甜橙果实发育与成熟过程中转录组变化及CsASR基因的功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
果实发育是一个高度协调的复杂生物学过程。作为非呼吸跃变型果实,柑橘果实发育和成熟过程的研究尽管已经逐步得到重视,但是对其分子调控机制的诠释还远远不够。果实成熟过程中形成的糖、酸和类胡萝卜素等物质是柑橘果实品质的重要组成部分,因此,研究柑橘果实成熟的分子以及类胡萝卜素等的积累机制对提高果实品质具有重要的理论价值。突变体‘红暗柳’甜橙果实在具有红肉性状的同时也表现为高蔗糖和低柠檬酸水平,为我们研究果实品质性状形成的分子机理提供了理想材料。本研究以突变体‘红暗柳’与野生型‘暗柳’为材料,采用表达谱测序技术分析了两者果实发育过程中转录组的差异,并重点描述了甜橙果实发育和成熟过程中的转录组动态变化,同时对一个候选基因CsASR的功能进行分析。主要研究结果如下:
     1利用Illumina测序平台对‘红暗柳’与‘暗柳’各4个发育时期(120DAF,150DAF,190DAF和220DAF)果实的果肉进行数字化表达谱测序。获得的平均标签数目约4.01M。将测序所得所有标签与参考数据库中的序列比对,发现占clean reads68.1%-76.2%共46,328-76,424条标签与参考数据库中已知功能或未知功能的序列具有同源性。
     以‘暗柳’为模型研究甜橙果实发育与成熟过程中的转录组变化。总共检测到18,829个基因至少在一个时期表达,其中8,825个基因在所有四个时期都有表达。利用Cluster软件对‘暗柳’甜橙果实发育和成熟过程中基因的表达模式进行聚类分析,所有的18,829个基因被聚成22类。聚类分析的结果也显示在‘暗柳’甜橙里检测到89.7%的基因表达量在果实发育和成熟的过程中发生了变化。比较突变体与野生型的基因表达模式发现两个品种中有20类表达模式是共同的。
     比较‘暗柳’甜橙不同发育时期转录组分别发现9,377个基因在花后120d和150d差异表达;7,886个基因在花后150d和190d差异表达;7,757个基因在花后190d和220d差异表达。生物学过程的GO注释分类结果显示,这些基因中36.7%被注释18条GO类型,且绝大部分基因被注释到代谢过程、细胞过程、建立定位、生物学调节、着色和逆境响应等。这些差异表达基因主要参与细胞壁代谢和软化、蔗糖代谢、三羧酸循环、类胡萝卜素代谢和逆境响应。
     比较不同发育时期‘暗柳’‘红暗柳’果实的转录组,结果显示分别有634、568、540和616个基因的表达在突变体和野生型花后120d、150d、190d和220d有显著差异(p<0.05和|log2Ratio|≥1)。许多差异表达基因编码逆境相关蛋白。对差异表达基因的数目进行分析发现在所有研究的这四个时期,突变体上调表达基因数目都少于该时期下调表达基因数目。去除冗余,在‘暗柳’和‘红暗柳’中差异表达的基因数目仅883个。对这些差异表达基因进行聚类分析,发现除花后150d外,与野生型相比超过一半的基因(492)在突变体所有的发育时期均上调表达。仅5个基因被发现在所有四个时期均差异表达。基于分子功能的GO注释分类分析显示883个差异表达基因大多数被注释到蛋白结合、水解酶活性、转移酶活性和转运子活性。GO富集分析显示类胡萝卜素代谢过程和辣椒红素/辣椒玉红素合成酶活性在突变体花后150d的果实显著富集。
     利用Real-Time PCR的方法对选择的22个差异表达基因在突变体和野生型果实发育和成熟过程中的表达进行验证,获得的基因表达模式与高通量测序所得的结果基本一致,两者的相关系数为0.8379。
     我们也测定了‘暗柳’和‘红暗柳’果实发育和成熟过程中果肉可溶性糖、有机酸、类胡萝卜素和H202的含量变化。在果实发育和成熟的后期可溶性糖的含量在‘暗柳’和‘红暗柳’中均显著增加。在整个果实发育和成熟过程中,‘红暗柳’果肉中的蔗糖含量均显著高于‘暗柳’,但是柠檬酸含量均显著低于‘暗柳’。总类胡萝卜素和番茄红素在‘红暗柳’中大量积累,但是在‘暗柳’中均维持比较低的含量。随着果实的发育和成熟,H202的含量下降,但是在花后120d,‘红暗柳’果肉中H2O2含量显著高于‘暗柳’。
     2转录组分析的结果以及前人的报道都显示ASR基因在‘红暗柳’和‘暗柳’中表达差异显著。根据获得的基因片段(FE659120)利用Tail-PCR扩增获得甜橙ASR基因的cDNA全长,命名为CsASR, GenBank登录号为HQ398364。进一步在甜橙中扩增获得DNA全长1213bp,含一个内含子。CsASR的cDNA全长为929bp,开放读码框为540bp,编码179个氨基酸。同源性分析表明甜橙CsASR推导的氨基酸序列与其他物种克隆的ASR基因有较高的同源性。保守区域分析表明CsASR与其他已知的ASR蛋白一样,它们的氨基酸序列都包含两个高度保守的区域。功能预测推测其可能参与转录调节,生长发育,转录和信号转导,概率分别为0.241,0.110,0.072和0.063。
     Southern杂交分析显示在大多数柑橘品种中,CsASR属于一个小的多基因家族。亚细胞定位分析发现CsASR与其他大多数转录因字一样定位在细胞核中。
     对CsASR基因在‘暗柳’和‘红暗柳’不同发育时期果实以及不同组织中的表达进行分析,结果发现CsASR基因主要在成熟组织,特别在成熟果实中表达。CsASR基因在‘暗柳’的果肉和果皮中的表达模式相同,但是在‘红暗柳’的果肉和果皮中CsASR的表达模式不同,除了在花后120d,整个发育时期CsASR基因在‘红暗柳’中的表达都比在‘暗柳’中的高。对CsASR基因在不同逆境条件下甜橙愈伤中的表达进行分析,结果显示高盐、低温、热和ABA处理条件下,CsASR基因均被显著诱导表达。
     用外源ABA处理‘暗柳’和‘红暗柳’转色前果实,结果显示ABA诱导‘红暗柳’果肉中可溶性糖和有机酸含量增加,而在‘暗柳’中,ABA处理导致可溶性糖和有机酸含量降低。但是对于类胡萝卜素我们只检测到花药黄质和α-胡萝卜素,尽管ABA处理后‘暗柳’果肉中类胡萝卜素的含量降低,但是在‘红暗柳’果肉中ABA处理前后类胡萝卜素的含量没有显著的变化。
     利用农杆菌介导遗传转化在番茄中超量表达CsASR基因,共获得11株抗性植株,T1代分离的阳性植株成熟果实显示与对照不同的红色。这些抗性植株与对照相比在形态学及果实的成熟期上并没有明显的差异。微分干涉显微观察的结果显示超量表达CsASR的番茄成熟果实的果皮细胞呈现红色,而对照为黄色。冷冻切片在明场下也显示两者的细胞结构有所不同,转基因番茄果实的细胞壁与对照相比增厚;进一步在荧光下观察发现转基因番茄果实的细胞壁呈现很强的蓝色荧光,即木质素含量较高,而对照表现不明显。
     HPLC分析结果显示紫黄质、p-胡萝卜素、番茄红素和八氢番茄红素的含量在CsASR超量表达番茄植株的成熟果实中都显著增加,而叶黄素的含量没有明显的差异。与对照相比,所有检测的类胡萝卜素代谢相关基因在CsASR超量表达番茄植株的成熟果实中都上调表达。
     GC-MS分析结果显示很多主要代谢产物的含量在转基因番茄果实中均发生了改变。几乎所有检测到的糖类代谢物及包括三羧酸循环代谢中间产物在内的所有检测到的有机酸的含量在CsASR超量表达的番茄果实中都低于对照。很多氨基酸的含量也发生了变化。对CsASR超量表达的番茄果实中主要代谢相关基因的表达分析结果发现主要代谢产物的变化与相应基因表达是吻合的。LC-MS技术检测了转基因番茄果实中ABA的含量,结果发现CsASR超量表达的番茄果实中ABA的含量显著低于对照。
     表达谱测序结果显示,与对照相比总共有401个基因在CsASR超量表达番茄果实中显著差异表达(FDR<0.001and|log2Ratio|≥1),其中180个基因上调,221个基因下调表达。这些差异表达基因包括9-顺式环氧类胡萝卜素双加氧酶基因、Ring-finger蛋白以及含有APETALA2(AP2)结构域的蛋白等。利用KEGG数据库对RNA-seq的结果进行分析,结果发现主要代谢过程、次生代谢过程、植物激素信号传导和类胡萝卜素生物合成等代谢途径在CsASR超量表达番茄果实中发生显著变化。
Fruit ripening is a highly coordinated and complicated biological process. Great importance has been gradually attached to the study on the fruit development and ripening of the non-climacteric fruit-citrus. However, an interpretation of the molecular mechanism of fruit development is far from enough. Sugars, organic acids, and carotenoids attained during fruit ripening are major components of citrus fruit quality. It was very important to study the molecular mechanism regulating fruit ripening and carotenoid accumulation for the improvement of citrus fruit quality. The red-fleshed mutant'Hong Anliu', characterized as high sucrose and low citric acid, was ideal for the study on the molecular mechanism of the formation of fruit quality straits. This study provided a description of the transcriptomic changes occurring during fruit development and ripening in sweet orange, along with a dynamic view of the gene expression differences between the wild type 'Anliu'(WT) and the mutant 'Hong Anliu'(MT). An important candidate gene CsASR was functionally characterized. The main results were as follows:
     1The WT and MT fruit pulp harvested at120,150,190, and220days after flowering (DAF) was subjected to RNA-seq using an Illumina sequencing platform. The average number of tags produced for each library was4.01million. Mapping tags to a reference citrus unigene dataset identified between68.1%and76.2%of the tags (46,328-76,424) were homologous to sequences with known or unknown function.
