中继增强蜂窝网络中基于复用分割的无线资源管理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
更高的数据传输速率及无所不在的可靠信号覆盖是下一代移动通信网络的迫切要求,而把中继多跳技术引入蜂窝网络则是一种经济有效的解决方案。中继蜂窝网络可以扩大小区的覆盖范围,服务基站的盲点地区,节省功率以及平衡小区间的负载等。然而,由于中继站的引入需要消耗更多的无线资源,同时造成更复杂的干扰分布,因此对无线资源管理提出了新的难题。本文针对下一代两跳固定中继蜂窝网络中的无线资源分配、路由选择、小区间同频干扰的管理等方面进行了研究。
     复用分割是一种能有效提高频谱利用效率的资源分配技术,其核心思想是对不同区域内的用户分配具有不同复用因子的无线资源。本文创新性地将其基本概念引入到固定中继蜂窝网络中,并始终围绕提高小区容量和扩大高数据率的覆盖范围(即改善小区边缘用户的服务质量)这两个主要目标,从小区内和小区间优化、静态和动态资源分配、基站之间无协作和有协作等不同角度,设计不同的频谱分配方案及路由算法来优化系统性能。
     具体而言,本文分别提出了小区间基于固定复用分割、软复用分割和动态复用分割的不同资源分配方案。在这些方案中,通过巧妙优化基站到终端用户之间链路、基站到中继之间链路以及中继到用户之间链路频带的复用因子,使得频谱资源得到了有效利用,同时又避免了小区间严重的同频干扰。另外,通过引入“有效复用因子”这一量化指标来优化小区内的资源分割,并考察不同的链路带宽分配方案对系统性能的影响。仿真结果显示,采用这些资源分配方案后的中继蜂窝网络相比于传统网络,在小区容量和高速数据率的覆盖范围上的性能都得到较大增益。
     路由策略是多跳中继技术研究中不可或缺的关键内容之一,而现有文献对固定两跳中继蜂窝网络绝大部分都采用了比较简单的以用户为中心的路由策略。为了进一步提升中继增强蜂窝网络的性能,在基于复用分割资源分配的框架下,本文提出了以系统为中心的路由策略。同时,把经济学中效用函数的概念引入进来,在兼顾用户满意度和系统性能的情况下,设计了两种快速路由算法来为用户选择合适的接入点(基站或固定中继)。研究表明,相比于简单的如基于距离或路径损耗的路由策略,本文提出的路由算法可以进一步提高小区容量和改善边缘用户的质量。
     另外,本文根据半双工FDD模式下的中继蜂窝网络特点设计了MAC帧结构。利用该帧结构的特性,从时域和频域两方面进行联合资源分配,提出一种基于小区间动态复用分割并考虑不同用户抗干扰能力的频谱分配方案。此分配方案通过小区间协作使得频谱资源可以在小区内进一步复用,即达到复用因子小于1的程度,在保证每个用户基本传输速率的要求下,能够更有效地提高频谱利用效率,从而进一步优化系统容量和覆盖范围。
     此外,本文还前瞻性地提出了一种可重配置的中继蜂窝网络结构框架和一种基于信道信息的混合式无线资源管理协议框架。这两个提案已申请了发明专利保护。
Higher data rate and ubiquitous coverage are main objectives of future mobile communication systems. To simultaneously satisfy these requirements, the concept of infrastructure-based relaying cellular network was proposed and has been widely believed to be a promising effective solution to above technical challenges.
     The benefits of relay enhanced cellular network include: enlarging cell coverage, covering areas otherwise shadowed from BSs, power saving, balancing load between cells, etc. However, the facts of extra radio resource consumption and more complicated interference distribution both caused by relaying nodes, put forward new challenges to radio resource management. This dissertation put the focus of research on radio resource allocation, routing, inter-cell interference management in two-hop fixed relaying cellular networks.
