射频集成磁膜微电感的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高性能射频(Radio Frequency, RF)集成微电感是移动通信应用中需求很高的无源器件。目前,低成本、高性能、高集成度RF微电感的缺乏阻碍了单片射频SOC(System on Chip)集成电路的实现。磁材料集成到微电感中不仅可增加电感感值,也可有效减少线圈磁漏,是实现高性能RF集成微电感很有前景的一种方法。本论文深入系统地研究了高频铁氧体薄膜磁性能及制备工艺,在此基础上,首次采用标准硅集成工艺实现了基于铁氧体RF集成磁膜微电感,实验结果表明铁氧体磁膜的引入可有效提高RF平面微电感的整体性能。
    论文首先对RF平面微电感的物理模型进行了研究,给出了平面电感Q值和L值的计算方法,从模型出发分析了电感结构和材料参数对电感L、Q值的影响。在此基础上,针对高电阻率铁氧体磁材料的特点,得到了磁膜微电感等效电路模型及适合于集成磁膜微电感L值与Q值的计算表达式,并使用等效模型详细地分析了铁氧体磁膜的引入对RF平面微电感性能的影响,为铁氧体应用到磁膜集成RF微电感打下理论基础。仿真结果表明高频磁导率和高频介电常数对电感高频性能同等重要,只有选取高磁导率、低介电常数的铁氧体材料才能提升RF微电感的整体性能。同时,使用部分元等效电路法(Partial Element Equivalent Circuits, PEEC)解决了射频频段微米尺度金属损耗的精确计算问题,为预测、设计和优化片上螺旋电感提供了一种有效的电磁仿真方案。
    接着,研究了使用溶胶-凝胶(Sol-gel)自燃法制备的NiCuZn、YIG、CoZrO铁氧体高频电磁性能,测试结果表明这些材料在高频下具有低的磁损耗和介电损耗,而NiCuZn、CoZrO铁氧体截止频率大于1GHz,适合于RF集成微电感的应用要求。在此基础上,使用sol-gel法结合快速热处理(Rapid Thermal Processing, RTP)工艺制备了软磁性能良好的NiCuZn、YIG铁氧体磁膜,通过对磁膜样品表面形貌、晶相结构及准静态、高频磁性能的测试,详细研究了组分、溶胶-凝胶法、RTP退火工艺对铁氧体薄膜性能的影响,获得了优化的工艺条件。实验结果表明:sol-gel技术有效降低了磁膜晶化温度,在溶胶摩尔浓度尽可能高的条件下,制备样品可得到相当于体材的静磁性能; sol-gel法结合RTP工艺可有效地实现磁性薄膜的低温集成工艺,为将磁性薄膜集成到RF微电感打下基础。
    论文对集成磁膜微电感制作涉及的关键工艺进行了研究与开发,其中有磁性薄膜的刻蚀工艺、聚酰亚胺薄膜的制备与刻蚀技术及电镀Cu工艺。在磁膜图形化工艺研究中,比较了多种刻蚀工艺,得到了适用于铁氧体磁膜的刻蚀工艺; 研究了聚酰亚胺
High performance RF integrated micro-inductor is a highly desired passive component for wireless communication applications. To date, lack of miniature IC inductors with low lost and high performance hinders realization of single chip RF SoC. Magnetic materials integrated into micro-inductors can not only heighten the inductance but also reduce the magnetic loss of inductors. It is a promising way to realize the high performance integrated micro-inductors through the integration of magnetic materials into inductors. In this thesis, the magnetic performance and fabrication processes of ferrite thin-films for high frequency have been studied. Based on these studies, the RF planar micro-inductors with ferrite thin-films are first fabricated by using standard Si integrated technology. The experimental results show the integration of magnetic materials into inductors can enhance the whole performance of RF planar micro-inductors effectively.
    Firstly, a physical model of planar inductor is introduced. Based on this model, analytical formulas used for the calculation of Q factor and inductance is obtained, and the analysis of the impact factors, such as inductor size and material parameters, to the inductor L and Q value are further performed. Considering the high resistivity of ferrite, an equivalent circuit model of planar inductor with magnetic thin-films and the formulas for the calculation of L and Q value of the inductors are achieved. Based on the equivalent circuit model, the affection of ferrite magnetic thin-films on the performance of RF planar micro-inductors are investigated systematically, which is the theoretical foundation for realizing the integrated inductor with ferrite thin-films. The simulated results show that high-frequency dielectric constant is the same important as the high-frequency permeability of the magnetic materials that are applied for the RF integrated inductors. The ferrite materials with high permeability and low dielectric constant are suitable to the integrated inductors. Using partial element equivalent circuit method provides an accurate means used for the calculation of metal loss in RF frequency meantime.