     We solely used WT as a model to demonstrate the transcriptome changes during fruit development and ripening. A total of18,829genes were detected in at least one of the four stages in WT, of which8,825genes were expressed in all the four stages. The cluster analysis of gene expression patterns during fruit development and ripening arranged18,829genes into22groups. It also revealed that the abundance of89.7%of the transcripts detected in the WT pulp varied over the course of fruit development and ripening. A comparison of expression patterns between WT and MT revealed that20of the groups were common to both.
     A comparison of the transcriptomes of different developmental stages in WT identified9,377,7,886, and7,757were differentially expressed between120DAF and150DAF,150DAF and190DAF, and190DAF and220DAF, respectively. Of these,36.7%were assigned to one of18GO categories. The categories "metabolic process","cellular process","establishment of localization","localization","biological regulation","pigmentation", and "response to stimulus" based on biological process captured most of these genes. Many genes were associated with cell wall metabolism and softening, sucrose metabolism, the TCA cycle, carotenoid biosynthesis, and stress response.
     The comparison between the transcriptomes of WT and MT identified634,568,540, and616genes were significantly differentially expressed at p<0.05and|log2Ratio|>1in the four developmental stages, respectively. Many encode stress-related products. At all the four developmental stages the number of up-regulated genes was less than that of down-regulated genes. Only883genes were differentially expressed between WT and MT after the removal of the redundant. The cluster analysis of these genes showed over one half (492) turned out to be up-regulated in MT at all the developmental stages except150DAF. Only five genes were detected as differentially expressed at all four stages. The GO categories of differentially expressed genes based on the molecular function revealed that most encoded products associated with "protein binding","hydrolase activity","transferase activity" and "transporter activity". GO enrichment analysis revealed carotenoid metabolic process and capsanthin/capsorubin synthase activity were enriched at150DAF in MT.
     Q-Real-Time PCR validation of the transcription profiles for22of the differentially expressed genes indicated a good correlation between transcript abundance assayed by real-time PCR and RNA-seq data, with an overall correlation coefficient of0.8379.
     The dynamics of pulp soluble sugar, organic acid, carotenoid and H2O2content were monitored during fruit development and ripening in WT and MT. The content of soluble sugars increased markedly during the late stages of fruit development and ripening in both WT and MT. The concentration of sucrose was higher but the citris acid content was much lower in MT than in WT throughout fruit development and ripening. Carotenoids and lycopene both accumulated over time in MT, but remained at a low level in WT. H2O2content fell as the fruit developed and ripened, but was higher in MT than in WT at120DAF.
     2Our transcriptomic analysis and previous reports indicated ASR gene was significantly differentially expressed. The full-length cDNA of sweet orange ASR, designated as CsASR, was cloned based on the EST sequence (FE659120) and deposited in Genbank (accession number HQ398364). CsASR cDNA was929bp long and contained an open reading frame of540bp. The deduced protein contained179amino acids. Sequence homology analysis of amino acid showed CsASR shared considerable identity with other ASR proteins from various plant species. CsASR contained two highly conserved regions as other ASRs. The function prediction suggested that the CsASR protein might be involved in transcription regulation (0.241), growth factor (0.110), transcription (0.072), and signal transducer (0.063).
     Southern blot analysis suggested CsASR belonged to a small multi-gene family in most citrus species. Subcellular localization analysis revealed CsASR was localized in the cell nucleus.
     CsASR mRNA accumulation was detected in various tissues and fruits during fruit development and ripening. The result showed CsASR was mainly expressed in mature tissues, especially in mature fruits. The expression pattern of CsASR was the same in the pulp and peel of WT, but different in the pulp and peel of MT. CsASR transcription level was higher in'Hong Anliu' than in'Anliu' throughout fruit development except at120DAF. CsASR was significantly induced under cold, heat and salt stress, and ABA treatment.
     Exogenous ABA was applied to the pulp of WT and MT before colour break. All detected soluble sugars and organic acid content was reduced in WT fruit pulp but increased in MT fruit pulp after ABA treatment. We just detected two carotenoid compositions:Antheraxanthin and a-carotene in treated pulp. Although the content of carotenoid was lower in ABA treated WT pulp than that in the control, there is no difference in MT after treatment.
     We overexpressed CsASR in tomato via Agrobacterium tumefaciens-mediated transformation, and eleven independent transgenic lines were obtained. The mature fruit of the T1segregation developed to a different red colour, however, there was not other visual significant difference in phenotype and fruit maturity compared to the wild type. Differential interference microscope results showed that pericarp cells of CsASR overexpression tomato fruits appeared red, while the control was yellow. Frozen section watching under a bright field revealed the cell structure of transgenic tomato fruits was different from that in the wild type, and the cell wall of the former was thickening; further the cell wall of the transgenic tomato fruits presents strong blue fluorescence under fluorescence, suggesting the lignin content is high. While, ittle blue fluorescence was observed in the control.
     HPLC analysis revealed the content of violaxanthin, β-carotene, lycopene and phytoene all increased significantly in CsASR overexpressed fruits. No difference in the lutein content was observed. The expression level of all detected carotenoid metabolism-related genes was up-regulated in transgenic fruits compared to the wild type.
     GC-MS profiles revealed that the CsASR overexpression fruits displayed substantial changes in the level of primary metabolites. The content of almost all detected sugars and organic acids including the tricarboxylic acid cycle intermediates was lower in the CsASR overexpression fruits than in the wild type. Many amino acids content was also altered. Analysis of the expression profiles of related genes suggested the changes of expression levels of these genes were in agreement with the observed levels of metabolites. The result of LC-MS showed CsASR overexpression fruits had lower ABA level than that in the wild type.
     The transcriptome sequencing data showed401genes were significantly differentially expressed (FDR≤0.001and|log2Ratio|≥1) in CsASR overexpression fruits compared to the wild type. Of these180genes were up-regulated and221genes down-regulated in transgenic fruits, including NCED gene, APETALA2(AP2) domain-containing proteins, and ring-finger domain-containing protein. Analysis of the RNA-seq data using KEGG database revealed primary metabolism, biosynthesis of secondary metabolites, plant hormone signal transduction, and carotenoid biosynthesis were significantly changed in transgenic fruits.
引文
1.朱世平.柑橘胚性愈伤组织诱导和LEAFY COTYLEDON 1-LIKE (CsL1L)基因的克隆和分析.[博士学位论文].武汉:华中农业大学图书馆,2009.
    2.金蓉.红肉脐橙和普通脐橙果实类胡萝卜素合成基因的差异表达:浙江大学,2007.
    3.洪柳,邓秀新.应用MSAP技术对脐橙品种进行DNA甲基化分析.中国农业科学,2005,38(11):2301-2307.
    4.程运江.柑橘体细胞胞质遗传及叶绿体SSR引物开发研究.[博士学位论文].武汉:华中农业大学图书馆,2004.