     Reuse partitioning is a resource allocation technology which can effectively improve spectrum utilization. The key idea therein is to divide the cell into several concentric zones and assign these zones different frequency reuse factors. This dissertation initiatively introduces the basic concept of reuse partitioning into relay enhanced cellular network. Different resource allocation schemes and routing algorithms are designed to serve two main design objectives, i.e., cell capacity enhancement and high data rate coverage enlargement, from different perspectives including: inter- and intra-cell optimization, static and dynamic resource allocation, presence and absence of cooperation among cells, etc.
     In particular, fixed reuse partitioning-based, soft reuse partitioning-based and dynamic reuse partitioning-based inter-cell radio resource allocation schemes are designed. Under these schemes, by optimizing spectrum reuse factors used in base station– mobile station links, base station– relaying node links and relaying node– mobile station links, spectrum resources are utilized effectively and severe inter-cell co-channel interference is mitigated as well. Moreover,“effective reuse factor”is introduced as an index to optimize the intra-cell resource partitioning, and different link bandwidth allocation schemes as well as their impacts on system performance are investigated. Simulation results demonstrate that, in comparison with traditional network, the relay enhanced cellular network adopting these resource allocation schemes obtains higher performance both on cell capacity and high data rate coverage.
     Routing is an indispensable issue in research of multihop relay network. However, simple and user-centric routing strategies are applied to fixed relay enhanced cellular network in current literatures. To further improve system performance, system-centric routing mechanisms are proposed under reuse partitioning-based resource allocation framework. In addition, two fast routing algorithms are designed by introducing the concept of utility function, which can jointly consider the degree of user’s satisfaction and system performance. By applying the routing algorithms, each user is assigned an appropriate access point (base station or relaying node). The cell capacity and link qualities of cell edge users are further improved by adopting these routing algorithms in comparison with those simple routing strategies.
     Furthermore, a MAC frame structure in half duplex FDD mode-based relay enhanced cellular network is designed, which can enable joint resource allocation from time domain and frequency domain. An inter-cell dynamic reuse partitioning based spectrum allocation scheme is proposed by taking the interference tolerating abilities of different users into account. By the coordination between cells, in this allocation scheme the spectrum resources can be further reused in local cell, which means the reuse factor can be less than 1. Guaranteeing the minimum data rate requirement of each user, this scheme can improve spectrum utilization more efficiently, and consequently further enhance system throughput and coverage
     Besides, a reconfigurable multi-hop cellular network architecture framework and a hybrid channel-aware-based radio resource management protocol framework are also proposed creatively in this dissertation. Intellectual property rights have been applied for based on these two proposals.
引文
[1] M. H. Callendar. International mobile telecommunications-2000 standards efforts of the ITU. IEEE peFRNonal communications, 4, 1997: 6-7
    [2] S.Dixit, Y.Guo, Z.Antoniou, Resource Management and Quality of service in third-generation mobile communication systems, IEEE Communication. Magazine,Feb. 2001:125-133.
    [3] I. N. Kriaras, A. W. Jarvis, V. E. Phillips, and D. J. Richards, Third-Generation Mobile Network Architectures for the UniveFRNal Mobile Telecommunications System (UMTS). In: Bell Labs Technical Journal, 1997.
    [4] Suk Yu Hui, Kai Hau Yeung. Challenges in the migration to 4G mobile systems. IEEE Communications Magazine, 2003, 41: 54-59.
    [5] W. Lu, B. H. Walke, X. Shen. 4G mobile communications: Toward open wireless architecture. IEEE Wireless Communications, 2004, 11(2), 4-6.
    [6] An Young Kim, Eun Cheol Kim. Key concept of radio access for the 4G mobile communication systems. The 6th International Conference on Advanced Communication Technology, 2004, 1: 245-248.
    [7] Zahariadis T. Trends in the path to 4G. Communications Engineer, 2003, 1: 12-15
    [8] H. Yanikomeroglu. Cellular Multihop Communications: Infrastructure -Based Relay Network Architecture for 4G Wireless Systems. 22nd Biennial Symposium on Communications Department of Electrical and Computer Engineering, Ontario, Canada, pp 76-78, 2004.
