可乐定对原代培养大鼠皮质神经元氧糖剥夺及兴奋性毒性损伤的改善作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究可乐定(clonidine)(1、3、10μM)对原代培养大鼠皮质神经元氧糖剥夺损伤及NMDA损伤的改善作用及其机制的探讨;研究可乐定对正常大鼠海马CA1区突触可塑性的影响。方法:采用原代培养第八天的大鼠皮质神经元,预给予可乐定(1,3,10μM)通过化学性缺氧、孵育液缺糖的方法建立神经元的OGD损伤模型;通过NMDA浓度为100μM的无镁孵育液孵育12h,建立神经元的NMDA损伤模型。神经元损伤程度采用MTT染色法和检测LDH的释放量来进行评价。可乐定(50,100μg/kg)对正常大鼠海马突触可塑性的影响通过记录大鼠海马Schaffer纤维-CA1通路的长时程增强(LTP)而实现。结果:1可乐定对OGD损伤原代培养大鼠皮质神经元MTT染色及LDH释放量的影响:正常对照组MTT染色细胞百分存活率为(100±32.12)%,LDH的百分释放量为(100±37.51)%。与正常组比较,OGD组MTT染色A570明显减小,显著降低细胞存活率(p<0.01);LDH的释放量则显著升高(p<0.01)。与OGD组比较,可乐定(1,3,10μM)可以明显升高A570,显著提高细胞的百分存活率;LDH的释放量也显著降低。2可乐定对NMDA损伤原代培养大鼠皮质神经元MTT染色及LDH释放量的影响:正常对照组MTT染色细胞百分存活率为(100±19.46)%,LDH的百分释放量为(100±18.46)%。与正常组比较,模型组MTT染色A570明显减小,细胞存活率显著降低(p<0.01);LDH的释放量显著升高(p<0.01)。可乐定(1,3,10μM)可以明显升高A570,显著提高细胞的百分存活率;LDH的释放量也显著降低。3可乐定对正常大鼠海马CA1区突触可塑性的影响:正常生理盐水对照组在给予强直刺激后120min内PS相对幅值稳定在基线值的(163±44.03)%(n=5),即说明LTP诱导成功。可乐定高、低剂量组(50,100μg/kg)均使LTP被明显抑制,其PS幅值在强直刺激后各时间点均显著低于正常组(p<0.01),低、高剂量在强直刺激后120min内PS相对幅值平均分别为(132.74±6.72)%(n=5);(118±11.01)%(n=5);高剂量组强直刺激后120min内PS相对幅值显著低于低剂量组(p<0.05)。结论:1.可乐定(1,3,10μM)对OGD损伤及兴奋毒性损伤的原代培养大鼠皮质神经元具有明显的保护作用,该作用可能与降低谷氨酸受体过度兴奋引起的兴奋性中毒有关。2.可乐定(50,100μg/kg)可以抑制大鼠海马Schaffer纤维-CA1通路的长时程增强(LTP),改变突触可塑性,影响学习记忆功能。
Aims: The present study was carried out to determine the neuroprotective effect of clonidine (1, 3, 10μM) and the related mechanisms on primary cultured rat cortical neurons exposed to oxygen-glucose deprivation (OGD) and N-methyl-D-aspartate (NMDA). In addition, to observe the effect of clonidine (50, 100μg/kg) on the synaptic plasticity in normal rat hippocampal CA1 region is another aim. Methods: The 8th day of primary cultures of cortical neurons was suffered from OGD induced by depriving oxygen and glucose in the solution of incubation for 4h, while the neurons were exposed to Earle’s solution in which Mg2+ is free but containing 100μM NMDA for 12h to induce another kind of injury. Clonidine (1, 3, 10μM) was added 24h before OGD or NMDA injury. Neuronal injury was detected by MTT staining method and measurement of lactate dehydrogenase (LDH) release. The effect of clonidine (50, 100μg/kg) on the synaptic plasticity in normal rat was assessed by recording the changes of LTP after that the high frequencey stimulation (HFS) was given to Schaffer. Results: 1. Effect of clonidine on primary cultured rat cortical neurons exposed to OGD in MTT staining and the release of LDH: in the group of control, the percentage of suvival rate of neurons was (100±32.12) %; and the percent of LDH release was (100±37.51) %. Compared with control, there was a significant reduction in A570 in the group of OGD (p<0.01); meanwhile, there was a notable increase in the release of LDH (p<0.01). In groups given different concentration of clonidine, the percent of survival neurons was much greater than the injured group, and the release of LDH decreased greatly as well. 2. Effect of clonidine on primary cultured rat cortical neurons exposed to NMDA in MTT staining and the release of LDH: in the group of control, the survival rate of neurons was (100±19.46) %, and the percent of LDH release was (100±18.46) %. Compared