    5.刘永忠,刘庆,陶能国,邓秀新.一种适合于成熟脐橙果皮和果肉的RNA提取方法.华中农业大学学报,2006,25(003):300-304.
    6.刘永忠,唐鹏,陶能国,徐强,彭抒昂,邓秀新,向可术,黄仁湖.脐橙晚熟突变体“奉晚”与原品种“奉节72.1”的果实着色差异.植物生理与分子生物学学报,2006,32(1):31-36.
    7.刘庆.‘暗柳’甜橙红色突变体性状形成的分子机理研究.[博士学位论文].武汉:华中农业大学图书馆,2008.
    8.叶俊丽.甜橙红肉突变体果实EST分析及ABA代谢研究.[博士学位论文].武汉:华中农业大学图书馆,2011.
    9.庞晓明,邓秀新,胡春根.枳属36份特异种质的AFLP指纹图谱构建与分析.园艺学报,2003,30(4):394-398.
    10.张俊红.番茄Aux/IAA基因的克隆与功能分析.[博士学位论文].武汉:华中农业大学图书馆,2006.
    11.张敏,邓秀新.柑橘芽变选种以及芽变性状形成机理研究进展.果树学报,2006,23(6):871-876.
    12.邓子牛.柑橘种质创新与品种改良策略.湖南农业大学学报(自然科学版),2007,33.
    13.邓秀新.世界柑橘品种改良的进展.园艺学报,2005,32(6):1140-1146.
    14.何天富.柑橘学.北京:中国农业出版社,1999.
    15. AC't Hoen P, Ariyurek Y, Thygesen HH, Vreugdenhil E, Vossen RHAM, De Menezes RX, Boer JM, Van Ommen GJB, Den Dunnen JT. Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms. Nucleic Acids Research,2008,36(21):e141-e141.
    16. Alos E, Cercos M, Rodrigo MJ, Zacarias L, Talon M. Regulation of color break in citrus fruits. Changes in pigment profiling and gene expression induced by gibberellins and nitrate, two ripening retardants. Journal of Agricultural and Food Chemistry,2006,54(13):4888-4895.
    17. Alos E, Roca M, Iglesias DJ, Minguez-Mosquera MI, Damasceno CMB, Thannhauser TW, Rose JKC, Talon M, Cercos M. An evaluation of the basis and consequences of a stay-green mutation in the navel negra citrus mutant using transcriptomic and proteomic profiling and metabolite analysis. Plant Physiology, 2008,147(3):1300-1315.
    18. Alagna F, D'Agostino N, Torchia L, Servili M, Rao R, Pietrella M, Giuliano G, Chiusano ML, Baldoni L, Perrotta G. Comparative 454 pyrosequencing of transcripts from two olive genotypes during fruit development. BMC Genomics, 2009,10(1):399.
    19. Alba R, Payton P, Fei Z, McQuinn R, Debbie P, Martin GB, Tanksley SD, Giovannoni JJ. Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. The Plant Cell Online,2005,17(11):2954-2965.
    20. Alos E, Roca M, Iglesias DJ, Minguez-Mosquera MI, Damasceno CMB, Thannhauser TW, Rose JKC, Talon M, Cercos M. An evaluation of the basis and consequences of a stay-green mutation in the navel negra citrus mutant using transcriptomic and proteomic profiling and metabolite analysis. Plant physiology, 2008,147(3):1300.
    21. Alquezar B, Zacarias L, Rodrigo MJ. Molecular and functional characterization of a novel chromoplast-specific lycopene β-cyclase from Citrus and its relation to lycopene accumulation. Journal of Experimental Botany 2009,60(6):1783-1797.
    22. Alquezar B, Zacarias L, Rodrigo MJ. Molecular and functional characterization of a novel chromoplast-specific lycopene β-cyclase from Citrus and its relation to lycopene accumulation. Journal of experimental botany,2009,60(6):1783.
    23. Amitai-Zeigerson H, Scolnik PA, Bar-Zvi D. Tomato Asrl mRNA and protein are transiently expressed following salt stress, osmotic stress and treatment with abscisic acid. Plant Science,1995,110(2):205-213.
    24. Amitaizeigerson H, Scolnik PA, Barzvi D. Genomic Nucleotide-Sequence of Tomato Asr2, a 2nd Member of the Stress/Ripening-Induced Asrl Gene Family. Plant Physiology,1994,106(4):1699-1700.
    25. Archbold DD. Abscisic acid facilitates sucrose import by strawberry fruit explants and cortex disks in vitro. HortScience,1988,23.
    26. Audic S, Claverie JM. The significance of digital gene expression profiles. Genome research,1997,7(10):986-995.
    27. Bain JM. Morphological, anatomical, and physiological changes in the developing fruit of the Valencia orange, Citrus sinensis (L) Osbeck. Australian Journal of Botany,1958,6(1):1-23.
    28. Barakat A, Wall P, DiLoreto S. Conservation and divergence of microRNAs in Populus. BMC Genomics,2007,8(1):481.
    29. Barakat A, Wall K, Leebens-Mack J, Wang YJ, Carlson JE, DePamphilis CW. Large-scale identification of microRNAs from a basal eudicot (Eschscholzia californica) and conservation in flowering plants. The Plant Journal,2007,51(6): 991-1003.
    30. Barbazuk WB, Emrich SJ, Chen HD, Li L, Schnable PS. SNP discovery via 454 transcriptome sequencing. The Plant Journal,2007,51(5):910-918.
    31. Bartolozzi F, Bertazza G, Bassi D, Cristoferi G. Simultaneous determination of soluble sugars and organic acids as their trimethylsilyl derivatives in apricot fruits by gas-liquid chromatography. Journal of Chromatography A,1997,758(1): 99-107.
    32. Boguski MS, Tolstoshev CM, Bassett Jr DE. Gene discovery in dbEST. Science, 1994,265(5181):1993-1994.
    33. Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, Johnson D, Luo S, McCurdy S, Foy M, Ewan M. Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nature Biotechnology,2000, 18(6):630-634.
    34. Breto MP, Ruiz C, Pina JA. The diversification of Citrus Clementina Hort. ex Tan., a vegetatively propagated crop species. Molecular Phylogenetics and Evolution, 2001,21(2):285-293.
    35. Brummell DA, Harpster MH, Dunsmuir P. Differential expression of expansin gene family members during growth and ripening of tomato fruit. Plant Molecular Biology,1999,39(1):161-169.
    36. Burns J, Fraser PD, Bramley PM. Identification and quantification of carotenoids, tocopherols and chlorophylls in commonly consumed fruits and vegetables. Phytochemistry,2003,62(6):939-947.
    37. Butelli E, Licciardello C, Zhang Y, Liu J, Mackay S, Bailey P, Reforgiato-Recupero G, Martin C. Retrotransposons Control Fruit-Specific, Cold-Dependent Accumulation of Anthocyanins in Blood Oranges. The Plant Cell Online,2012.
    38. Cakir B, Agasse A, Gaillard C, Saumonneau A, Delrot S, Atanassova R. A grape ASR protein involved in sugar and abscisic acid signaling. Plant Cell,2003, 15(9):2165-2180.
    39. Canel C, Bailey-Serres J, Roose M. Pummelo Fruit Transcript Homologous to Ripening-induced Genes. Plant Physiology,1995,108:1323-1324.
    40. Carrari F, Fernie AR, Iusem ND. Heard it through the grapevine? ABA and sugar cross-talk:the ASR story. Trends in Plant Science,2004,9(2):57-59.
    41. Castellarin SD, Gambetta GA, Wada H, Shackel KA, Matthews MA. Fruit ripening in Vitis vinifera:spatiotemporal relationships among turgor, sugar accumulation, and anthocyanin biosynthesis. Journal of Experimental Botany, 2011.
    42. Catala C, Rose JKC, York WS, Albersheim P, Darvill AG, Bennett AB. Characterization of a tomato xyloglucan endotransglycosylase gene that is down-regulated by auxin in etiolated hypocotyls. Plant Physiology,2001,127(3): 1180.
    43. Cazzonelli CI, Pogson BJ. Source to sink:regulation of carotenoid biosynthesis in plants. Trends in Plant Science,2010,15(5):266-274.
    44. Cercos M, Soler G, Iglesias DJ, Gadea J, Forment J, Talon M. Global analysis of gene expression during development and ripening of citrus fruit flesh. A proposed mechanism for citric acid utilization. Plant Molecular Biology,2006,62(4-5): 513-527.