    Secondly, the high-frequency properties of NiCuZn, YIG and CoZrO ferrite that fabricated by using a sol-gel auto-combustion process are investigated. The experimental results indicate the materials possess low magnetic loss and dielectric loss. The resonant frequency of NiCuZn and CoZrO ferrite is higher than 1 GHz, which is suitable to RF integrated inductors. Based on the studies, high quality NiCuZn and YIG ferrite thin films
    are fabricated by using sol-gel method and rapid thermal processing. The effects of the film composition and the fabricated processing parameters on the phase identification, the surface morphology and magnetic properties of the ferrite thin-films are investigated systematically. A set of optimal processing parameters is obtained. The experimental results show that sol-gel method can lower the crystallization temperature effectively and the magnetic properties of thin-films are almost identical with the bulk materials when the sol concentration for the fabrication of the thin-films is enough. Using sol-gel method in conjunction with RTP is useful to achieve the low-temperature integrated fabrication of magnetic thin-films, which is the fundament for the realization of the integrated inductor with ferrite thin-films. To realize the designed planar RF micro-inductor with ferrite thin-films, several key processes have been developed, among which are the etching of magnetic thin-films, polyimide layer preparation and dry etching, and copper electroplating. In the course of research, the etching process suitable for ferrite magnetic films is obtained through the comparison of several etching techniques. Meanwhile, we studied the formation and dry etching of polyimide films, which is used as dielectric layer between inductor coils and underpass lead. To fabricate thick copper coils, a selective copper electroplating on seed layer with resist as structural mold is established. The main process steps include seed layer sputtering, lithography of thick photoresist, copper electroplating and seed layer removal. These key processes are compatible with standard Si integrated process. Based on the structure design and technology process, the planar micro-inductor patterns based on magnetic films with the single metal layer or dual metal layers are designed separately. The fabricated processes course compatible with Si integrated process is developed for the planar micro-inductors with magnetic thin-films. The successful planar micro-inductors is fabricated. The process results show the integration of magnetic films into micro-inductors for IC is quite viable. Finally, the high frequency testing of the micro-inductor samples is performed. The effects of PAD style for measuring, the structure and material parameters of inductors on high-frequency performance of inductors are investigated systematically by using the obtained experimental data. Comparison with the simulated results shows the equivalent circuit model can satisfy design accuracy of planar inductor below 5 GHz. The comparison between the samples based on YIG, NiCuZn and CoZrO ferrite magnetic thin-films with
    the referential inductors that don’t include magnetic thin-films is carried out. A typical inductor sample with CoZrO thin-film is presented. The inductance is raised by 25% and the quality factor is raised by 23%, compared with the inductor, which doesn’t include ferrite thin-film.