with control, there was a significant reduction in A570 in the group of NMDA (p<0.01); meanwhile, the percent of LDH release experienced a sharply growth (p<0.01). In groups given different concentration of clonidine, the percent of survival neurons was much greater than the injured group, and the release of LDH decreased greatly as well. 3. The effect of clonidine on the synaptic plasticity in normal rat hippocampal CA1 region: in vehicles, in 120min after HFS, the value of population spike (PS) sustained around (163±44.03) % of the value of baseline, which indicated that LTPs were induced successfully. In rats administered clonidine at the dosages of 50 and 100μg/kg, values of PS were significantly reduced than vehicles (p<0.01), which were (132.74±6.72) %, (118±11.01) % respectively. In adition, within 120min after HFS, the values of PS of rats administered high dose of clonidine were notably lower than that of ones given the low dosage (p<0.05). Conclusion: 1. Clonidine can exert notable neuroprotection against OGD/NMDA-induced injury in primary cultured cortical neurons. The machenism is probably though attenuating excitotoxicity which is mediated by NMDA receptor partly. 2. Clonidine can depress synaptic plasticity of hippocampal CA1 region in normal rat through the model of LTP, and this probably mediated working memory.
引文
1.柳挺,尹金鹏.脑缺血损伤的病理生理机制.包头医学, 2008, 32: 216-218.
    2.闻名,蔡定芳.急性脑缺血损伤的微循环障碍机制.国外医学脑血管疾病分册, 2004, 12: 289-291.
    3. Morrison JH, Foote SL, O'Connor D, et al. Laminar, tangential and regional organization of the noradrenergic innervation of monkey cortex: dopamine-beta-hydroxylase immunohistochemistry. Brain Res Bull, 1982, 9: 309-319.
    4. Porrino LJ., Goldman-Rakic PS. Brainstem innervation of prefrontal and anterior cingulate cortex in the rhesus monkey revealed by retrograde transport of HRP. J Comp Neurol, 1982, 205: 63?76.
    5. Ramos BP, Arnsten AFT. Adrenergic pharmacology and cognition: Focus on theprefrontal cortex. Pharmacology & Therapeutics, 2007, 113: 523-536.
    6. Ramos BP, Stark D, Verduzco L, et al. Alpha2A-adrenoceptor stimulation improves prefrontal cortical regulation of behavior through inhibition of cAMP signaling in aging animals. Learn Mem, 2006, 13: 770?776.
    7. Goldman-Rakic, PS, Lidow MS, et al. Overlap of dopaminergic, adrenergic, and serotonergic receptors and complementarity of their subtypes in primate prefrontal cortex. J Neurosci, 1990, 10: 2125?2138.
    8. Birnbaum SB, Yuan P, Bloom A, et al. Protein kinase C overactivity impairs prefrontal cortical regulation of working memory. Science, 2004, 306: 882?884.
    9. Zhang HT, Huang Y, Mishler K, et al. Interaction between the antidepressant- like behavioral effects of beta adrenergic agonists and the cyclic AMP PDE inhibitor rolipram in rats. Psychopharmacology (Berl), 2005, 182: 104?115.
    10.杨宝峰,苏定冯等.药理学(第六版), 2005, 250.
    11.李亚文,罗爱林.可乐定的临床研究进展.医药导报, 2006, 25(9): 939-941.
    12. Maier C, Steinberg GK, Sun GH, et al. Neuroprotection by theα2-adrenoceptor agonist dexmedetomidine in a focal model of cerebral ischemia. Anesthesiology, 1993, 79: 306–312.
