, Madaeni SS. Adsorption of humic acid onto ultrafiltration membranes in the presence of protein and metal ions. Desalination, 2010, 263(1-3):139-145.
    [22] Li Q, Chai L, Wang Q, Yang Z, Yan H, Wang Y. Fast esterification of spent grain for enhanced heavy metal ions adsorption. Bioresource Technology, 2010, 101(10):3796-3799.
    [23] Inoue K, Paudyal H, Nakagawa H, Kawakita H, Ohto K. Selective adsorption of chromium(VI) from zinc(II) and other metal ions using persimmon waste gel.Hydrometallurgy, 2010, 104(2):123-128.
    [24] Gao B, Gao Y, Li Y. Preparation and chelation adsorption property of composite chelating material poly(amidoxime)/SiO2 towards heavy metal ions. Chemical Engineering Journal, 2010, 158(3):542-549.
    [25] Wan Ngah WS, Teong LC, Hanafiah MAKM. Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydrate Polymers, In Press, Corrected Proof.
    [26] Vinodh R, Padmavathi R, Sangeetha D. Separation of heavy metals from water samples using anion exchange polymers by adsorption process. Desalination, In Press, Corrected Proof.
    [27] Wan M-W, Kan C-C, Rogel BD, Dalida MLP. Adsorption of copper (II) and lead (II) ions from aqueous solution on chitosan-coated sand. Carbohydrate Polymers, 2010, 80(3):891-899.
    [28] Repo E, Warchol JK, Kurniawan TA, Sillanp?? MET. Adsorption of Co(II) and Ni(II) by EDTA- and/or DTPA-modified chitosan: Kinetic and equilibrium modeling. Chemical Engineering Journal, 2010, 161(1-2):73-82.
    [29] Jagtap S, Thakre D, Wanjari S, Kamble S, Labhsetwar N, Rayalu S. New modified chitosan-based adsorbent for defluoridation of water. Journal of Colloid and Interface Science, 2009, 332(2):280-290.
    [30] Caroni ALPF, de Lima CRM, Pereira MR, Fonseca JLC. The kinetics of adsorption of tetracycline on chitosan particles. Journal of Colloid and Interface Science, 2009, 340(2):182-191.
    [31] Oshita K, Sabarudin A, Takayanagi T, Oshima M, Motomizu S. Adsorption behavior of uranium(VI) and other ionic species on cross-linked chitosan resins modified with chelating moieties. Talanta, 2009, 79(4):1031-1035.
    [32] Zhou L, Liu J, Liu Z. Adsorption of platinum(IV) and palladium(II) from aqueous solution by thiourea-modified chitosan microspheres. Journal of Hazardous Materials, 2009, 172(1):439-446.
    [33] Arasteh R, Masoumi M, Rashidi AM, Moradi L, Samimi V, Mostafavi ST. Adsorption of 2-nitrophenol by multi-wall carbon nanotubes from aqueous solutions. Applied Surface Science, 2010, 256(14):4447-4455.
    [34] Pyrzynska K, Bystrzejewski M. Comparative study of heavy metal ions sorption onto activated carbon, carbon nanotubes, and carbon-encapsulated magneticnanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 362(1-3):102-109.
    [35] Chen Z, Pierre D, He H, Tan S, Pham-Huy C, Hong H, Huang J. Adsorption Behavior of Epirubicin Hydrochloride on Carboxylated Carbon Nanotubes. International Journal of Pharmaceutics, In Press, Accepted Manuscript.
    [36]卢月美,巩前明,梁吉.碳纳米管/活性炭复合微球的制备及其对vb-12的吸附应用.物理化学学报, 2009, 8:1697-1702.
    [37] Bhattacharyya KG, Gupta SS. Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review. Advances in Colloid and Interface Science, 2008, 140(2):114-131.
    [38] Homagai PL, Ghimire KN, Inoue K. Adsorption behavior of heavy metals onto chemically modified sugarcane bagasse. Bioresource Technology, 2010, 101(6):2067-2069.
    [39] Gurgel LVA, Gil LF. Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solutions by succinylated mercerized cellulose modified with triethylenetetramine. Carbohydrate Polymers, 2009, 77(1):142-149.
    [40] Jeon C, Nah IW, Hwang K-Y. Adsorption of heavy metals using magnetically modified alginic acid. Hydrometallurgy, 2007, 86(3-4):140-146.
    [41] Pissetti FL, Magosso HA, Yoshida IVP, Gushikem Y, Myernyi SO, Kholin YV. n-Propylpyridinium chloride-modified poly(dimethylsiloxane) elastomeric networks: Preparation, characterization, and study of metal chloride adsorption from ethanol solutions. Journal of Colloid and Interface Science, 2007, 314(1):38-45.