    [9] B. H.Walke, H.Wijaya, D. C. Schultz, et al. Layer-2 Relays in Cellular Mobile Radio Networks. In Proceeding of IEEE VTC 2006 Spring, 2006, 1: 81-85
    [10] Y. D. Lin and Y. C. Hsu. Multihop cellular: A new architecture for wireless communication. In Proceeding IEEE INFOCOM 2000, pp.1273–1282.
    [11] H. Li, M. Lott, M. Weckerle, et al. Multihop Communications in Future Mobile Radio Networks, IEEE PIMRC, 2002, 1: 54-58.
    [12] N. Esseling, E. Weiss, A. Kr?mling, W. Zirwas: A Multi Hop Concept for HiperLAN/2: Capacity and Interference. In Proc. European Wireless 2002, 1: 1-7.
    [13] B. Walke, R. Past, et al. Relay-based deployment concepts for wireless and mobile broadband cellular radio. WWRF/WG4 Relaying Subgroup White Paper, version 0.2, July 2003
    [14] R. Pabst, B. H. Walke, D. C. Schultz, et al. Relay-based deployment concepts for wireless and mobile broadband radio. IEEE Communication Magazine, 2004. 42: 80-89.
    [15] S. Araon, and L. Ben. Effect of relaying on capacity improvement in wireless local area networks. In Proc. Of IEEE WCNC, 2005. 3: 1539-1544.
    [16] N. Esseling, B. Walke, R. Pabst, Performance evaluation of a fixed relay concept for next generation wireless systems, In Proc. of IEEE PIMRC 2004, 2: 744-751
    [17] J. Jubin and J.D. Tornow. The DARPA packet radio network protocols. Proceedings of the IEEE, 1987, 75(1): 21-32.
    [18] ETSI TC-SMG.. GSM Technical Specification. GSM 05.05, V5.20, 1996
    [19] 3GPP TR 25.956, repeater planning guidelines and system analysis. http://www.3gpp.org.
    [20] G. N. Aggelou and R. Tafazolli, On the relaying capability of next generation GSM cellular networks. IEEE Personal Communication, 2001, 8: 40-47
    [21] H. Wu, C. Qiao, O. Tongnuz. 2001. Integrated cellular and ad hoc relaying systems: iCAR. IEEE J. Sel. Area. Commun 2001; 19(10): 2105-2115.
    [22] 3GPP, “Opportunity Driven Multiple Access”, 3G TR 25.924 V1.0.0, December 1999.
    [23] ETSI, “UMTS Terrestrial Radio Access (UTRA) Concept Evaluation”, TR 101 146 V3.0.0, December 1997.
    [24] T. Rouse, I. Band, and S. Laughlin. Capacity and Power Investigation of Opportunity Driven Multiple Access (ODMA) Networks in TDD-CDMA Based Systems. IEEE International Conference on Communications, 2002, 5: 3202–3206.
    [25] A. N. Zadeh and B. Jabbari. Performance analysis of multihop packet CDMA cellular networks. In Proc. IEEE Globecom 2001, 5: 2875-2879.
    [26] J. N. Laneman, D. N. C. Tse, and G. W. Wornell. Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Trans. Inform. Theory, 2004. 50(12): 3062-3080.
    [27] E. Zimmermann , P. Herhold, G. Fettweis. On the performance of cooperative diversity protocols in practical wireless systems. In Proc. Of IEEE VTC’03 Fall, 2003. 4: 2212-2216.
    [28] P. Herhold, E. Zimmermann , G. Fettweis, On the Performance of Cooperative Amplify-and- Forward Relay Networks , 5th International ITG Conference on Source and Channel Coding (SCC), Erlangen, Germany, January 2004
    [29] A. Adinoyi and H. Yanikomeroglu. On the performance of cooperative wireless fixed relays in asymmetric channels. In Proc. Of IEEE Globecom 2006.