    13. Dean JM, George S, Naylor AS, et al. Partial neuroprotection with low-dose infusion of the a2-adrenergic receptor agonist clonidine after severe hypoxia in preterm fetal sheep. Neuropharmacology, 2008, 55: 166-174.
    14. Jolkkonen J, Puurunen K, Koistinaho J, et al. Neuroprotection by thα2-adrenocep- tor agonist, dexmedetomidine, in rat focal cerebral ischemia. Eur J Pharmacol, 1999, 372: 31–36.
    15. Mondaca M, Hernandez A, Perez H, et al.α2-Adrenoceptor modulation of long-term potentiation elicited in vivo in rat occipital cortex. Brain Research, 2004, 1021: 292-296.
    16. Ji XH, Ji JZ, Zhang H, et al. Stimulation of alpha2-adrenoceptors suppressesexcitatory synaptic transmission in the media prefrontal cortex of rat. Neuropsychopharmacology, 2008, 33(9): 2263-71.
    
    1. Cui K, Luo X, Xu K, et al. Role of oxidative stress in neurodegeneration: recent developments in assay methods for oxidative stress and nutraceutical antioxidants. Prog Neuropsychopharmacol Biol Psychiatry, 2004, 28(5): 771-799.
    2.王亚琴,谭志巍,官鹏,等.大鼠皮层神经细胞糖氧剥离体外模型的建立及细胞形态学观察. Sichuan Journal of Anatomy, 2007, 15: 2-5.
    3. Zhang Y. Clonidine preconditioning decreases infarct size and improves neurological outcome from transient forebrain ischemia in the rat. Neuroscience, 2004, 125: 625-631.
    4. Dean JM, George S, Naylor AS, et al. Partial neuroprotection with low-dose infusion of theα2-adrenergic receptor agonist clonidine after severe hypoxia in preterm fetal sheep. Neuropharmacology, 2008, 55: 166-174.
    5. Cankar K, Finderle Z, Strucl M The effect ofα-adrenoceptor agonists and L-NM- MAon cutaneous postocclusive reactive hyperemia. Microvascular Researsh, 2009, 77: 198-203.
    6.王飞,王运良,景玉宏,等.藏药珠穆根散对脑缺血大鼠海马去甲肾上腺素含量的影响.河南实用神经疾病杂志, 2002, 5(4): 8-10.
    7.高原,姬汴生,巴玉峰,等.苯海索对急性脑缺血再灌注大鼠脑组织单胺类递质含量的影响.中国临床康复, 2005, 9(37): 32-34.
    8. Longa EZ,Weinstein PR, Carlson S, et a1. Reversible middle cerebral artery occlus- ion without craniectory in rats. Stroke, 1989, 20(1): 84-91.
    9.刘娜,左萍萍,周帆,等.连二亚硫酸钠致PC12和NG108—15细胞拟缺血损伤研究.中国药理学通报, 1998, 14(6): 525-529.
    10. Xu SM, Wang PY, Ma HY. Preparation of hypoxic surroundings with sodium dihionite for cell culture. Acta Academiae Medicinae Militaris Tertiae, 2005, 27(5): 359-360.
    11. Engelhard K, Werner C, Kaspar S, et al. Effect of theα2-Agonist Dexmedetomi- dine on Cerebral Neurotransmitter Concentrations during Cerebral Ischemia in Rats. Anesthesiology, 2002, 96: 450-457.
    12. Choi DW. Calcium: still center-stage in hypoxic–ischaemic neuronal death. Trends Neurosci, 1995, 18: 58–60.
    13. Engelhard K, Werner C, Eberspa¨cher E, et al. The Effect of theα2-Agonist Dex- medetomidine and the N-Methyl-D-Aspartate Antagonist S(+)-Ketamine on the expression of Apoptosis-Regulating Proteins After Incomplete Cerebral Ischemia and Reperfusion in Rats. Anesth Analg, 2003, 96: 524–531.
    1. Wang XQ, Peng YP, Lu JH, et al. Neuroprotection of interleukin-6 against NMDA attack and its signal transduction by JAK and MAPK. Neuroscience Letters, 2009, 450(2): 122-126.