    [42] Radi S, Tighadouini S, Toubi Y, Bacquet M. Polysiloxane surface modified with bipyrazolic tripodal receptor for quantitative lead adsorption. Journal of Hazardous Materials, 2011, 185(1):494-501.
    [43] Saeed K, Haider S, Oh T-J, Park S-Y. Preparation of amidoxime-modified polyacrylonitrile (PAN-oxime) nanofibers and their applications to metal ions adsorption. Journal of Membrane Science, 2008, 322(2):400-405.
    [44] Jiang M-q, Jin X-y, Lu X-Q, Chen Z-l. Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto natural kaolinite clay. Desalination, 2010, 252(1-3):33-39.
    [45] Srivastava P, Singh B, Angove M. Competitive adsorption behavior of heavy metals on kaolinite. Journal of Colloid and Interface Science, 2005,290(1):28-38.
    [46]李增新,李俊,王国明,刘哲,黄婕.改性天然沸石去除水中砷的研究.矿物岩石地球化学通报, 2007:189.
    [47] Oubagaranadin JUK, Murthy ZVP, Mallapur VP. Removal of Cu(II) and Zn(II) from industrial wastewater by acid-activated montmorillonite-illite type of clay. Comptes Rendus Chimie, 2010, 13(11):1359-1363.
    [48] Ghorbel-Abid I, Galai K, Trabelsi-Ayadi M. Retention of chromium (III) and cadmium (II) from aqueous solution by illitic clay as a low-cost adsorbent. Desalination, 2010, 256(1-3):190-195.
    [49] Anirudhan TS, Bringle CD, Rijith S. Removal of uranium(VI) from aqueous solutions and nuclear industry effluents using humic acid-immobilized zirconium-pillared clay. Journal of Environmental Radioactivity, 2010, 101(3):267-276.
    [50] Eloussaief M, Benzina M. Efficiency of natural and acid-activated clays in the removal of Pb(II) from aqueous solutions. Journal of Hazardous Materials, 2010, 178(1-3):753-757.
    [51]许佩瑶,吴世军.粉煤灰处理含重金属废水的研究进展.煤炭工程, 2010, 2:95-97.
    [52] Chakraborty R, Bepari S, Banerjee A. Transesterification of soybean oil catalyzed by fly ash and egg shell derived solid catalysts. Chemical Engineering Journal, 2010, 165(3):798-805.
    [53] Wang K-s, Wei M-C, Peng T-H, Li H-C, Chao S-J, Hsu T-F, Lee H-S, Chang S-H. Treatment and toxicity evaluation of methylene blue using electrochemical oxidation, fly ash adsorption and combined electrochemical oxidation-fly ash adsorption. Journal of Environmental Management, 2010, 91(8):1778-1784.
    [54] Ahmaruzzaman M. A review on the utilization of fly ash. Progress in Energy and Combustion Science, 2010, 36(3):327-363.
    [55] Dolphen R, Thiravetyan P. Adsorption of melanoidins by chitin nanofibers. Chemical Engineering Journal, In Press, Accepted Manuscript.
    [56] Pinto PX, Al-Abed SR, Reisman DJ. Biosorption of Heavy Metals from Mining Influenced Water onto Chitin Products. Chemical Engineering Journal, In Press, Accepted Manuscript.
    [57] Kousalya GN, Gandhi MR, Viswanathan N, Meenakshi S. Preparation and metaluptake studies of modified forms of chitin. International Journal of Biological Macromolecules, 2010, 47(5):583-589.
    [58] Badruddoza AZM, Tay ASH, Tan PY, Hidajat K, Uddin MS. Carboxymethyl -[beta]- cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions: Synthesis and adsorption studies. Journal of Hazardous Materials, 2011, 185(2-3):1177-1186.
    [59] Hu J, Shao D, Chen C, Sheng G, Ren X, Wang X. Removal of 1-naphthylamine from aqueous solution by multiwall carbon nanotubes/iron oxides/cyclodextrin composite. Journal of Hazardous Materials, 2011, 185(1):463-471.
    [60] Zhao P, Jiang J, Zhang F-w, Zhao W-f, Liu J-t, Li R. Adsorption separation of Ni(II) ions by dialdehyde o-phenylenediamine starch from aqueous solution. Carbohydrate Polymers, 2010, 81(4):751-757.
    [61] Dong A, Xie J, Wang W, Yu L, Liu Q, Yin Y. A novel method for amino starch preparation and its adsorption for Cu(II) and Cr(VI). Journal of Hazardous Materials, 2010, 181(1-3):448-454.
    [62] Laurent J, Casellas M, Dagot C. Heavy metals biosorption on disintegrated activated sludge: Description of a new equilibrium model. Chemical Engineering Journal, 2010, 164(1):63-69.