    45. Chang S, Puryear JD, Dias M, Funkhouser EA, Newton RJ, Cairney J. Gene expression under water deficit in loblolly pine (Pinus taeda):isolation and characterization of cDNA clones. Physiologia Plantarum,1996,97(1):139-148.
    46. Chen J, Liu D, Jiang Y, Zhao M, Shan W, Kuang J, Lu W. Molecular Characterization of a Strawberry FaASR Gene in Relation to Fruit Ripening. PloS one,2011,6(9):e24649.
    47. Cheung F, Haas B, Goldberg S, May G, Xiao Y, Town C. Sequencing Medicago truncatula expressed sequenced tags using 454 Life Sciences technology. BMC Genomics,2006,7(1):272.
    48. Clinton SK. Lycopene:Chemistry, Biology, and Implications for Human Health and Disease Nutrition Reviews,1998,56(2):35-51.
    49. Coombe BG. The Development of Fleshy Fruits. Annual Review of Plant Physiology,1976,27:207-228.
    50. Cooper W, Henry W. Effect of growth regulators on the coloring and abscission in citrus fruit. Isr J Agric Res,1968,18:161-174.
    51. Couee I, Sulmon C, Gouesbet G, El Amrani A. Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. Journal of Experimental Botany,2006,57(3):449-459.
    52. Davies F, Albrigo LG. Citrus. CAB International. Wallingford,1994.
    53. de Vienne D, Leonardi A, Damerval C, Zivy M. Genetics of proteome variation for QTL characterization:application to drought-stress responses in maize. Journal of Experimental Botany,1999,50(332):303-309.
    54. Deluc LG, Grimplet J, Wheatley MD, Tillett RL, Quilici DR, Osborne C, Schooley DA, Schlauch KA, Cushman JC, Cramer GR. Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development. BMC genomics,2007,8(1):429.
    55. Doczi R, Csanaki C, Banfalvi Z. Expression and promoter activity of the desiccation-specific Solanum tuberosum gene, StDS2. Plant, Cell & Environment,2002,25(9):1197-1203.
    56. Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences,1998,95(25):14863.
    57. Emrich SJ, Barbazuk WB, Li L, Schnable PS. Gene discovery and annotation using LCM-454 transcriptome sequencing. Genome Research,2007,17(1): 69-73.
    58. Eveland AL, McCarty DR, Koch KE. Transcript profiling by 3'-untranslated region sequencing resolves expression of gene families. Plant Physiology,2008, 146(1):32-44.
    59. Eveland AL, Satoh-Nagasawa N, Goldshmidt A, Meyer S, Beatty M, Sakai H, Ware D, Jackson D. Digital gene expression signatures for maize development. Plant Physiology,2010,154(3):1024-1039.
    60. Fanciullino AL, Dhuique-Mayer C, Froelicher Y, TalnM, Ollitrault P, Morillon R. Changes in carotenoid content and biosynthetic gene expression in juice sacs of four orange varieties(Citrus sinensis) differing in flesh fruit color. Journal of agricultural and food chemistry,2008,56(10):3628-3638.
    61. Fanciullino AL, Dhuique-Mayer C, Froelicher Y, Talon M, Ollitrault P, Morillon R. Changes in carotenoid content and biosynthetic gene expression in juice sacs of four orange varieties (Citrus sinensis) differing in flesh fruit color. Journal of agricultural and food chemistry,2008,56(10):3628-3638.
    62. Fang D, Roose M, Krueger R, Federici C. Fingerprinting trifoliate orange germ plasm accessions with isozymes, RFLPs, and inter-simple sequence repeat markers. TAG Theoretical and Applied Genetics,1997,95(1):211-219.
    63. Fei Z, Tang X, Alba RM, White JA, Ronning CM, Martin GB, Tanksley SD, Giovannoni JJ. Comprehensive EST analysis of tomato and comparative genomics of fruit ripening. The Plant Journal,2004,40(1):47-59.
    64. Feng C, Chen M, Xu C, Bai L, Yin X, Li X, Allan AC, Ferguson IB, Chen K. Transcriptomic analysis of Chinese bayberry (Myrica rubra) fruit development and ripening using RNA-Seq. BMC Genomics,2012,13(1):19.
    65. Frankel N, Carrari F, Hasson E, Iusem ND. Evolutionary history of the Asr gene family. Gene,2006,378:74-83.
    66. Frankel N, Nunes-Nesi A, Balbo I, Mazuch J, Centeno D, Iusem ND, Fernie AR, Carrari F. ci21A/Asrl expression influences glucose accumulation in potato tubers. Plant Molecular Biology,2007,63(5):719-730.
    67. Fraser PD, Pinto MES, Holloway DE, Bramley PM. Application of high-performance liquid chromatography with photodiode array detection to the metabolic profiling of plant isoprenoids. The Plant Journal,2000,24(4):551-558.
    68. Fujii H, Shimada T, Sugiyama A, Nishikawa F, Endo T, Nakano M, Ikoma Y, Shimizu T, Omura M. Profiling ethylene-responsive genes in mature mandarin fruit using a citrus 22K oligoarray. Plant Science,2007,173(3):340-348.
    69. Garg R, Patel RK, Jhanwar S, Priya P, Bhattacharjee A, Yadav G, Bhatia S, Chattopadhyay D, Tyagi AK, Jain M. Gene discovery and tissue-specific transcriptome analysis in chickpea with massively parallel pyrosequencing and web resource development. Plant Physiology,2011,156(4):1661-1678.
    70. Garg R, Jain M. Pyrosequencing data reveals tissue-specific expression of lineage-specific transcripts in chickpea. Plant signaling & behavior,2011,6(11).
    71. Gerhard DS, Wagner L, Feingold E, Shenmen C, Grouse L, Schuler G, Klein S, Old S, Rasooly R, Good P. The status, quality, and expansion of the NIH full-length cDNA project:the Mammalian Gene Collection (MGC). Genome Research,2004,14(10b):2121.
    72. Gilad A, Amitai-Zeigerson H, Bar-Zvi D. ASR1, a tomato water-stress regulated gene:genomic organization, developmental regulation andDNA-binding activity. Acta Hort,1997:447-453.
    73. Giovannoni J. Molecular biology of fruit maturation and ripening. Annual review of plant biology,2001,52(1):725-749.
    74. Giovannoni JJ. Genetic regulation of fruit development and ripening. The Plant Cell Online,2004,16(suppl_1):SI70.
    75. Giuliano G, Bartley GE, Scolnik PA. Regulation of carotenoid biosynthesis during tomato development. The Plant Cell Online,1993,5(4):379.
    76. Goldgur Y, Rom S, Ghirlando R, Shkolnik D, Shadrin N, Konrad Z, Bar-Zvi D. Desiccation and zinc binding induce transition of tomato abscisic acid stress ripening 1, a water stress-and salt stress-regulated plant-specific protein, from unfolded to folded state. Plant Physiology,2007,143(2):617-628.
    77. Gonzalez-Ballester D, Casero D, Cokus S, Pellegrini M, Merchant SS, Grossman AR. RNA-seq analysis of sulfur-deprived Chlamydomonas cells reveals aspects of acclimation critical for cell survival. The Plant Cell Online,2010,22(6): 2058-2084.
    78. Goulao LF, Oliveira CM. Cell wall modifications during fruit ripening:when a fruit is not the fruit. Trends in Food Science & Technology,2008,19(1):4-25.
    79. Guillet C, Just D, Benard N, Destrac-Irvine A, Baldet P, Hernould M, Causse M, Raymond P, Rothan C. A fruit-specific phosphoenolpyruvate carboxylase is related to rapid growth of tomato fruit. Planta,2002,214(5):717-726.
    80. Guo S, Zheng Y, Joung JG, Liu S, Zhang Z, Crasta OR, Sobral BW, Xu Y, Huang S, Fei Z. Transcriptome sequencing and comparative analysis of cucumber flowers with different sex types. BMC Genomics,2010,11(1):384.
    81. Hao DC, Ge GB, Xiao PG, Zhang YY, Yang L. The first insight into the tissue specific Taxus transcriptome via Illumina second generation sequencing. PloS one,2011,6(6):e21220.
    82. Harbers M, Carninci P. Tag-based approaches for transcriptome research and genome annotation. Nature methods,2005,2(7):495-502.
    83. Henkes S, Sonnewald U, Badur R, Flachmann R, Stitt M. A small decrease of plastid transketolase activity in antisense tobacco transformants has dramatic effects on photosynthesis and phenylpropanoid metabolism. The Plant Cell,2001, 13(3):535-551.