    2. Muir KW. New experimental and clinical data on the efficacy of pharmacological magnesium infusions in cerebral infarcts. Magnes Res, 1998, 11(1): 43-56.
    3.周国胜,张新中,周文科.镁离子对实验性脑损伤人鼠的脑保护作用.中国临床康复, 2004, 8(28): 1602-1603.
    4. Hagihara M, Togari A, Matsumoto S, et a1.Dietary calcium deprivation increased the levels of plasma catecholamines and catecholamine-synthesizing enzymes of adrenal glands in rats. Biochem Pharmacol,1990,39(7):1229-1231.
    5.郁毅刚,蔡颖谦,王文浩,等. MgSO4对神经元NMDA兴奋毒性损伤的剂量依赖保护作用.临床和实验医学杂志, 2008, 7(10): 6-9.
    6.林也容,郁毅刚. Mg2+对胎鼠皮层神经元NMDA兴奋毒性损伤模型的保护作用.临床军医杂志, 2006, 34(6): 661-663.
    7. Lipton SA, Rosenberg PA. Excitatory amino acides as a final common pathway for neurologic disorders. N Engl J Med, 1994, 330(9): 613-622.
    8.鲁江,谭婷,刘光金.脑缺血损伤机制研究.延安大学学报(医学科学版), 2004, 2(2): 58-59.
    9. Ma DQ, Rajakumaraswamy N, Maze M.α2-Adrenoceptor agonists: shedding light on neuroprotection? British Medical Bulletin, 2005, 71: 77-92.
    10. Zhang Y. Clonidine preconditioning decreases infarct size and improves neurological outcome from transient forebrain ischemia in the rat. Neuroscience, 2004, 125: 625-631.
    11. Dean JM, George S, Naylor AS, et al. Partial neuroprotection with low-dose infusion of theα2-adrenergic receptor agonist clonidine after severe hypoxia in preterm fetal sheep. Neuropharmacology, 2008, 55: 166-174.
    12. Halonen T, Kotti T, Tuunanen J, et al.α2-Adrenoceptor agonist, dexmedetomidine, protects against kainic acid-induced convulsions and neuronal damage. Brain Res, 1995, 693: 217–224.
    13. Laudenbach V, Mantz J, Lagercrantz H, et al. Effects ofα2-Adrenoceptor Agonists on Perinatal Excitotoxic Brain Injury:Comparison of Clonidine and Dexmedetomidine. Anesthesiology, 2002, 96: 134-41.
    14. Talke P, Bickler PE. Effects of dexmedetomidine on hypoxia-evoked glutamate release and glutamate receptor activity in hippocampal slices. Anesthesiology, 1996, 85: 551–557.
    1. Gibbs ME, Summers RJ. Role of adrenoceptor subtypes in memory consolidation. Prog. Neurobiol, 1995, 7:1411-1424.
    2. Hopkins WF, Johnston D. Noradrenergic enhancement of long-term potentiationat mossy fiber synapses in hippocampus. J. Neurophysiol, 1988, 59: 667-687.
    3. Bunsey MD, Strupp BJ. Specific effects of idazoxan in a distraction task: evidence that endogenous norepinephrine plays a role in selective attention in rats. Behav. Neurosci, 1995, 109: 903-911.
    4. Devauges V, Sara SJ. Activation of the noradrenergic system facilitates an attentional shift in the rat. Behav. Brain Res., 1990,19-28.
    5. Haapalinna A, Sirvio R, Lammintausta R. Facilitation of cognitive functions by a specificα2-adrenoceptor antagonist, atipamezole. Eur.J. Pharmacol., 1998, 347: 29–40.
    6. Haapalinna A, MacDonald E, Viitamaa T, et al. Comparison of the effects of acute and subchronic administration of atipamezole on reaction to novelty and active avoidance learning in rats. Naunyn-Schmiedeberg’s Arch. Pharmacol, 1999, 359: 194–203.
    7. Mondaca M, Hernandez A, Perez Hernan, et al.α2-Adrenoceptor modulation of long-term potentiation elicited in vivo in rat occipital cortex. Brain Research, 2004, 1021: 292-296.