    [63] Sassi M, Bestani B, Said AH, Benderdouche N, Guibal E. Removal of heavy metal ions from aqueous solutions by a local dairy sludge as a biosorbant. Desalination, 2010, 262(1-3):243-250.
    [64] Pan B, Qiu H, Pan B, Nie G, Xiao L, Lv L, Zhang W, Zhang Q, Zheng S. Highly efficient removal of heavy metals by polymer-supported nanosized hydrated Fe(III) oxides: Behavior and XPS study. Water Research, 2010, 44(3):815-824.
    [65] Boukhalfa C. Sulfate removal from aqueous solutions by hydrous iron oxide in the presence of heavy metals and competitive anions: Macroscopic and spectroscopic analyses. Desalination, 2010, 250(1):428-432.
    [66] Phuengprasop T, Sittiwong J, Unob F. Removal of heavy metal ions by iron oxide coated sewage sludge. Journal of Hazardous Materials, In Press, Accepted Manuscript.
    [67]马珊,肖玲,李伟.良分散性磁性壳聚糖纳米粒子的制备及吸附性能研究.离子交换与吸附, 2010, 26(3):272-279.
    [68] Pillai CKS, Paul W, Sharma CP. Chitin and chitosan polymers: Chemistry,solubility and fiber formation. Progress in Polymer Science, 2009, 34(7):641-678.
    [69] Rinaudo M. Chitin and chitosan: Properties and applications. Progress in Polymer Science, 2006, 31(7):603-632.
    [70] Ayd?n YA, Aksoy ND. Adsorption of chromium on chitosan: Optimization, kinetics and thermodynamics. Chemical Engineering Journal, 2009, 151(1-3):188-194.
    [71] Ng JCY, Cheung WH, McKay G. Equilibrium Studies of the Sorption of Cu(II) Ions onto Chitosan. Journal of Colloid and Interface Science, 2002, 255(1):64-74.
    [72] Chen A-H, Liu S-C, Chen C-Y, Chen C-Y. Comparative adsorption of Cu(II), Zn(II), and Pb(II) ions in aqueous solution on the crosslinked chitosan with epichlorohydrin. Journal of Hazardous Materials, 2008, 154(1-3):184-191.
    [73] Vieira EFS, Cestari AR, de B. Santos E, Dias FS. Interaction of Ag(I), Hg(II), and Cu(II) with 1,2-ethanedithiol immobilized on chitosan: Thermochemical data from isothermal calorimetry. Journal of Colloid and Interface Science, 2005, 289(1):42-47.
    [74] Rinaudo M. New way to crosslink chitosan in aqueous solution. European Polymer Journal, 2010, 46(7):1537-1544.
    [75] Kumar M, Tripathi BP, Shahi VK. Crosslinked chitosan/polyvinyl alcohol blend beads for removal and recovery of Cd(II) from wastewater. Journal of Hazardous Materials, 2009, 172(2-3):1041-1048.
    [76] Ramesh A, Hasegawa H, Sugimoto W, Maki T, Ueda K. Adsorption of gold(III), platinum(IV) and palladium(II) onto glycine modified crosslinked chitosan resin. Bioresource Technology, 2008, 99(9):3801-3809.
    [77] Morais WA, Fernandes ALP, Dantas TNC, Pereira MR, Fonseca JLC. Sorption studies of a model anionic dye on crosslinked chitosan. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 310(1-3):20-31.
    [78]薛雪,周旭章,张桂军.乙二胺改性磁性壳聚糖微球制备及其对Cu2+和Pb2+吸附.广州化工, 2010, 38(6):81-84.
    [79] Ma F, Qu R, Sun C, Wang C, Ji C, Zhang Y, Yin P. Adsorption behaviors of Hg(II) on chitosan functionalized by amino-terminated hyperbranched polyamidoamine polymers. Journal of Hazardous Materials, 2009,172(2-3):792-801.
    [80] Fang P, Yu C, Chen Z, Chen Y. Ultraviolet-light-filtering behavior of fullerene–amine derivative/chitosan blended membranes. Polymer, 2006, 47(12):4341-4347.
    [81] Danwanichakul P, Dechojarasrri D, Meesumrit S, Swangwareesakul S. Influence of sulfur-crosslinking in vulcanized rubber chips on mercury(II) removal from contaminated water. Journal of Hazardous Materials, 2008, 154(1-3):1-8.
    [82] Miretzky P, Cirelli AF. Hg(II) removal from water by chitosan and chitosan derivatives: A review. Journal of Hazardous Materials, 2009, 167(1-3):10-23.
    [83]赵晓蕾,苏海佳,黄炜炜.壳聚糖-TiO2吸附剂对银的吸附及纳米银的生成.环境工程学报, 2010, 5:1107-1110.