    84. Hirschberg J. Carotenoid biosynthesis in flowering plants. Current opinion in plant biology,2001,4(3):210-218.
    85. Hong SH, Kim IJ, Yang DC, Chung WI. Characterization of an abscisic acid responsive gene homologue from Cucumis melo. Journal of Experimental Botany, 2002,53(378):2271-2272.
    86. Howell MD, Fahlgren N, Chapman EJ, Cumbie JS, Sullivan CM, Givan SA, Kasschau KD, Carrington JC. Genome-wide analysis of the RNA-DEPENDENT RNA POLYMERASE6/DICER-LIKE4 pathway in Arabidopsis reveals dependency on miRNA-and tasiRNA-directed targeting. The Plant Cell Online, 2007,19(3):926-942.
    87. Huang JC, Lin SM, Wang CS. A pollen-specific and desiccation-associated transcript in Lilium longiflorum during development and stress. Plant and Cell Physiology,2000,41(4):477-485.
    88. Huff A. Nutritional control of regreening and degreening in citrus peel segments. Plant Physiology,1983,73(2):243.
    89. Huff A. Sugar regulation of plastid interconversions in epicarp of citrus fruit. Plant Physiology,1984,76(2):307.
    90. Iglesias DJ, Tadeo FR, Legaz F, Primo-Millo E, Talon M. In vivo sucrose stimulation of colour change in citrus fruit epicarps:interactions between nutritional and hormonal signals. Physiologia Plantarum,2001,112(2):244-250.
    91. Iglesias DJ, Cercos M, Colmenero-Flores JM, Naranjo MA, Rios G, Carrera E, Ruiz-Rivero O, Lliso I, Morillon R, Tadeo FR. Physiology of citrus fruiting. Brazilian Journal of Plant Physiology,2007,19:333-362.
    92. Itai A, Tanabe K, Tamura F, Tanaka T. Isolation of cDNA clones corresponding to genes expressed during fruit ripening in Japanese pear (Pyrus pyrifolia Nakai): involvement of the ethylene signal transduction pathway in their expression. Journal of Experimental Botany,2000,51(347):1163-1166.
    93. Jason P, Shail K, Hajime S, Mario AV, Nidia SL, Hassan G, Blake M. A spatial dissection of the Arabidopsis floral transcriptome by MPSS. Bmc Plant Biology, 2008,8.
    94. Jeanneau M, Gerentes D, Foueillassar X, Zivy M, Vidal J, Toppan A, Perez P. Improvement of drought tolerance in maize:towards the functional validation of the Zm-Asrl gene and increase of water use efficiency by over-expressing C4-PEPC. Biochimie,2002,84(11):PII S0300-9084(0302)00024-X.
    95. Jiang Y, Joyce DC. ABA effects on ethylene production, PAL activity, anthocyanin and phenolic contents of strawberry fruit. Plant Growth Regulation, 2003,39(2):171-174.
    96. Juan X, Xiuxin D. Identification of Main Pigments in Red Flesh Navel Orange (Citrus sinensis L.) and Evaluation of Their Concentration Changes during Fruit Development and Storage. Acta Horticulturae Sinica,2002,29(3):203-208.
    97. Kal AJ, van Zonneveld AJ, Benes V, van den Berg M, Koerkamp MG, Albermann K, Strack N, Ruijter JM, Richter A, Dujon B, Ansorge W, Tabak HF. Dynamics of gene expression revealed by comparison of serial analysis of gene expression transcript profiles from yeast grown on two different carbon sources. Molecular Biology of the Cell,1999,10(6):1859-1872.
    98. Kalifa Y, Perlson E, Gilad A, Konrad Z, Scolnik PA, Bar-Zvi D. Over-expression of the water and salt stress-regulated Asrl gene confers an increased salt tolerance. Plant Cell and Environment,2004,27(12):1459-1468.
    99. Kalifa Y, Gilad A, Konrad Z, Zaccai M, Scolnik PA, Bar-Zvi D. The water-and salt-stress-regulated Asrl (abscisic acid stress ripening) gene encodes a zinc-dependent DNA-binding protein. Biochemical Journal,2004,381:373-378.
    100.Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T. KEGG for linking genomes to life and the environment. Nucleic acids research,2008,36(suppl 1):D480-D484.
    101.Karlova R, Rosin FM, Busscher-Lange J, Parapunova V, Do PT, Fernie AR, Fraser PD, Baxter C, Angenent GC, De Maagd RA. Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening. The Plant Cell Online,2011,23(3):923-941.
    102.Kato M, Ikoma Y, Matsumoto H, Sugiura M, Hyodo H, Yano M. Accumulation of carotenoids and expression of carotenoid biosynthetic genes during maturation in citrus fruit. Plant Physiology,2004,134(2):824-837.
    103.Katz E, Fon M, Lee YJ, Phinney BS, Sadka A, Blumwald E. The citrus fruit proteome:insights into citrus fruit metabolism. Planta,2007,226(4):989-1005.
    104.Kodzius R, Kojima M, Nishiyori H, Nakamura M, Fukuda S, Tagami M, Sasaki D, Imamura K, Kai C, Harbers M. CAGE:cap analysis of gene expression. Nature methods,2006,3(3):211-222.
    105.Komatsu A, Moriguchi T, Koyama K, Omura M, Akihama T. Analysis of sucrose synthase genes in citrus suggests different roles and phylogenetic relationships. Journal of Experimental Botany,2002,53(366):61-71.
    106.Lee HS. Characterization of carotenoids in juice of red navel orange (Cara Cara). Journal of Agricultural and Food Chemistry,2001,49(5):2563-2568.
    107.Li P, Ponnala L, Gandotra N, Wang L, Si Y, Tausta SL, Kebrom TH, Provart N, Patel R, Myers CR. The developmental dynamics of the maize leaf transcriptome. Nature genetics,2010,42(12):1060-1067.
    108.Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J. SOAP2:an improved ultrafast tool for short read alignment. Bioinformatics,2009,25(15):1966-1967.
    109.Libault M, Farmer A, Joshi T, Takahashi K, Langley RJ, Franklin LD, He J, Xu D, May G, Stacey G. An integrated transcriptome atlas of the crop model Glycine max, and its use in comparative analyses in plants. The Plant Journal,2010,63(1): 86-99.
    110.Licciardello C, Russo MP, Vale'G, Recupero RG. Identification of differentially expressed genes in the flesh of blood and common oranges. Tree Genetics & Genomes,2008,4(2):315-331.
    111.Liu HY, Dai JR, Feng DR, Liu B, Wang HB, Wang JF. Characterization of a Novel Plantain Asr Gene, MpAsr, that is Regulated in Response to Infection of Fusarium oxysporum f. sp. cubense and Abiotic Stresses. Journal of Integrative Plant Biology,2010,52(3):315-323.
    112.Liu Q, Xu J, Liu YZ, Zhao XL, Deng XX, Guo LL, Gu JQ. A novel bud mutation that confers abnormal patterns of lycopene accumulation in sweet orange fruit (Citrus sinensis L. Osbeck). Journal of Experimental Botany,2007,58(15-16): 4161-4171.
    113.Liu Q, Zhu AD, Chai LJ, Zhou WJ, Yu KQ, Ding J, Xu J, Deng X. Transcriptome analysis of a spontaneous mutant in sweet orange [Citrus sinensis (L.) Osbeck] during fruit development. J Exp Bot,2009,60(3):801-813.
    114.Liu YG, Chen Y. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. Biotechniques,2007,43(5): 649-656.
    115.Lund ST, Peng FY, Nayar T, Reid KE, Schlosser J. Gene expression analyses in individual grape (Vitis vinifera L.) berries during ripening initiation reveal that pigmentation intensity is a valid indicator of developmental staging within the cluster. Plant Molecular Biology,2008,68(3):301-315.
    116.1usem ND, Bartholomew DM, Hitz WD, Scolnik PA. Tomato(Lycopersicon escdenfum) Transcript Induced by Water Deficit and Ripening. Plant Physiol, 1993,102:1353-1354.
    117.Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z. Genome sequencing in microfabricated high-density picolitre reactors. Nature,2005,437(7057):376-380.
    118.Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y. RNA-seq:an assessment of technical reproducibility and comparison with gene expression arrays. Genome research,2008,18(9):1509.