引文
[1] Yamaguchi M, Suezawa K, Arai K.I, et al. Microfabrication and characteristics of magnetic thin-film inductors in the ultrahigh frequency region. Journal of applied physics, 1999, 85(11): 7919-7922
    [2] Masahiro Yamaguchi, Makoto Baba, Ken-Ichi Arai. Sandwich-Type ferromagnetic RF Integrated inductor. IEEE transactions on microwave theory and techniques, 2001, 49(12): 2331-2335
    [3] Yamaguchi M, Baba M, Suezawa K, et al. Improved RF integrated magnetic thin-film inductors by means of micro slits and surface planarization techniques. IEEE transactions on magnetics, 2000, 36(5): 3495-3498
    [4] Masahiro Yamaguchi, et al. Sandwich-type ferromagnetic RF integrated inductor. IEEE Trans. Microwave Theory and Tech., 2001, MTT-49(12): 2331-2335
    [5] Lin L, Howe R T. Micro electro mechanical Filters for Signal Processing, Journal of Micro electro mechanical System, 1998, 7 (3): 226-231
    [6] 丁勇. 用于射频通信的 MEMS 电感制作工艺及应用研究: [硕士毕业论文]. 北京: 清华大学微电子学研究所, 2002
    [7] Ribas R P, et al, Micromachined microwave planar spiral inductors and transformers, IEEE Trans. MTT, 2000, 48(8): 1326-1335
    [8] Jiang H, et al. On-chip spiral inductors suspended over deep copper-lined cavities, IEEE Trans. MTT, 2000, 48(12): 2415-2423
    [9] Joachim N. Burghartz. New approaches for wireless systems on silicon. Perspectives on radio astronomy---Technologics for large antenna arrays Netherlands foundation for research in astronomy, 1999: 240-243
    [10] Hasnain Lakdawala, Xu Zhu, Hao Luo, et al. Micromachined high Q inductors in a 0.18um copper interconnect low-K dielectric CMOS process. IEEE Journal of Solid-State Circuits, 2002, 37 (3): 394-401
    [11] Jun-Bo Yoon, Bon-Kee Kim, Chul-Hi Han, et al. Surface micromachined solenoid on-Si and on-glass inductors for RF applications. IEEE electron device letters, 1999, 20 (9): 487-489
    [12] Yue C P, et al. On-Chip spiral inductors with patterned ground shields for Si-based RF IC’s. IEEE J. solid-state circuits, May 1998, 33(5): 743-752
    [13] Yim S M, et al. The effects of a ground shield on the characteristics and performance of spiral inductors. IEEE J. solid-state circuits, Feb. 2002, 37(2): 237-244
    [14] Burghartz J N. Progress in RF inductors on silicon – understanding substrate losses. IEDM '98 technical digest., international , Dec. 1998: 523-526
    [15] John W.M.Rogers, Vladislav Levenets, Chris A.Pawlowicz, et al. A completely integrated 2GHz VCO with post processed Cu inductors. IEEE 2001 custom integrated circuits conference, 2001: 575 -578
    [16] Park M, Seonghean Lee, Cheon Soo Kim, et al. The detailed analysis of high Q CMOS-Compatible microwave spiral inductors in silicon technology. IEEE transactions on electron devices, 1998, 45(9): 1953-1958
    [17] Joachim N.Burghartz. On the design of RF spiral inductors on silicon. IEEE transactions on electron devices, 2003, 50(3): 718-729
    [18] J.N.Burghartz, D.C.Edelstein, K.A.Jenkins, et al. Monolithic spiral inductors fabricated using a VLSI Cu-Damascene interconnect technology and low-loss substrates. IEDM, 1996: 99-102
    [19] John Rogers, Liang Tan, Tom Smy, et al. A High Q on-chip Cu inductor inductor post process for Si integrated circuits. IITC, 1999: 239-241
    [20] Yong-Kyu Yoon, Jin-Woo Park, and Mark G. Allen. RF-MEMS based on epoxy-core conductors. Hiltonhead, 2002: 374-375
    [21] Dahlmann G W, et al. MEMS high Q microwave inductors using solder surface tension self-assembly”. Microwave symposium digest, 2001 IEEE MTT-S International, 2001, 1: 329-332