    [30] IST-WINNER, https://www.ist-winner.org/
    [31] http://grouper.ieee.org/groups/802/16/relay/index.html
    [32] R. Pabst, N. Esseling and B. Walke. Fixed relays for next generation wireless systems - system concept and performance evaluation. In Journal of Communications and Networks, Special Issue on "Towards the Next Generation Mobile Communications", 2005, 7(2): 104-114.
    [33] A. Fujiwara, S. Takeda, H. Yoshino, “Area coverage and capacity enhancement by multihop connection of CDMA cellular network”, IEEE, 2002
    [34] Daniel C. Schultz, B.Walke, R. Pabst. Fixed and planned relay based radio network deployment concepts. Wireless World Research Forum, 27-28, October, 2003, New York, USA
    [35] C. Qiao, H. Wu, O. Tonguz. Load balancing via relay in next generation wireless systems. Proceeding of Mobile and Ad Hoc Networking and Computing Conference. 2000
    [36] H. Shi, M.Rong, T. Liu, et al. Analysis of relay enhanced cellular system’s power saving characteristics. In Proc. Of IEEE VTC’06 Fall. Montreal, Canada.
    [37] P. Herhold, W. Rave, G. Fettweis. Relaying in CDMA networks: pathloss reduction and transmit power savings. In Proc. Of IEEE VTC’03 Spring, 2003. 3: 2047-2051.
    [38] H. Viswanathan, S. Mukherjee. Performance of cellular networks with relays and centralized scheduling. IEEE Transaction on Wireless Communications, 2005, 4(5): 2318-2328.
    [39] I. Katzela, and M. Naghshineh. Channel assignment scheme for cellular mobile telecommunication systems: a comprehensive survey. IEEE Personal Communication, 1996. 10-31.
    [40] N. Esseling, H.S. Vandra, and B. Walke. A Forwarding Concept for Hiper-LAN/2. In Proc. European Wireless Conf., 2000. 13-18.
    [41] N. Esseling: Extending the Range of HiperLAN/2 Cells in Infrastructure Mode using Forward Mobile Terminals. European Personal Mobile Communication Conference (EPMCC) 2001, Vienna, Session 23.1, February 2001
    [42] J. Cho, and Z. J. Haas. On the throughput enhancement of the downstream channel in cellular radio networks through multihop relaying. IEEE JSAC, 2004, 22(7): 1206-1219.
    [43] J. Cho, and Z. J. Haas. Throughput enhancement by multi-hop relaying in cellular radio networks with non-uniform traffic distribution. IEEE VTC’03 Fall , 2003, 5: 3065-3069.
    [44] D. Walsh. Two-Hop relaying in CDMA networks using the unlicensed bands. Master's thesis, Carleton University, January 2004. Available at http://www.sce.carleton.ca/faculty /yanikomeroglu /cv/ publications.shtml.
    [45] H. Hu, H. Yanikomeroglu, D. D. Falconer, et al. Range extension without capacity penalty in cellular networks with digital fixed relays. In Proc. of IEEE Globecom’04, 2004, 5: 3053-3057.
    [46] S. Mengesha, H. Karl, and A. Wolisz. Capacity increase of multi-hop cellular WLANs exploiting data rata adaptation and frequency recycling. In Proc. of MedHocNet 2004, June 2004.
    [47] L. Huang, M. Rong, H. Shi , et al. Comparison of two frequency reuse schemes in fixed relay system. In Proc. Of WCNM 2005. 1: 432-436.
    [48] V. Sreng, H. Yanikomeroglu, and D. Falconer. Coverage Enhancement through Two-Hop Relaying in Cellular Radio Systems. In Proc. IEEE WCNC, 2002, 2: 881-885.
    [49] E. M. Royer, and C. Toh. A review of current routing protocols for Ad Hoc mobile wireless networks. IEEE Personal Communication Magazine, April 1999, pp. 46-55.
    [50] V. Sreng, H. Yanikomeroglu and D. D. Falconer. Relayer selection strategies in cellular networks with peer-to-peer relaying. IEEE VTC’ 2003, 3: 1949–1953.