    119.Maskin L, Gudesblat GE, Moreno JE, Carrari FO, Frankel N, Sambade A, Rossi M, Iusem ND. Differential expression of the members of the Asr gene family in tomato(Lycopersicon esculentum). Plant Science,2001,161(4):739-746.
    120.Maskin L, Frankel N, Gudesblat G, Demergasso MJ, Pietrasanta LI, Iusem ND. Dimerization and DNA-binding of ASR1, a small hydrophilic protein abundant in plant tissues suffering from water loss. Biochemical and Biophysical Research Communications,2007,352(4):831-835.
    121.May MJ, Vernous T, Leaver C, Van Montagu M, Inze D. Glutathione homeostasis in plants:implications for environmental sensing and plant development. Journal of Experimental Botany,1998,49:649-667.
    122.Mayer MP, Beyer P, Kleinig H. Quinone compounds are able to replace molecular oxygen as terminal electron acceptor in phytoene desaturation in chromoplasts of Narcissus pseudonarcissus L. European journal of biochemistry, 1990,191(2):359-363.
    123.Mbeguie-A-Mbeguie D, Gomez RM, Fils-lycaon B. Molecular cloning and nucleotide sequence of an abscisic acid-stress-ripening induced (ASR)-like protein from apricot fruit (Accession No.U93164) gene expression during fruit ripening. Plant Physiology,1997,115:1288.
    124.Mehouachi J, Serna D, Zaragoza S, Agusti M, Talon M, Primo-Millo E. Defoliation increases fruit abscission and reduces carbohydrate levels in developing fruits and woody tissues of'Citrus unshiu'. Plant Science,1995, 107(2):189-197.
    125.Mendes AFS, Chen C, Gmitter Jr FG, Moore GA, Costa MGC. Expression and phylogenetic analysis of two new lycopene β-cyclases from Citrus paradisi. Physiologia Plantarum,2011,141(1):1-10.
    126.Mohammad A, Shangwu C, Yechun W, Oliver Y, Laszlo K, Wenping Q. Berry skin development in Norton grape:Distinct patterns of transcriptional regulation and flavonoid biosynthesis. BMC Plant Biology,2011,11.
    127.Moller IM. Plant mitochondria and oxidative stress:Electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annual Review of Plant Physiology and Plant Molecular Biology,2001,52:561-591.
    128.Moretti MB, Maskin L, Gudesblat G, Garcia SC, Iusem ND. ASR1, a stress-induced tomato protein, protects yeast from osmotic stress. Physiologia Plantarum,2006,127(1):111-118.
    129.Moriguchi T, Kita M, Hisada S, Endo-Inagaki T, Omura M. Characterization of gene repertoires at mature stage of citrus fruits through random sequencing and analysis of redundant metallothionein-like genes expressed during fruit developmentl. Gene,1998,211(2):221-227.
    130.Morin RD, Aksay Q Dolgosheina E, Ebhardt HA, Magrini V, Mardis ER, Sahinalp SC, Unrau PJ. Comparative analysis of the small RNA transcriptomes of Pinus contorta and Oryza saliva. Genome Research,2008,18(4):571-584.
    131.Morrissy AS, Morin RD, Delaney A, Zeng T, McDonald H, Jones S, Zhao Y, Hirst M, Marra MA. Next-generation tag sequencing for cancer gene expression profiling. Genome Research,2009,19(10):1825-1835.
    132.Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature methods,2008,5(7): 621-628.
    133.Moxon S, Jing R, Szittya G, Schwach F, Pilcher RLR, Moulton V, Dalmay T. Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Research,2008,18(10):1602-1609.
    134.Mustilli AC, Fenzi F, Ciliento R, Alfano F, Bowler C. Phenotype of the tomato high pigment-2 mutant is caused by a mutation in the tomato homolog of DEETIOLATED1. The Plant Cell Online,1999,11(2):145-158.
    135.Nakamura M, Carninci P. Cap analysis gene expression:CAGE. Tanpakushitsu Kakusan Koso,2004,49:2688-2693.
    136.Nashilevitz S, Melamed-Bessudo C, Izkovich Y, Rogachev I, Osorio S, Itkin M, Adato A, Pankratov I, Hirschberg J, Fernie AR. An Orange Ripening Mutant Links Plastid NAD (P) H Dehydrogenase Complex Activity to Central and Specialized Metabolism during Tomato Fruit Maturation. The Plant Cell Online, 2010,22(6):1977.
    137.Neuhaus HE, Ernes MJ. Nonphotosynthetic metabolism in plastids. Annual Review of Plant Physiology and Plant Molecular Biology,2000,51:111-140.
    138.Nobuta K, Lu C, Shrivastava R, Pillay M, De Paoli E, Accerbi M, Arteaga-Vazquez M, Sidorenko L, Jeong DH, Yen Y. Distinct size distribution of endogenous siRNAs in maize:Evidence from deep sequencing in the mopl-1 mutant. Proceedings of the National Academy of Sciences,2008,105(39):14958.
    139.North MJ, Nicol K, Sands TW, Cotter DA. Acid-activatable cysteine proteinases in the cellular slime mold Dictyostelium discoideum. Journal of Biological Chemistry,1996,271(24):14462.
    140.Novaes E, Drost D, Farmerie W, Pappas G, Grattapaglia D, SederoffR, Kirst M. High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome. BMC Genomics,2008,9(1):312.
    141.Ono NN, Britton MT, Fass JN, Nicolet CM, Lin D, Tian L. Exploring the Transcriptome Landscape of Pomegranate Fruit Peel for Natural Product Biosynthetic Gene and SSR Marker Discovery. Journal of integrative plant biology,2011.
    142.Padmanabhan V, Dias D, Newton RJ. Expression analysis of a gene family in loblolly pine (Pinus taeda L.) induced by water deficit stress. Plant Molecular Biology,1997,35(6):801-807.
    143.Pan X, Welti R, Wang X. Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography-mass spectrometry. Nature Protocols,2010,5(6):986-992.
    144.Pan ZY, Liu Q, Yun Z, Guan R, Zeng WF, Xu Q, Deng XX. Comparative proteomics of a lycopene-accumulating mutant reveals the important role of oxidative stress on carotenogenesis in sweet orange (Citrus sinensis [L.] osbeck). Proteomics,2009,9(24):5455-5470.
    145.Pan ZY, Deng XX. Proteomic Comparison Between Leaves from a Red-Flesh Mutant and Its Wild-Type in Sweet Orange. Agricultural Sciences in China,2011, 10(8):1206-1212.
    146.Pan ZY, Zeng YL, An JY, Ye JL, Xu Q, Deng XX. An integrative analysis of transcriptome and proteome provides new insights into carotenoid biosynthesis and regulation in sweet orange fruits. Journal of Proteomics,2012.
    147.Parchman TL, Geist KS, Grahnen JA, Benkman CW, Buerkle CA. Transcriptome sequencing in an ecologically important tree species:assembly, annotation, and marker discovery. BMC Genomics,2010,11(1):180.
    148.Pilati S, Perazzolli M, Malossini A, Cestaro A, Dematte L, Fontana P, Dal Ri A, Viola R, Velasco R, Moser C. Genome-wide transcriptional analysis of grapevine berry ripening reveals a set of genes similarly modulated during three seasons and the occurrence of an oxidative burst at veraison. BMC genomics,2007,8(1): 428.
    149.Plessl M, Rigola D, Hassinen V, Aarts MGM, Schat H, Ernst D. Transcription profiling of the metal-hyperaccumulator Thlaspi caerulescens (J.& C. PRESL). Zeitschrift fur Naturforschung C,2005,60:216-223.
    150.Porat R, Feng X, Huberman M, Galili D, Goren R, Goldschmidt EE. Gibberellic acid slows postharvest degreening ofOroblanco'citrus fruits. HortScience,2001, 36(5):937-940.
    151.Prasanna V, Prabha TN, Tharanathan RN. Fruit Ripening Phenomena-An Overview. Critical Reviews in Food Science and Nutrition,2007,47(1).
    152.Rao AV, Rao LG. Carotenoids and human health. Pharmacological Research, 2007,55(3):207-216.
    153.Reinartz J, Bruyns E, Lin JZ, Burcham T, Brenner S, Bowen B, Kramer M, Woychik R. Massively parallel signature sequencing (MPSS) as a tool for in-depth quantitative gene expression profiling in all organisms. Briefings in functional genomics & proteomics,2002,1(1):95-104.
    154.Riccardi F, Gazeau P, Vienne Dd, Zivy M. Protein Changes in Response to Progressive Water Deficit in Maize. Plant Physiology,1998,117:1253-1263.