    [22] Zou J, et al. Development of vertical planar coil inductors using plastic deformation magnetic assembly (PDMA). Microwave symposium digest, 2001 IEEE MTT-S international, 2001, 1: 193-196
    [23] Koutsoyannopoulos Y K, et al. Systematic analysis and modeling of integrated inductors and transformers in RF IC design. IEEE Trans. circuits and systems-II: Analog and digital signal processing, Aug. 2000, 47(8): 699-713
    [24] Feng H, et al. Super compact RFIC inductors in 0.18 μm CMOS with copper interconnects. Proc. IEEE MTT-S Int. microwave Symp. Dig., June 2002, 1: 553-556
    [25] Zolfaghari A, et al. Stacked inductors and transformers in CMOS technology. IEEE J. solid-state circuits, Apr. 2001, 36(4): 620-628
    [26] Tang C C, et al. Miniature 3-D inductors in standard CMOS process. IEEE J. solid-state circuits, 2002, 37(4): 471-480
    [27] W. A. Roshen. Effect of finite thickness of magnetic substrate on planar inductors. IEEE Trans. magnetics, Jan. 1990, 26(1): 270-275
    [28] S. F. Mahnoud, et al. Inductance and quality-factor evaluation of planar lumped inductors in a multilayer configuration”. IEEE Trans. microwave theory and Tech., June 1997, MTT-45(6): 918-923
    [29] V.Korenivski. GHz magnetic film inductors. Journal of Magnetism and magnetic, 2000, 215-216: 800-806
    [30] P.C.Dorsey, P.Lubita, D.B.Chrisey, J.S.Horwitz. Magnetic Characterization of Nanocrystalline Ferrite Films Obtained by Soft Solution Processing Methods. J.Appl.Phys, 1996, 79(8): 6338-6342
    [31] Zhang H Y, Gu B X, Zhai H R, et al. Growth of Yttrium Oxide Thin Films from B-Diketonate Precursor. Stat. Sol, 1994, 143(a): 399-402
    [32] Lee D H, Kim H S, Lee J Y, et al. High-rate low-temperature (90oC) deposition of Ni-Zn ferrite films highly permeable in gigahertz range. Solid state commun, 1995, 96(7): 445-451
    [33] M.F.Gilles, R.Coehoon, J.B.A.van zon. Structure and soft magnetic properties of sputter deposited MnZn-ferrite films. J.Appl.Phys., 1998, 83: 6885-6891
    [34] C.M.Williams, D.B.Chrisley, P.Lubitz, et al. The magnetic and structural properties of pulsed laser deposited epitaxial MnZn-ferrite films. J.Appl.Phy., 1994, 75:1676-1679
    [35] J P K Gilb, C A Balanis. Accurate and efficient computation of dielectric losses in multi-level, multiconductor microstrip for CAD applications. IEEE trans. MTT, 1993 41(3): 527-530
    [36] Zheng J, Y C Hahm, V K Tripathi, et al. CAD-Oriented equivalent-circuit modeling of on-chip interconnects on lossy silicon substrate. IEEE trans. MTT, 2000, 48(9):1443-1451
    [37] Joachim N.Burghartz. Status and trends of silicon RF technology. Microelectronics reliability, 2001, 41:13-19
    [38] Yue C P, S S Wong. Physical modeling of spiral inductors on silicon. IEEE Trans. Electron devices, 2000, 47(3):560-567
    [39] Yue C. P., C. Ryu, J. Lau, et al. A physical model for planar spiral inductors on silicon, 1996 INT. Electron Devices Meeting Tech. Dig, 1996: 155-158
    [40] J.E.Post, Optimizing the design of spiral inductors on silicon. IEEE transactions on circuits and systems-Ⅱ:Analog and digital signal processing, Jan. 2000, 47(1): 15-17
    [41] Xiong X Z, V.F.Fusco, Brendan Tonar. Optimized design of spiral inductors for Si RF ICs, IEEE Trans. microwave theory and Tech., June 1997(6): 51-58
    [42] 丁勇, 刘泽文, 刘理天, 李志坚. 微机械平面螺旋电感 Q 值研究与结构优化研究.清华大学学报, 2001, 41(7):106-109
    [43] H.M.Greenhouse. Design of planar rectangular microelectronic inductors. IEEE Transactions on Parts, Hybrids, and Packaging, Jun. 1974, PHP-10 (2): 101-109
    [44] S.S.Mohan, et al. Simple accurate expressions for planar spiral inductances. IEEE journal of solid-state circuits, 1999, 34(10): 1419-1424