    [84]李保强,贺全志,罗阳,宋杨,林桓.磁性壳聚糖微球制备及在放射性水污染应用研究进展.水处理技术, 2010, 36(6):10-13.
    [85]周利民,王一平,黄群武,刘峙嵘.改性磁性壳聚糖微球对Cu2+、Cd2+和Ni2+的吸附性能.物理化学学报, 2007, 23(12):1979-1984.
    [86] Monier M, Ayad DM, Wei Y, Sarhan AA. Adsorption of Cu(II), Co(II), and Ni(II) ions by modified magnetic chitosan chelating resin. Journal of Hazardous Materials, 2010, 177(1-3):962-970.
    [87] Salehi R, Arami M, Mahmoodi NM, Bahrami H, Khorramfar S. Novel biocompatible composite (Chitosan-zinc oxide nanoparticle): Preparation, characterization and dye adsorption properties. Colloids and Surfaces B: Biointerfaces, 2010, 80(1):86-93.
    [88]曾涵,赵淑娴,徐江玲,郑孝伟.壳聚糖-g-N-羧甲基-2-硫代-4,5-2H咪唑啉酮的制备及其抑菌性能.应用化学, 2009, 26(11):1287-1291.
    [89]曾涵,刘丛,郁倩.壳聚糖-g-N-羧甲基-2-苯并咪唑-1,2-乙二醇的制备及其性能.天然产物研究与开发, 2009, 5:826-831.
    [90]赵绪军,李瑞杰,宋宁宁.香草醛改性壳聚糖对水中Cu2+,Pb2+的吸附性能探讨.山东化工, 2009, 9:15-18.
    [91]李海丰,王光辉,王学刚,于荣,汪玉庭,邓南圣.β-环糊精接枝壳聚糖对酸性红r的吸附研究.环境科学与技术, 2009, 32(10):1-4.
    [92] Crini G. Kinetic and equilibrium studies on the removal of cationic dyes fromaqueous solution by adsorption onto a cyclodextrin polymer. Dyes and Pigments, 2008, 77(2):415-426.
    [93]舒红英,戴玉华,丁教,高敏.马来酸酐接枝壳聚糖的微波法合成及其吸附性能.南昌航空大学学报:自然科学版, 2008, 4:4.
    [94] Akperov EO, Maharramov AM, Akperov OG. Uranyl ion adsorption using novel cross-linked maleic anhydride-allyl propionate-styrene terpolymer. Hydrometallurgy, 2009, 100(1-2):76-81.
    [95] Zhang W, Li G, Fang Y, Wang X. Maleic anhydride surface-modification of crosslinked chitosan membrane and its pervaporation performance. Journal of Membrane Science, 2007, 295(1-2):130-138.
    [96] Li X, Kong X, Shi S, Gu Y, Yang L, Guo G, Luo F, Zhao X, Wei Y, Qian Z. Biodegradable MPEG-g-Chitosan and methoxy poly(ethylene glycol) -b- poly([epsilon]-caprolactone) composite films: Part 1. Preparation and characterization. Carbohydrate Polymers, 2010, 79(2):429-436.
    [97] Nanda R, Sasmal A, Nayak PL. Preparation and characterization of chitosan-polylactide composites blended with Cloisite 30B for control release of the anticancer drug paclitaxel. Carbohydrate Polymers, 2011, 83(2):988-994.
    [98] Boricha AG, Murthy ZVP. Acrylonitrile butadiene styrene/chitosan blend membranes: Preparation, characterization and performance for the separation of heavy metals. Journal of Membrane Science, 2009, 339(1-2):239-249.
    [99] Yi Y, Wang Y, Liu H. Preparation of new crosslinked chitosan with crown ether and their adsorption for silver ion for antibacterial activities. Carbohydrate Polymers, 2003, 53(4):425-430.
    [100] Ding S, Zhang X, Feng X, Wang Y, Ma S, Peng Q, Zhang W. Synthesis of N,N'-diallyl dibenzo 18-crown-6 crown ether crosslinked chitosan and their adsorption properties for metal ions. Reactive and Functional Polymers, 2006, 66(3):357-363.
    [101]杨文澜.壳聚糖联合碱改性粉煤灰对重金属离子的吸附特性.环境工程学报, 2009, 3(12):2281-2284.
    [102] Mall ID, Srivastava VC, Agarwal NK. Removal of Orange-G and Methyl Violet dyes by adsorption onto bagasse fly ash--kinetic study and equilibrium isotherm analyses. Dyes and Pigments, 2006, 69(3):210-223.
    [103] Wang S, Terdkiatburana T, TadéMO. Single and co-adsorption of heavy metals and humic acid on fly ash. Separation and Purification Technology, 2008, 58(3):353-358.