    155.Rodrigo MJ, Marcos JF, Alferez F, Mallent MD, Zacarias L. Characterization of Pinalate, a novel Citrus sinensis mutant with a fruit-specific alteration that results in yellow pigmentation and decreased ABA content. Journal of Experimental Botany,2003,54(383):727-738.
    156.Rodrigo MJ, Marcos JF, Zacarias L. Biochemical and molecular analysis of carotenoid biosynthesis in flavedo of orange (Citrus sinensis L.) during fruit development and maturation. Journal of Agricultural and Food Chemistry,2004, 52(22):6724-6731.
    157.Rossi M, Iusem ND. Tomato (Lycopersicon-Esculentum) Genomic Clone Homologous to a Gene Encoding an Abscisic Acid-Induced Protein. Plant Physiology,1994,104(3):1073-1074.
    158.Rossi M, Lijavetzky D, Bernacchi D, Hopp HE, Iusem N. Asr genes belong to a gene family comprising at least three closely linked loci on chromosome 4 in tomato. Molecular & General Genetics,1996,252(4):489-492.
    159.Rouseff R, Raley L, Hofsommer HJ. Application of diode array detection with a C-30 reversed phase column for the separation and identification of saponified orange juice carotenoids. J Agric Food Chem,1996,44(8):2176-2181.
    160.Rouseff R, Raley L, Hofsommer HJ. Application of diode array detection with a C-30 reversed phase column for the separation and identification of saponified orange juice carotenoids. Journal of agricultural and food chemistry,1996,44(8): 2176-2181.
    161.Sadka A, Dahan E, Cohen L, Marsh KB. Aconitase activity and expression during the development of lemon fruit. Physiologia Plantarum,2000,108(3): 255-262.
    162.Sadka A, Dahan E, Or E, Cohen L. NADP(+)-isocitrate dehydrogenase gene expression and isozyme activity during citrus fruit development. Plant Science, 2000,158(1-2):173-181.
    163.Sadka A, Dahan E, Or E, Roose ML, Marsh KB, Cohen L. Comparative analysis of mitochondrial citrate synthase gene structure, transcript level and enzymatic activity in acidless and acid-containing Citrus varieties. Australian Journal of Plant Physiology,2001,28(5):383-390.
    164.Sato S, Hirakawa H, Isobe S, Fukai E, Watanabe A, Kato M, Kawashima K, Minami C, Muraki A, Nakazaki N. Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L. DNA research,2011,18(1):65-76.
    165.Saumonneaua A, Agasse A, Bidoyen MT, Lallemand M, Cantereau A, Medici A, Laloi M, Atanassova R. Interaction of grape ASR proteins with a DREB transcription factor in the nucleus. Febs Letters,2008,582(23-24):3281-3287.
    166. Schneider A, Salamini F, Gebhardt C. Expression patterns and promoter activity of the cold-regulated gene ci21A of potato. Plant Physiology,1997,113(2): 335-345.
    167.Schwartz SH, Tan BC, Gage DA, Zeevaart JAD, McCarty DR. Specific oxidative cleavage of carotenoids by VP14 of maize. Science,1997,276(5320): 1872-1874.
    168.Severin A, Woody J, Bolon YT, Joseph B, Diers B, Farmer A, Muehlbauer G, Nelson R, Grant D, Specht J. RNA-Seq Atlas of Glycine max:a guide to the soybean transcriptome. Bmc Plant Biology,2010,10(1):160.
    169.Sharma RR, Saxena SK. Rootstocks influence granulation in Kinnow mandarin (Citrus nobilis C. deliciosa). Scientia Horticulturae,2004,101(3):235-242.
    170.Sharon-Asa L, Shalit M, Frydman A, Bar E, Holland D, Or E, Lavi U, Lewinsohn E, Eyal Y. Citrus fruit flavor and aroma biosynthesis:isolation, functional characterization, and developmental regulation of Cstpsl, a key gene in the production of the sesquiterpene aroma compound valencene. The Plant Journal,2003,36(5):664-674.
    171.Shen G, Pang YZ, Wu WS, Deng ZX, Liu XF, Lin J, Zhao LX, Sun XF, Tang KX. Molecular cloning, characterization and expression of a novel Asr gene from Ginkgo biloba. Plant Physiology and Biochemistry,2005,43(9):836-843.
    172.Shimada T, Fuiii H, Endo T, Yazaki J, Kishimoto N, Shimbo K, Kikuchi S, Omura M. Toward comprehensive expression profiling by microarray analysis in citrus:monitoring the expression profiles of 2213 genes during fruit development. Plant science,2005,168(5):1383-1385.
    173.Shimada T, Nakano R, Shulaev V, Sadka A, Blumwald E. Vacuolar citrate/H+ symporter of citrus juice cells. Planta,2006,224(2):472-480.
    174.Shiraki T, Kondo S, Katayama S, Waki K, Kasukawa T, Kawaji H, Kodzius R, Watahiki A, Nakamura M, Arakawa T. Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proceedings of the National Academy of Sciences,2003, 100(26):15776.
    175.Shkolnik D, Bar-Zvi D. Tomato ASR1 abrogates the response to abscisic acid and glucose in Arabidopsis by competing with AB14 for DNA binding. Plant Biotechnology Journal,2008,6(4):368-378.
    176.Shu Y, Li Y, Zhu Z, Bai X, Cai H, Ji W, Guo D, Zhu Y. SNPs discovery and CAPS marker conversion in soybean. Molecular biology reports,2011,38(3): 1841-1846.
    177.Sienkiewicz-Porzucek A, Nunes-Nesi A, Sulpice R, Lisec J, Centeno DC, Carillo P, Lcisse A, Urbanczyk-Wochniak E, Fernie AR. Mild reductions in mitochondrial citrate synthase activity result in a compromised nitrate assimilation and reduced leaf pigmentation but have no effect on photosynthetic performance or growth. Plant Physiology,2008,147(1):115-127.
    178.Silhavy D, Hutvagner G, Barta E, Banfalvi Z. Isolation and Characterization of a Water-Stress-Inducible Cdna Clone from Solanum Chacoense. Plant Molecular Biology,1995,27(3):587-595.
    179.Sinclair WB. The Biochemistry and Physiology of the Lemon and Other Citrus Fruits. University of California, Oakland, CA, pp114-141ISBN 0-931876-64-8, 1984.
    180.Singh R.65-year research on citrus granulation. Ind J Hort,2001,58(1-2): 112-144.
    181.Song C, Wang C, Zhang C, Korir NK, Yu H, Ma Z, Fang J. Deep sequencing discovery of novel and conserved microRNAs in trifoliate orange (Citrus trifoliata). BMC Genomics,2010,11(1):431.
    182.Soule J, Grierson W. Anatomy and physiology, p.1-22. In:W. Wardowski, S. Nagy, and W. Grierson (eds.). Fresh citrus fruits.AVI, Westport, Conn.1986.
    183.Spiegel-Roy P, Goldschmidt EE. Biology of citrus:Cambridge Univ Press, Cambridge,1996,
    184.Stryer L. Biochemistry.3rd edn. W.H.Freeman and Co., San Francisco, CA., 1989.
    185.Sugiharto B, Ermawati N, Mori H, Aoki K, Yonekura-Sakakibara K, Yamaya T, Sugiyama T, Sakakibara H. Identification and characterization of a gene encoding drought-inducible protein localizing in the bundle sheath cell of sugarcane. Plant and Cell Physiology,2002,43(3):350-354.
    186.Talon M, Gmitter FG. Citrus genomics. Int J Plant Genomics,2008,2008: 528361.
    187.Tamura K, Dudley J, Nei M, Kumar S. MEGA4:molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular biology and evolution,2007, 24(8):1596-1599.
    188.Tao NG, Xu J, Cheng YJ, Deng XX. Lycopene-β-cyclase pre-mRNA is alternatively spliced in Cara Cara navel orange (Citrus sinensis Osbeck). Biotechnology letters,2005,27(11):779-782.
    189.Tao NG, Xu J, Cheng YJ, Deng XX. Lycopene-s-cyclase pre-mRNA is alternatively spliced in Cara Cara navel orange (Citrus sinensis Osbeck). Biotechnology letters,2005,27(11):779-782.
    190.Tao NG, Wei J, Liu YZ, Cheng YJ, Deng XX. Copia-like retrotransposons in a precocious mutant of trifoliate orange [Poncirus trifoliata (L.) Raf]. Journal of horticultural science & biotechnology,2006,81(6):1038-1042.