    [45] S.Jenei, et al. Physic-based closed-form inductance expression for compact modeling of integrated spiral inductors. IEEE journal of solid-state circuits, 2002, 37(1): 125-132
    [46] Saman Asgaran. New-physic closed-form expressions for compact modeling and design of on-chip spiral inductors. Proc of 14th international conference on microelectronics, 2002: 247-250
    [47] S.S.Mohan. The design, modeling and optimization of on-chip inductor and transformer circuits. PhD Thesis, Stanford University, 1999
    [48] Reinhold Ludwig, Pavel Bretchko 著, 王子宇等译. 射频电路设计——理论与应用. 北京:电子工业出版社, 2003
    [49] Chia-Hsin Wu, Chih-Chun tang, Shen-luan Liu. Analysis of on-chip spiral inductors using the distributed capacitance model. IEEE journal of solid-state circuits, 2003, 38(6): 1040-1044
    [50] Post J E. Optimizing the design of spiral inductors on silicon. IEEE Trans circuits Sys Ⅱ, 2000, 47(1): 15-19
    [51] 李荫远, 李国栋. 铁氧体物理学. 北京: 科学出版社, 1978
    [52] Xiao-Li Tang, Huai-Wu Zhang, Hua Su, et al. An efficient way to expand the operating frequency of the thin film inductor. Journal of magnetismand magnetic materials, 2004, 270: 84-88
    [53] Ruehli A E, Heeb H. Circuit models for three-dimensional geometries including dielectrics. IEEE Trans. Mtt., 1992, 40(7): 1507-1516
    [54] Pinello W, Cangellaris, A C, et al. Hybrid electromagnetic modeling of noise interactions in packaged electronics based on the partial-element equivalent-circuit formulation. IEEE Trans. MTT., 1997, 45(10): 1889-1896
    [55] Coperich K M, Ruehli A E, Cangellaris A. Enhanced skin effect for partial-element equivalent-circuit (PEEE)models.IEEE Trans. MTT., 2000, 48(9): 1435-1442
    [56] Archambeault B, Ruehli A E. Analysis of power/ground-plane EMI decoupling performance using the partial-element eauivalent circuit technique. IEEE transactions on electromagnetic compatibility, 2001, 43(4): 437-445
    [57] W T Weeks, L L Wu, M F Mcallister, et al. Resistive and inductive skin effect in rectangular conductors. IBM J.Res.Develop., 1979, 23(6): 652-660
    [58] J Craninckx and M S J Steyaert. A 1.8-GHz low-phaes-noise CMOS VCO using optimized hollow spiral inductors. IEEE J. solid-state circuits, 1997, 32(5):736-744
    [59] 周志刚, 廖绍彬, 黄勇. 铁氧体磁性材料[M]. 北京: 科学出版社, 1981: 531
    [60] V. Korenivski, J. Magn. GHz magnetic film inductors. Magn. Mate, 2000, 800: 215-216
    [61] Yamaguchi, Y. Miyazawa, K. Kaminishi. Soft magnetic applications in the RF range. J. Magn. Magn. Mate, 2004, 170: 268-273
    [62] S.Ohnuma, H.J.Lee, N.Kobayashi. Co-Zr-O nano-granular thin film with improved high frequency soft magnetic properties. IEEE Transactions on Magnetics, 2001, 37(4): 2251-2256
    [63] Jongryoul Kim, Ki Hyeon Kim, Masdhiro Yamaguchi. Effects of boron contents on magnetic properties of Fe-Co-B thin films. Inyoung Kim, EEE Transactions on Magnetics, 2004, 40(4): 2706-2711
    [64] A.Makino, A.Inoue, T.Masumoto. Nanocrystalline soft magnetic Fe-M-B(M=Zr, Hf, Nb), Fe-M-O(M=Zr, Hf, Rare earth) alloys and their applications. Nanostructured materials, 1999, 12: 825-828
    [65] I.Fergen, K.Seemann, A.v.d Weth, et al. Soft ferromagnetic thin films for high frequency applications. Journal of magnetism and magnetic materials, 2002, 146-151:242-245
    [66] S. Sakka. Science in Sol-Gel method, Agune, Tokyo, 1998, 6
    [67] J. Livage, M.Henry, C.Sanchez. Prog. Solid state Chen, 1988, 18: 259
    [68] Stephen A. Campbell 著, 曾莹等译. 微电子制造科学原理与工程技术. 北京: 电子工业出版社, 2003