    [51] J. Zanders. Radio Resource Management For Wireless Networks. Artech House, 2001.
    [52] O. Teyeb. Future adaptive communication environment: overview of multihop cellular networks. Aalborg University, http://cpk.auc.dk/FACE/documents/Multihop_Cellular.pdf, June, 23, 2003
    [53] D. Walsh and H. Yanikomeroglu, .Reverse-link power allocation in two-hop multimedia CDMA networks. In Proc. Of IEEE CCECE'04, 2004. 3: 1305-1308
    [54] A. N. Zadeh and B. Jabbari. Throughput of a multihop packet CDMA network with power control. In Proc. IEEE VTC, 2000, 1: 31–35.
    [55] J. Zhang, C. Shao ,Y. Wang, et al. Performance of a two-hop cellular system with different power allocation schemes. In Proc. Of IEEE VTC’04 Fall, 2004. 6: 4538-4542.
    [56] H. Yang. A road to future broadband wireless access: MIMO-OFDM-based air interface. IEEE commun. Magazine, 2005, 43: 53-60
    [57] 3GPP TSG RAN WG1 R1-051137. Further results on inter-cell interference mitigation based on IDMA. RITT. Available at: http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_42bis/Docs/.
    [58] 3GPP TSG RAN WG1 R1-051085. Resource Allocation for Interference Mitigation with Symbol Repetition in E-UTRA Downlink. ETRI. Available at: http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/ TSGR1_42bis/Docs/.
    [59] 3GPP TSG RAN WG1 R1-050981. Text proposal for 3GPP TR25.814. Ericsson, Alcatel, RITT, CATT, NTT DoCoMo. Available at: http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/ TSGR1/Docs/.
    [60] M. Rahman and H. Yanikomeroglu. QoS provisioning in the absence of ARQ in cellular fixed relay networks through inter-cell coordination. In Proc. Of IEEE GLOBECOM 2006.
    [61] IST-4-027756 WINNER, Deliverable D3.3. https://www.istwinner.org/publicdeliverables.htm.
    [62] H. Yanikomeroglu. Fixed and mobile relaying technologies for cellular networks. In Proc. OfASWN’02, 2002. 75-81.
    [63] E. K. Tameh, A. Nix, A. Molina. The use of intelligently deployed fixed relays to improve the performance of a UTRA-TDD system. In Proc. of IEEE VTC’03 Fall, 2003, 3(3): 1890-1894.
    [64] T.J. Harrold and A.R. Nix. Performance Analysis of Intelligent Relaying in UTRA TDD. In Proc. of IEEE VTC’02 Fall, 2002. 3: 1374-1378.
    [65] V. Sreng. Coverage Enhancement Through 2-hop Relaying in Cellular Radio Systems.Master thesis, 2002. http://www.sce.carleton.ca/faculty/yanikomeroglu/cv/publications.shtml.
    [66] IST-4-027756 WINNER, Deliverable D6.13.3. Intermediate concept proposal (“wide area”) and evaluation, Ver. 0.23, 20.10.2006. https://bscw.eurescom.de/bscw/bscw.cgi/d260664/D6.13.3.doc.
    [67] A. Florea and H. Yanikomeroglu. On the optimal number of hops in infrastructure-based fixed relay networks. In Proc. Of IEEE GLOBECOM, 2005. 6: 3242-3247.
    [68] H. Kim, Y. Han and J. Koo. Optimal subchannel allocation scheme in multicell OFDMA systems. In Proc. Of IEEE VTC’04 Spring, 2004. 3: 1821-1825.
    [69] IST-4-027756 WINNER, Deliverable D6.13.1. WINNER 2 Test scenarios and calibration issue 1, June 2006. https://bscw.eurescom.de/bscw/bscw.cgi/d260664/D6.13.1.doc.