    8.韩太真.突触可塑性与长时程增强现象的研究进展.西安交通大学学报(医学版), 2005, 26(4): 305-308.
    9.沈方,张晓明,朱晞.学习记忆与突触可塑性及相关物质的研究.解剖学杂志, 2004, 27(5): 568-571.
    10. Martin SJ, MorrisRG. Cortical plasticity: it’s all the range. Curt Biol,2001,l1(2):57-59.
    11. Robbins TW. Chemical neuromodulation of frontal-executive functions in humans and other animals. Exp Brain Res, 2000, 133:130–138.
    12. Robbins TW. Chemistry of the mind: neurochemical modulation of prefrontal cortical function. J Comp Neurol, 2005, 493:140–146.
    13. Arnsten A, Robbins TW. Neurochemical modulation of prefrontal cortical function in humans and animals. In: Stuss DT, Knight R (eds) Principles of frontal lobe function. Oxford University Press, USA, 2002, 51–84.
    14. Arnsten AF, Li BM. Neurobiology of executive functions: catecholamine influences on prefrontal cortical functions. Biol Psychiatry, 2005, 57:1377–1384.
    15. Kable J, Murrin C, Bylund DB. In vivo gene modification elucidates subtype-specific functions ofα2-adrenergic receptors. J. Pharmacol. Exp. Ther. 2000, 293: 1–7.
    16. Saunders C, Limbird LE. Localization and trafficking ofα2-adrenergic receptor subtypes in cells and tissues. Pharmacol. Ther. 1999, 84: 193–205.
    17. Samuel R, Chamberlain UM, Andrew D, et al. Noradrenergic modulation of working memory and emotional memory in humans. Psychopharmacology, 2006, 188: 397-407.
    18. DeBock F, Kurz J, Azad SC, et al. Alpha2-adrenoreceptor activation inhibits LTP and LTD in the basolateral amygdala: involvement of Gi/o-protein-mediated modulation of Ca2+-channels and inwardly rectifying K+-channels in LTD. Eur J Neurosci, 2003, 17(7): 1411-1424.
    19. Mondaca M, Herna′ndez A, Pe′rez H, et al. a2-Adrenoceptor modulation of long-term potentiation elicited in vivo in rat occipital cortex. Brain research, 2004, 1021: 292-296.
    1.赵丹阳,吴伟康.氧化应激在脑缺血损伤中的作用机制.中国病理生理杂志, 2004,20(4): 679-682.
    2. Murakami K, Kondo T, et al. Mitochondrial susceptibility to oxidative stress exacerbates cerebral infacrtion that follows permanent focal cerebral ischemia in mutant mice with manganese superoxide dismutase deficiency. Journal of Neuroscience, 1998, 18(1): 205-213.
    3. Lewen A, Matz P, Chan PH. Free radical pathways in CNS injury. Journal of Neurotrauma, 2000, 17(10): 871-890.
    4.颜建云,吴伟康.脑缺血损伤的分子机制研究进展.中国病理生理杂志2003, 19(3): 423-426.
    5. Eisenach JC, Dekoock M, Klimscha W. Alpha-2 adrenergic agonists for regional anesthesia: a clinical review of clonidine (1984–1995). Anesthesiology, 1996, 86: 655–674.
    6. Kamibayashi T, Maze M. Clinical uses ofα2-adrenergic agonists. Anesthesiology, 2000, 93: 1345–1349.
    7. Zhang Y. Clonidine preconditioning decreases infarct size and improves neurological outcome from transient forebrain ischemia in the rat. Neuroscience, 2004, 125: 625-631.
    8. Ma DQ, Rajakumaraswamy N, Maze M.α2-Adrenoceptor agonists: shedding light on neuroprotection? British Medical Bulletin, 2005, 71: 77-92.
    9. Werner C, Hoffman WE, Thomas C, et al. Ganglionic blockade improves neurologic outcome from incomplete ischemia in rats: partial reversal by exogenous catecholamines. Anesthesiology, 1990, 73: 923-929.
    10. Globus MY, Busto R, Dietrich WD, et al. Intra-ischemic extracellular release of dopamine and glutmate is associated with striatal vulnerablility to ischemia. Neurosci Lett, 1988, 91: 36-40.