    [69] 雅菁, 徐明霞, 徐廷献等. 溶胶-凝胶技术在氧化物薄膜制备方面的应用. 材料工程, 1996, 5: 21-23
    [70] R.C.奥汉德利著. 现代磁性材料原理和应用. 北京: 化学工业出版社, 2004
    [71] 冯慈璋编. 电磁场. 北京: 高等教育出版社, 1983
    [72] V.W.卡姆普曲克, E.勒斯著. 铁氧体磁芯. 北京: 科学出版社, 1986
    [73] Yue Zhenxing, Zhou Ji, Li Longtu, et al. Effects of MnO2 on the electromagnetic properties of NiCuZn ferrites prepared by sol-gel auto-combustion. Journal of magnetism and magnetic materials, 2001, 233: 224-229
    [74] T.Nakamura. Low-temperature sintering of Ni-Zn-Cu ferrite and its permeability spectra. J. Magn. Magn. Mate., 1997, 168:285-291
    [75] Li Bo, Yue Zhenxing, Qi Xiwei, et al. High Mn content NiCuZn ferrite for multiplayer chip inductor application. Mater. Sci. Eng. B., 2003, 99: 252-254
    [76] C.Y.Tsay, Liu K S, Lin T F, et al. Microwave sintering of NiCuZn ferritesand multiplayer chip inductors. J. Magn. Magn., 2000, 209: 189-192
    [77] 何新华, 熊茂仁, 丘其春等. (NixZn0.825-xCu0.170Co0.005)Fe1.90O3.85 铁氧体的电磁性能. J Magn mater devices, 1998, 29(1): 10-15
    [78] K.I.Kobayashi, H.Morinaga, T.Araki, Y.Naka, T.Oomura, J.Magn. Magn. Nater, 1992, 104-107: 413-417
    [79] 周志刚等编著. 铁氧体磁性材料. 北京: 科学出版社, 1981
    [80] E.P.Wohlfarth 主编, 刘增民等译. 铁磁材料—磁有序物质特性手册卷Ⅱ. 北京: 电子工业出版社, 1996
    [81] Fukusako T, Tsutsumi M. Analysis and design of a novel leaky YIG film guided wave optical isolator. J Lightwave technol, 1998, 16(2): 246-250
    [82] Chul Sung Kim, Young Rang Uhm, Sung Baek Kim, et al. Magnetic properties of Y3-xLaxFe5O12 thin films grown by a sol-gel method. Journal of magnetism and magnetic material, 2000, 215-216: 551-553
    [83] 姚学标, 胡国光, 尹萍. 一种优良旋磁特性的钇钆复合榴石铁氧体. 功能材料, 2000, 31(3): 267-268
    [84] Zhao Hongjie, Zhou Ji, Bai Yang, et al. Effect of Bi-substitution on the deilictric properties of polycrystalline yttrium iron garnet. Journal of magnetism and magnetic materials, 2004, 280: 208-213
    [85] Jen-Yan Hsu, Wen-Song Ko, Hon-Dar Shen, et al. Low temperature fired NiCuZn ferrite. IEEE transactions on magnetics, 1994, 30(6): 4875-4877
    [86] C.Y. Tsay, K.S. Liu, Lin T F, Ling I N. Microwave sintering of NiCuZn ferrites and multiplayer chip inductors. J. Magn. Magn. Mate., 2000, 209: 189-192.
    [87] T. Nakamura, “Low-temperature sintering of Ni-Zn-Cu ferrite and its permeability spectra,” J. Magn. Magn. Mate., 1997, 168: 285-291
    [88] 李雯. 三维 MEMS 射频电感的研究: [硕士学位论文]. 北京: 清华大学微电子学研究所, 2003
    [89] 陈忠民. 高 Q 值 RF-MEMS 平面电感的研究: [硕士学位论文]. 北京: 清华大学微电子学研究所, 2004
    [90] 张允诚, 胡如南, 向荣. 电镀手册(上册). 国防工业出版社, 1993: 281-290
    [91] John W.M.Rogers, Vladislav Levenets, Chris A.Pawlowicz, et al. A completely integrated 2GHz VCO with post processed Cu inductors, IEEE 2001 Custom Integrated Circuits Conference, 2001: 575-578
    [92] John W.M.Rogers, Vladislav Levenets, Chris A.Pawlowicz, et al. Post-processed Cu inductors with application to a completely integrated 2GHz VCO. IEEE Transactions on Electron Devices, Jun. 2001, 48(6): 1284-1287
    [93] John Rogers, Liang Tan, Tom Smy, et al. A High Q on-chip Cu inductor inductor post process for Si integrated circuits. IITC, 1999: 239~241
    [94] 郭江华. 倒装芯片凸点及其 UBM 制作工艺的研究: [硕士学位论文]. 北京: 清华大学微电子学研究所, 2001
    [95] 盛振华. 电磁场微波技术与天线[M]. 西安: 西安电子科技大学出版社, 1995: 116-117
    [96] Yorgos K Koutsoyannopoulos, Yannis Papananos. Systematic analysis and modeling of integrated inductors and transformers in RF IC design[J] . IEEE Trans on Circuits and Systems2 Ⅱ:Analog and Digital Signal Processing, 2000, 47(8): 699-713
    [97] Gabriel Jelodin. Analysis, simulation and measurement of spiral inductors for Si RF ICs:a doctoral thesis. Chicago, ITT, 2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700