    [70] R. Zhao, and B. Walke. Decentrally controlled wireless multi-hop Metworks for high quality multi-media communication. In Proceedings of the 8th ACM international symposium on Modeling, analysis and simulation of wireless and mobile systems, 2005. 200-208.
    [71] E. Kudoh, and F. Adachi. Distributed dynamic channel assignment for a multi-hop virtual cellular system. In Proc. Of IEEE VTC’04 Spring, 2004. 4: 2286-2290.
    [72] C. Hoymann, K. Klagges, and M. Schinnenburg. Multihop communication in relay enhanced IEEE 802.16 networks. In Proc. Of IEEE PIMRC 2006.
    [73] IEEE Std. 802.16e-2005, IEEE standard for Local and metropolitan area networks, Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems, amendment for physical and medium access control layers for combined fixed and mobile operation in licensed bands, February 2006.
    [74] T.S. Rappaport, Wireless Communications: Priciples and Practice, Prentice Hall, PTR, 2002
    [75] W. C. Y. Lee. 2002. Overview of cellular CDMA. IEEE Trans. Veh. Technol. 2002. 40:291-302.
    [76] J. H. Winters. Smart antennas for wireless systems. IEEE Personal Commun. Mag. 1998. 5:23-27.
    [77] L-C. Wang, and K. L. Leung. A high-capacity wireless network by quad-sector cell and interleaved channel assignment. IEEE J. Sel. Commun. 2000. 18(3): 472-480.
    [78] J. C. I. Chung. 1993. Performan issues and algorithms of dynamic channel assignment. IEEE J. Sel.Area. Commun.1993; 11:955-963.
    [79] J. Tajima and K. Imamura. A strategy for flexible channel assignment in mobile communication systems. IEEE Transactions on Vehicular Technology, 1988. 37: 92-103.
    [80] J. Karlson and B. Eklundh. A cellular mobile telephone system with load sharing and enhancement of directed retry. IEEE Transactions on Communnication, 1989. 37: 530–535.
    [81] H. Jiang and S. Rappaport. Cbwl: A new channel assignment and sharing method for cellular communication systems. IEEE Transactions on VehicleTechnology, 1994. 43: 313–322.
    [82] S. K. Das, S. K. Sen, and R. Jayaram. A dynamic load balancing strategy for channel assignment using selective borrowing in cellular mobile environment. In Mobile Computing and Networking, 1996. pp.73–84.
    [83] J. Qiu and J. Mark. A dynamic load sharing algorithm through power control in cellular CDMA. In Proc. Of PIRMC’98, 1998. 1280–1284.
    [84] K. Chang, J. Kim, C. Yim, et al. An Efficient Borrowing Channel Assignment Scheme for Cellular Mobile Systems. IEEE IEEE Transactions on VehicleTechnology, 1998. 47(2): 602-608.
    [85] X. X. Wu, B. Mukerjee, and S. H. G. Chan. Maca – an efficient channel allocation scheme in cellular networks. In Proc. IEEE GLOBECOM’00, 2000. 3: 1385–1389.
    [86] S. W. Halpern. Reuse Partitioning in Cellular Systems. In Proc. of IEEE VTC, 1983. 322-327.
    [87] J. Zander and M. Frodigh. Capacity allocation and channel assignment in cellular radio system using reuse partitioning. IEE Electronics Letters, 1992. 28(5): 438-440.
    [88] A. Pattavina, S. Quadri and V. Trecordi. Reuse Partitioning in Cellular Networks with Dynamic Channel Allocation. Wireless Networks, 1999. pp. 299-309.
    [89] Peter H. J. Chong and C. Leung. Capacity improvement in cellular systems with reuse partitioning. Journal of Communnication and Networks, 2001. 3(3): 280-287.
    [90] T. Halonen, J. Romero, and J. Melero. GSM, GPRS and EDGE Performance, Evolution Towards 3G/UMTS, West Sussex: John Wiley & Sons, 2002.
    [91] Peter H. J. Chong and Cyril Leung. Performance of reuse partitioning in cellular systems with mobile users. Int. Journal of Wireless Information Networks, 2003. 10(1): 17-31.