    [104] Yang S, Liu X, Zeng X, Xia B, Gu J, Luo S, Mai N, Wei W. Fabrication of nano-copper/carbon nanotubes/chitosan film by one-step electrodeposition and its sensitive determination of nitrite. Sensors and Actuators B: Chemical, 2010, 145(2):762-768.
    [105] Ghica ME, Pauliukaite R, Fatibello-Filho O, Brett CMA. Application of functionalised carbon nanotubes immobilised into chitosan films in amperometric enzyme biosensors. Sensors and Actuators B: Chemical, 2009, 142(1):308-315.
    [106]高春娟,王俐聪,刘骆峰,张雨山.硅胶负载交联壳聚糖树脂的制备及吸附性能.化学工业与工程, 2010, 27(2):132-137.
    [107] Wu J, Luan M, Zhao J. Trypsin immobilization by direct adsorption on metal ion chelated macroporous chitosan-silica gel beads. International Journal of Biological Macromolecules, 2006, 39(4-5):185-191.
    [108]谷月霞,李涛,矫强,隋卫平.沸石负载壳聚糖对铬(Ⅵ)的吸附平衡和动力学研究.环境科学与管理, 2009, 34(9):83-86.
    [109] Arora M, Eddy NK, Mumford KA, Baba Y, Perera JM, Stevens GW. Surface modification of natural zeolite by chitosan and its use for nitrate removal in cold regions. Cold Regions Science and Technology, 2010, 62(2-3):92-97.
    [110] Liu C, Bai R. Adsorptive removal of copper ions with highly porous chitosan/cellulose acetate blend hollow fiber membranes. Journal of Membrane Science, 2006, 284(1-2):313-322.
    [111] Hiroki A, Tran HT, Nagasawa N, Yagi T, Tamada M. Metal adsorption of carboxymethyl cellulose/carboxymethyl chitosan blend hydrogels prepared by Gamma irradiation. Radiation Physics and Chemistry, 2009, 78(12):1076-1080.
    [112] Nitayaphat W, Jiratumnukul N, Charuchinda S, Kittinaovarat S. Mechanical properties of chitosan/bamboo charcoal composite films made with normal and surface oxidized charcoal. Carbohydrate Polymers, 2009, 78(3):444-448.
    [113] Hameed BH, El-Khaiary MI. Equilibrium, kinetics and mechanism of malachite green adsorption on activated carbon prepared from bamboo by K2CO3activation and subsequent gasification with CO2. Journal of Hazardous Materials, 2008, 157(2-3):344-351.
    [114]杨磊,傅丽君.竹炭-有机复合吸附剂对Cu2+吸附行为研究.莆田学院学报, 2009, 16(5):81-85.
    [115] Yoksan R, Chirachanchai S. Silver nanoparticle-loaded chitosan-starch based films: Fabrication and evaluation of tensile, barrier and antimicrobial properties. Materials Science and Engineering: C, 2010, 30(6):891-897.
    [116] Monier M, Ayad DM, Wei Y, Sarhan AA. Preparation and characterization of magnetic chelating resin based on chitosan for adsorption of Cu(II), Co(II), and Ni(II) ions. Reactive and Functional Polymers, 2010, 70(4):257-266.
    [117] dos Santos HH, Demarchi CA, Rodrigues CA, Greneche JM, Nedelko N, Slawska-Waniewska A. Adsorption of As(III) on chitosan-Fe-crosslinked complex (Ch-Fe). Chemosphere, 2011, 82(2):278-283.
    [118] Huang G, Yang C, Zhang K, Shi J. Adsorptive Removal of Copper Ions from Aqueous Solution Using Cross-linked Magnetic Chitosan Beads. Chinese Journal of Chemical Engineering, 2009, 17(6):960-966.
    [119] Chang Y-C, Chen D-H. Preparation and adsorption properties of monodisperse chitosan-bound Fe_3O_4 magnetic nanoparticles for removal of Cu(II) ions. Journal of Colloid and Interface Science, 2005, 283(2):446-451.
    [120] Chang Y-C, Chang S-W, Chen D-H. Magnetic chitosan nanoparticles: Studies on chitosan binding and adsorption of Co(II) ions. Reactive and Functional Polymers, 2006, 66(3):335-341.
    [121] Peng Q, Liu Y, Zeng G, Xu W, Yang C, Zhang J. Biosorption of copper(II) by immobilizing Saccharomyces cerevisiae on the surface of chitosan-coated magnetic nanoparticles from aqueous solution. Journal of Hazardous Materials, 2010, 177(1-3):676-682.
    [122] Darras V, Nelea M, Winnik FM, Buschmann MD. Chitosan modified with gadolinium diethylenetriaminepentaacetic acid for magnetic resonance imaging of DNA/chitosan nanoparticles. Carbohydrate Polymers, 2010, 80(4):1137-1146.