    191.Tao NG, Hu ZY, Liu Q, Xu J, Cheng YJ, Guo L, Guo WW, Deng XX. Expression of phytoene synthase gene (Psy) is enhanced during fruit ripening of Cara Cara navel orange (Citrus sinensis Osbeck). Plant cell reports,2007,26(6):837-843.
    192.Tao NG, Xu J, Cheng YJ, Deng XX. Construction and characterization of a cDNA library from the pulp of Cara Cara navel orange(Citrus sinensis Osbeck). Journal of Integrative Plant Biology,2006,48(3):315-319.
    193.Telef N, Stammitti-Bert L, Mortain-Bertrand A, Maucourt M, Carde JP, Rolin D, Gallusci P. Sucrose deficiency delays lycopene accumulation in tomato fruit pericarp discs. Plant Molecular Biology,2006,62(3):453-469.
    194.Trebitsh T, Goldschmidt EE, Riov J. Ethylene induces de novo synthesis of chlorophyllase, a chlorophyll degrading enzyme, in citrus fruit peel. Proceedings of the National Academy of Sciences,1993,90(20):9441.
    195.Turrens JF. Mitochondrial formation of reactive oxygen species. Journal of Physiology-London,2003,552(2):335-344.
    196.Vaidyanathan R, Kuruvilla S, Thomas G. Characterization and expression pattern of an abscisic acid and osmotic stress responsive gene from rice. Plant science 1999,140:25-36.
    197.Vega-Arreguin J, Ibarra-Laclette E, Jimenez-Moraila B, Martinez O, Vielle-Calzada J, Herrera-Estrella L, Herrera-Estrella A. Deep sampling of the Palomero maize transcriptome by a high throughput strategy of pyrosequencing. BMC Genomics,2009,10(1):299.
    198.Velculescu VE, Zhang L, Vogelstein B, Kinzler KW. Serial analysis of gene expression. Science,1995,270(5235):484-487.
    199.Virlouvet L, Jacquemot MP, Gerentes D, Corti H, Bouton S, Gilard F, Valot B, Trouverie J, Tcherkez G, Falque M. The ZmASRl protein influences branched-chain amino acid biosynthesis and maintains kernel yield in maize under water-limited conditions. Plant physiology,2011,157(2):917-936.
    200.Waldron KW, Parker ML, Smith AC. Plant cell walls and food quality. Comprehensive reviews in food science and food safety,2003,2(4):128-146.
    201.Wang CS, Liau YE, Huang JC, Wu TD, Su CC, Lin CH. Characterization of a desiccation-related protein in lily pollen during development and stress. Plant and Cell Physiology,1998,39(12):1307-1314.
    202.Wang HJ, Jauh GY, Hsu YH, Wang CS. The nuclear localization signal of a pollen-specific, desiccation-associated protein of lily is necessary and sufficient for nuclear targeting. Botanical Bulletin of Academia Sinica,2003,44(2): 123-128.
    203.Wang W, Wang Y, Zhang Q, Qi Y, Guo D. Global characterization of Artemisia annua glandular trichome transcriptome using 454 pyrosequencing. BMC Genomics,2009,10(1):465.
    204.Wang YC, Chuang YC, Hsu HW. The flavonoid, carotenoid and pectin content in peels of citrus cultivated in Taiwan. Food Chemistry,2008,106(1):277-284.
    205.Weber APM, Weber KL, Carr K, Wilkerson C, Ohlrogge JB. Sampling the Arabidopsis transcriptome with massively parallel pyrosequencing. Plant Physiology,2007,144(1):32-42.
    206.Welsch R, Maass D, Voegel T, DellaPenna D, Beyer P. Transcription factor RAP2. 2 and its interacting partner SINAT2:stable elements in the carotenogenesis of Arabidopsis leaves. Plant physiology,2007,145(3):1073-1085.
    207.Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, McGuire A, He W, Chen YJ, Makhijani V, Roth GT. The complete genome of an individual by massively parallel DNA sequencing. Nature,2008,452(7189):872-876.
    208.Wicker T, Schlagenhauf E, Graner A, Close T, Keller B, Stein N.454 sequencing put to the test using the complex genome of barley. BMC Genomics,2006,7(1): 275.
    209.Wong CE, Li Y, Labbe A, Guevara D, Nuin P, Whitty B, Diaz C, Golding GB, Gray GR, Weretilnyk EA. Transcriptional profiling implicates novel interactions between abiotic stress and hormonal responses in Thellungiella, a close relative of Arabidopsis. Plant Physiology,2006,140(4):1437-1450.
    210.Xie F, Burklew CE, Yang Y, Liu M, Xiao P, Zhang B, Qiu D. De novo sequencing and a comprehensive analysis of purple sweet potato (Impomoea batatas L.) transcriptome. Planta,2012:1-13.
    211.Xiong LM, Zhu JK. Regulation of abscisic acid biosynthesis. Plant Physiology, 2003,133(1):29-36.
    212.Xu CJ, Fraser PD, Wang WJ, Bramley PM. Differences in the carotenoid content of ordinary citrus and lycopene-accumulating mutants. Journal of agricultural and food chemistry,2006,54(15):5474.
    213.Xu J, Tao NG, Liu Q, Deng XX. Presence of diverse ratios of lycopene/β-carotene in five pink or red-fleshed citrus cultivars. Scientia horticulturae,2006,108(2):181-184.
    214.Xu Q, Yu KQ, Zhu AD, Ye JL, Liu Q, Zhang JC, Deng XX. Comparative transcripts profiling reveals new insight into molecular processes regulating lycopene accumulation in a sweet orange (Citrus sinensis) red-flesh mutant. BMC Genomics,2009,10:540.
    215.Xu Q, Liu YL, Zhu AD, Wu XM, Ye JL, Yu KQ, Guo WW, Deng XX. Discovery and comparative profiling of microRNAs in a sweet orange red-flesh mutant and its wild type. BMC genomics,2010,11(1):246.
    216.Yang CY, Chen YC, Jauh GY, Wang CS. A lily ASR protein involves abscisic acid signaling and confers drought and salt resistance in Arabidopsis. Plant Physiology,2005,139(2):836-846.
    217.Yang L, Zheng B, Mao C, Qi X, Liu F, Wu P. Analysis of transcripts that are differentially expressed in three sectors of the rice root system under water deficit. Molecular Genetics and Genomics,2004,272(4):433-442.
    218.Yao Y, Guo G, Ni Z, Sunkar R, Du J, Zhu JK, Sun Q. Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biol, 2007,8(6):R96.
    219. Ye JL, Zhu AD, Tao NG, Xu Q, Xu J, Deng XX. Comprehensive analysis of expressed sequence tags from the pulp of the red mutant 'Cara Cara' navel orange (Citrus sinensis Osbeck). Journal of Integrative Plant Biology,2010,52(10): 856-867.
    220.Yu KQ, Xu Q, Da XL, Guo F, Ding YD, Deng XX. Transcriptome changes during fruit development and ripening of sweet orange (Citrus sinensis). BMC genomics,2012,13(1):10.
    221.Zeng YL, Pan ZY, Ding YD, Zhu AD, Cao HB, Xu Q, Deng XX. A proteomic analysis of the chromoplasts isolated from sweet orange fruits [Citrus sinensis (L.) Osbeck]. Journal of experimental botany,2011,62(15):5297-5309.
    222.Zenoni S, Ferrarini A, Giacomelli E, Xumerle L, Fasoli M, Malerba G, Bellin D, Pezzotti M, Delledonne M. Characterization of transcriptional complexity during berry development in Vitis vinifera using RNA-Seq. Plant Physiology,2010, 152(4):1787-1795.
    223.Zhang J, Wang X, Yu O, Tang J, Gu X, Wan X, Fang C. Metabolic profiling of strawberry (Fragaria× ananassa Duch.) during fruit development and maturation. Journal of experimental botany,2011,62(3):1103-1118.
    224.Zhang J, Liang S, Duan J, Wang J, Chen S, Cheng Z, Zhang Q, Liang X, Li Y. De novo Assembly and Characterisation of the Transcriptome during seed development, and generation of genic-SSR markers in Peanut (Arachis hypogaea L.). BMC Genomics,2012,13(1):90.
    225.Zhu QH, Spriggs A, Matthew L, Fan L, Kennedy G, Gubler F, Helliwell C. A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains. Genome Research,2008,18(9):1456-1465.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700