    [92] Steve L. Chen and Peter H. J. Chong. Capacity improvement in cellular systems with dynamic cannel assignment and reuse partitioning. In Proc. Of IEEE PIMRC ’03, 2003. 2:1441-1445.
    [93] S. L. Chen and Peter H. J. Chong, Dynamic channel assignment with flexible reuse partitioning in cellular systems, in Proc. of IEEE ICC, 2004. 7: 4275-4279.
    [94] O. Mubarek, H. Yanikomeroglu, and S. Periyalwar. Dynamic Frequency Hopping in Cellular FixedRelay Networks. In Proc. Of IEEE VTC’05 Spring, 2005. 5: 3112-3116.
    [95] M. Dohler, A. Gkelias, and H. Aghvami. 2-Hop distributed MIMO communication system. IEE Electronics Letters, 2003. 39(18): 1350-1351.
    [96] Y. Liang, and V. V. Veeravalli. Gaussian orthogonal relay channels: optimal resource allocation and capacity. IEEE Trans. Inf. Theory, 2005. 51(9): 3284-3289.
    [97] 3GPP TSG RAN WG1 R1-050764. Inter-cell interference handling for E-UTRA. Ericsson. Available at: http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_42/Docs/.
    [98] 3GPP TSG RAN WG1 R1-050738. Interference mitigation – Considerations and results on frequency reuse. Siemens. http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_42/Docs/.
    [99] 3GPP TSG RAN WG1 R1-050507. Soft Frequency Reuse Scheme for UTRAN LTE. Huawei. http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_41/Docs/.
    [100] 3GPP TSG RAN WG1 R1-051059. Inter-Cell Interference Mitigation for EUTRA. Texas Instruments. http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_42bis/Docs/.
    [101] W. S. Kim, and V. K. Prabhu. Enhanced capacity in CDMA systems with alternate frequency planning. In Proc. of IEEE ICC’ 98, 1998. 2: 973-978.
    [102] J W Lee, R R Mazumdar, and N B Shroff. Downlink power allocation for multi-class CDMA wireless networks. In Proc. of IEEE INFOCOM’02, 2002. 1480-1489.
    [103] M Xiao, N. B. Shroff, and E. Chong. Utility-based power control (ubpc) in cellular wireless system. In Proc. of IEEE INFOCOM’01, 2001. 412-421.
    [104] 王兰. 多用户 OFDM 系统中无线资源管理与服务质量控制:[博士学位论文]. 清华大学电子系,2006
    [105] Varian, H. R. 原著,费方域等译。中级微观经济学:现代观点。上海人民出版社,1990.
    [106] X. Duan, Z. Niu, and J. Zheng. A dynamic utility-based radio resource management scheme for multimedia DS-CDMA systems. In Proc. Of IEEE GLOBECOM’02, 2002. 1:813-817
    [107] 沈永欢等. 实用数学手册. 北京:科学出版社,1992
    [108] 现代应用数学手册:运筹学与最优化理论卷。清华大学出版社
    [109] Jarno Pelkonen. Expert selection problem-evaluation of cost efficiency approach. Available at : http://www.sal.tkk.fi/Opinnot/Mat-2.108/e-kokoelma.html
    [110] G. Li, and H. Liu. Downlink dynamic resource allocation for mufti-cell OFDMA system. In Proc. Of IEEE VTC’03 Fall, 2003. 3: 1698-1702.
    [111] S. Vishwanath, S. Jafar and S. Sandhu. Half-duplex relays: cooperative communicaiton strategies and outer bounds. International Conference on Wireless Networks, Communications and MobileComputiong, 2005. 1455-1459.
    [112] Z. Zheng, and T. M. Duman. Capacity approaching turbo coding for half duplex relaying. International Symposium on Information Theory (ISIT) 2005. 1888-1892.
    [113] A.Gamst. Study of radio network design strategies. In Proc. Of IEEE VTC 1986. 319–328.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700