    [123] Elwakeel KZ. Removal of Cr(VI) from alkaline aqueous solutions using chemically modified magnetic chitosan resins. Desalination, 2010, 250(1):105-112.
    [124] Elwakeel KZ, Atia AA, Donia AM. Removal of Mo(VI) as oxoanions fromaqueous solutions using chemically modified magnetic chitosan resins. Hydrometallurgy, 2009, 97(1-2):21-28.
    [125] Zhou L, Liu Z, Liu J, Huang Q. Adsorption of Hg(II) from aqueous solution by ethylenediamine-modified magnetic crosslinking chitosan microspheres. Desalination, 2010, 258(1-3):41-47.
    [126] Zhou L, Jin J, Liu Z, Liang X, Shang C. Adsorption of acid dyes from aqueous solutions by the ethylenediamine-modified magnetic chitosan nanoparticles. Journal of Hazardous Materials, 2011, 185(2-3):1045-1052.
    [127] Donia AM, Atia AA, Elwakeel KZ. Recovery of gold(III) and silver(I) on a chemically modified chitosan with magnetic properties. Hydrometallurgy, 2007, 87(3-4):197-206.
    [128] Donia AM, Atia AA, Elwakeel KZ. Selective separation of mercury(II) using magnetic chitosan resin modified with Schiff's base derived from thiourea and glutaraldehyde. Journal of Hazardous Materials, 2008, 151(2-3):372-379.
    [129] Zhou L, Wang Y, Liu Z, Huang Q. Characteristics of equilibrium, kinetics studies for adsorption of Hg(II), Cu(II), and Ni(II) ions by thiourea-modified magnetic chitosan microspheres. Journal of Hazardous Materials, 2009, 161(2-3):995-1002.
    [130] Wang L, Xing R, Liu S, Qin Y, Li K, Yu H, Li R, Li P. Studies on adsorption behavior of Pb(II) onto a thiourea-modified chitosan resin with Pb(II) as template. Carbohydrate Polymers, 2010, 81(2):305-310.
    [131] Wang L, Xing R, Liu S, Yu H, Qin Y, Li K, Feng J, Li R, Li P. Recovery of silver (I) using a thiourea-modified chitosan resin. Journal of Hazardous Materials, 2010, 180(1-3):577-582.
    [132] Rajiv Gandhi M, Kousalya GN, Viswanathan N, Meenakshi S. Sorption behaviour of copper on chemically modified chitosan beads from aqueous solution. Carbohydrate Polymers, 2011, 83(3):1082-1087.
    [133] Zhou Y-T, Branford-White C, Nie H-L, Zhu L-M. Adsorption mechanism of Cu2+ from aqueous solution by chitosan-coated magnetic nanoparticles modified with [alpha]-ketoglutaric acid. Colloids and Surfaces B: Biointerfaces, 2009, 74(1):244-252.
    [134]江雯,温贤涛,王伟,吴尧,顾忠伟.超顺磁单分散性Fe3O4磁纳米粒的制备及性能表征.无机材料学报, 2009, 24(4):727-731.
    [135]李冬梅,徐光亮.制备超顺磁性Fe3O4纳米粒子的研究进展.中国粉体技术, 2008, 14(4):55-58.
    [136] Hong RY, Pan TT, Li HZ. Microwave synthesis of magnetic Fe3O4 nanoparticles used as a precursor of nanocomposites and ferrofluids. Journal of Magnetism and Magnetic Materials, 2006, 303(1):60-68.
    [137] Hu P, Zhang S, Wang H, Pan Da, Tian J, Tang Z, Volinsky AA. Heat treatment effects on Fe3O4 nanoparticles structure and magnetic properties prepared by carbothermal reduction. Journal of Alloys and Compounds, In Press, Corrected Proof.
    [138] Yang T-I, Brown RNC, Kempel LC, Kofinas P. Magneto-dielectric properties of polymer-Fe3O4 nanocomposites. Journal of Magnetism and Magnetic Materials, 2008, 320(21):2714-2720.
    [139] Iida H, Takayanagi K, Nakanishi T, Osaka T. Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis. Journal of Colloid and Interface Science, 2007, 314(1):274-280.
    [140] Zhang S, Zhao X, Niu H, Shi Y, Cai Y, Jiang G. Superparamagnetic Fe3O4 nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds. Journal of Hazardous Materials, 2009, 167(1-3):560-566.
    [141] Wu X, Tang J, Zhang Y, Wang H. Low temperature synthesis of Fe3O4 nanocrystals by hydrothermal decomposition of a metallorganic molecular precursor. Materials Science and Engineering: B, 2009, 157(1-3):81-86.
    [142] Zhou L, Xu J, Liang X, Liu Z. Adsorption of platinum(IV) and palladium(II) from aqueous solution by magnetic cross-linking chitosan nanoparticles modified with ethylenediamine. Journal of Hazardous Materials, 2010, 182(1-3):518-524.
    [143] Zhou Y, Liedberg B, Gorochovceva N, Makuska R, Dedinaite A, Claesson PM. Chitosan-N-poly(ethylene oxide) brush polymers for reduced nonspecific protein adsorption. Journal of Colloid and Interface Science, 2007, 305(1):62-71.
    [144] Yang W-B, Xia M, Li A, Yang L, Zhang Q. Mechanism and behavior of surfactant adsorption onto resins with different matrices. Reactive and Functional Polymers, 2007, 67(7):609-616.
    [145] Sun S, Wang A. Adsorption properties and mechanism of cross-linkedcarboxymethyl-chitosan resin with Zn(II) as template ion. Reactive and Functional Polymers, 2006, 66(8):819-826.
    [146] Zimmermann AC, Mecab? A, Fagundes T, Rodrigues CA. Adsorption of Cr(VI) using Fe-crosslinked chitosan complex (Ch-Fe). Journal of Hazardous Materials, 2010, 179(1-3):192-196.
    [147] García-Zubiri IX, González-Gaitano G, Isasi JR. Sorption models in cyclodextrin polymers: Langmuir, Freundlich, and a dual-mode approach. Journal of Colloid and Interface Science, 2009, 337(1):11-18.
    [148] Mittal A, Kurup L, Mittal J. Freundlich and Langmuir adsorption isotherms and kinetics for the removal of Tartrazine from aqueous solutions using hen feathers. Journal of Hazardous Materials, 2007, 146(1-2):243-248.
    [149] Viswanathan N, Meenakshi S. Enhanced fluoride sorption using La(III) incorporated carboxylated chitosan beads. Journal of Colloid and Interface Science, 2008, 322(2):375-383.
    [150] Gupta S, Babu BV. Utilization of waste product (tamarind seeds) for the removal of Cr(VI) from aqueous solutions: Equilibrium, kinetics, and regeneration studies. Journal of Environmental Management, 2009, 90(10):3013-3022.
    [151] Han R, Zhang J, Zou W, Shi J, Liu H. Equilibrium biosorption isotherm for lead ion on chaff. Journal of Hazardous Materials, 2005, 125(1-3):266-271.
    [152] Safronov AP, Zubarev AY. Flory-Huggins parameter of interaction in polyelectrolyle solutions of chitosan and its alkylated derivative. Polymer, 2002, 43(3):743-748.
    [153] Laus R, Costa TG, Szpoganicz B, Fávere VT. Adsorption and desorption of Cu(II), Cd(II) and Pb(II) ions using chitosan crosslinked with epichlorohydrin-triphosphate as the adsorbent. Journal of Hazardous Materials, 2010, 183(1-3):233-241.
    [154] Ramnani SP, Sabharwal S. Adsorption behavior of Cr(VI) onto radiation crosslinked chitosan and its possible application for the treatment of wastewater containing Cr(VI). Reactive and Functional Polymers, 2006, 66(9):902-909.
    [155] Jeon C, H?ll WH. Application of the surface complexation model to heavy metal sorption equilibria onto aminated chitosan. Hydrometallurgy, 2004, 71(3-4):421-428.
    [156] Ncibi MC, Mahjoub B, Seffen M, Brouers F, Gaspard S. Sorption dynamicinvestigation of chromium(VI) onto Posidonia oceanica fibres: Kinetic modelling using new generalized fractal equation. Biochemical Engineering Journal, 2009, 46(2):141-146.
    [157] Demarger-AndréS, Domard A. Chitosan behaviours in a dispersion of undecylenic acid. morphological aspects. Carbohydrate Polymers, 1995, 27(2):101-107.
    [158] Lopes ECN, dos Anjos FSC, Vieira EFS, Cestari AR. An alternative Avrami equation to evaluate kinetic parameters of the interaction of Hg(II) with thin chitosan membranes. Journal of Colloid and Interface Science, 2003, 263(2):542-547.
    [159]党明岩,包壮.交联壳聚糖微球树脂对Cu(Ⅱ)的吸附动力学研究.沈阳理工大学学报, 2010, 1:68-70.
    [160] Fujiwara K, Ramesh A, Maki T, Hasegawa H, Ueda K. Adsorption of platinum (IV), palladium (II) and gold (III) from aqueous solutions onto l-lysine modified crosslinked chitosan resin. Journal of Hazardous Materials, 2007, 146(1-2):39-50.
    [161] Hoven V, Tangpasuthadol V, Angkitpaiboon Y, Vallapa N, Kiatkamjornwong S. Surface-charged chitosan: Preparation and protein adsorption. Carbohydrate Polymers, 2007, 68(1):44-53.
    [162] Justi KC, Fávere VT, Laranjeira MCM, Neves A, Peralta RA. Kinetics and equilibrium adsorption of Cu(II), Cd(II), and Ni(II) ions by chitosan functionalized with 2[-bis-(pyridylmethyl)aminomethyl]-4-methyl6-formyl- phenol. Journal of Colloid and Interface Science, 2005, 291(2):369-374.
    [163] Jeon C, Hapark K. Adsorption and desorption characteristics of mercury(II) ions using aminated chitosan bead. Water Research, 2005, 39(16):3938-3944.
    [164] Vasconcelos H, Favere V, Goncalves N, Laranjeira M. Chitosan modified with Reactive Blue 2 dye on adsorption equilibrium of Cu(II) and Ni(II) ions. Reactive and Functional Polymers, 2007, 67(10):1052-1060.
    [165] Karadag D. Modeling the mechanism, equilibrium and kinetics for the adsorption of Acid Orange 8 onto surfactant-modified clinoptilolite: The application of nonlinear regression analysis. Dyes and Pigments, 2007, 74(3):659-664.
    [166] Zou W, Han R, Chen Z, Jinghua Z, Shi J. Kinetic study of adsorption of Cu(II)and Pb(II) from aqueous solutions using manganese oxide coated zeolite in batch mode. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 279(1-3):238-246.
    [167] Sen TK, Mahajan SP, Khilar KC. Adsorption of Cu2+ and Ni2+ on iron oxide and kaolin and its importance on Ni2+ transport in porous media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 211(1):91-102.
    [168] Swayampakula K, Boddu VM, Nadavala SK, Abburi K. Competitive adsorption of Cu (II), Co (II) and Ni (II) from their binary and tertiary aqueous solutions using chitosan-coated perlite beads as biosorbent. Journal of Hazardous Materials, 2009, 170(2-3):680-689.
    [169] Ramnani S, Sabharwal S. Adsorption behavior of Cr(VI) onto radiation crosslinked chitosan and its possible application for the treatment of wastewater containing Cr(VI). Reactive and Functional Polymers, 2006, 66(9):902-909.
    [170] Vieira R, Beppu M. Dynamic and static adsorption and desorption of Hg(II) ions on chitosan membranes and spheres. Water Research, 2006, 40(8):1726-1734.
    [171] Anirudhan TS, Suchithra PS. Heavy metals uptake from aqueous solutions and industrial wastewaters by humic acid-immobilized polymer/bentonite composite: Kinetics and equilibrium modeling. Chemical Engineering Journal, 2010, 156(1):146-156.
    [172] Ibrahim HS, Jamil TS, Hegazy EZ. Application of zeolite prepared from Egyptian kaolin for the removal of heavy metals: II. Isotherm models. Journal of Hazardous Materials, 2010, 182(1-3):842-847.
    [173] Petrella A, Petruzzelli V, Basile T, Petrella M, Boghetich G, Petruzzelli D. Recycled porous glass from municipal/industrial solid wastes sorting operations as a lead ion sorbent from wastewaters. Reactive and Functional Polymers, 2010, 70(4):203-209.
    [174]朱再盛,罗三来,钟娜,陈炳稔.交联壳聚糖对Zn2+的吸附性能.应用化学, 2008, 25(5):617-621.
    [175] Gérente C, Andrès Y, McKay G, Le Cloirec P. Removal of arsenic(V) onto chitosan: From sorption mechanism explanation to dynamic water treatment process. Chemical Engineering Journal, 2010, 158(3):593-598.
    [176] Hasan M, Ahmad AL, Hameed BH. Adsorption of reactive dye onto cross-linked chitosan/oil palm ash composite beads. Chemical Engineering Journal, 2008,136(2-3):164-172.
    [177] Viswanathan N, Meenakshi S. Synthesis of Zr(IV) entrapped chitosan polymeric matrix for selective fluoride sorption. Colloids and Surfaces B: Biointerfaces, 2009, 72(1):88-93.
    [178] Ngah WSW, Fatinathan S. Adsorption characterization of Pb(II) and Cu(II) ions onto chitosan-tripolyphosphate beads: Kinetic, equilibrium and thermodynamic studies. Journal of Environmental Management, 91(4):958-969.
    [179] Akkaya R, Ulusoy U. Adsorptive features of chitosan entrapped in polyacrylamide hydrogel for Pb2+, UO22+, and Th4+. Journal of Hazardous Materials, 2008, 151(2-3):380-388.
    [180] Kotulska M, Kubica K. Chapter 1 Random Processes in the Appearance and Dynamics of an Electropore in a Lipid Membrane. In: Advances in Planar Lipid Bilayers and Liposomes. Edited by Professor Dr ALL, vol. Volume 7: Academic Press; 2008: 1-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700