    11. Hoffman WE, Cheng MA, Thomas C, et al. Clonidine decrease plasma catecholamines and improves outcome from incomplete ischemia in the rat. Anesth Analg, 1991, 73: 460-464.
    12. Hoffman WE, Kochs E, Werner C, et al. Dexmedetomidine improves neurologic outcome from incomplete ischemia in the rat: reversal by theα2-adrenergic antagonist atipamezole. Anesthesiology, 1991, 75: 328–332.
    13. Maier C, Steinberg GK, Sun GH, et al. Neuroprotection by theα2-adrenoceptor agonist dexmedetomidine in a focal model of cerebral ischemia. Anesthesiology, 1993, 79: 306–312.
    14. Kuhmonen J, Pokorny J, Miettinen R, et al. Neuroprotective effects of dexmedetomidine in the gerbil hippocampus after transient global ischemia. Anesthesiology, 1997, 87: 371–377.
    15. Karlsson BR, Loberg EM, Steen PA. Dexmedetomidine, a potentα2-agonist, do- es not affect neuronal damage following severe forebrain ischaemia in the rat. Eur. J. Anaesthesiol, 1995, 12: 281–285.
    16. Halonen T, Kotti T, Tuunanen J, et al.α2-Adrenoceptor agonist, dexmedetomidine, protects against kainic acid-induced convulsions and neuronal damage. Brain Res, 693: 217–224.
    17. Dean JM, George S, Naylor AS, et al. Partial neuroprotection with low-dose infusion of the a2-adrenergic receptor agonist clonidine after severe hypoxia in preterm fetal sheep. Neuropharmacology, 2008, 55: 166-174.
    18. Jolkkonen J, Puurunen K, Koistinaho J, et al. Neuroprotection by theα2-adrenoceptor agonist, dexmedetomidine, in rat focal cerebral ischemia. Eur J Pharmacol, 1999, 372: 31–36.
    19. Seidler FJ, Slotkin TA. Adrenomedullary function in the neonatal rat: responses to acute hypoxia. J Physiol, 1985, 358: 116.
    20. Yuan SZ, Runold M, Hagberg H, et al. Hypoxic–ischaemic brain damage in immature rats: effects of adrenoceptor modulation. Eur J Pediatr Neurol, 2001, 5: 29–35.
    21. Laudenbach V, Mantz J, Lagercrantz H, et al. Effects ofα2-adrenoceptor agonists on perinatal excitotoxic brain injury: comparison of clonidine and dexmedetomidine. Anesthesiology, 2002, 96: 134–141.
    22. Dean JM, Gunn AJ, Wassink G, et al. Endogenousα2-adrenergic receptor-mediated neuroprotection after sever hypoxia in preterm fetal sheep. Neuroscience, 2006, 142: 615-628.
    23. Shibata S, Kodama K, Tominaga K, et al. Assessment of the role of adrenoceptor function in ischemia-induced impairment of 2-deoxyglucose uptake and CA1 field potential in rat hippocampal slices. Eur J Pharmacol, 1992, 221: 255–260.
    24. Ma DQ, Hossain M, Rajakumaraswamy N, et al. Dexmedetomidine produces its neuroprotective effect via theα2A-adrenoceptor subtype. European Journal of Pharmacology, 2004, 502: 87–97.
    25. Nagai H, Yoshioka H, Ohmae T, et al. The effects of hyperglycemia on ischemic cell change and reactive neuronal change in neonatal rat brain following transient forebrain ischemia. Brain & Development, 2008, 30: 137-145.
    26. Krugers HJ, Kemper RHA, Korf J, et al. Metyrapone reduces rat brain damage and seizures after hypoxia-ischemia: an effect independent of modulation of plasma corticosterone levels? J Cereb Blood Flow Metab, 1998, 18: 386-390.
    27. Group THACAS. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med, 2002, 346: 549–556.
    28. Maiese K, Pek L, Berger SB, et al. Reduction in focal cerebral ischemia by agents acting at imidazole receptors. J Cereb Blood Flow Metab, 1992, 12: 53–63.
    29. Vizi ES. Role of high-affinity receptors and membrane transporters in nonsynap- tic communication and drug action in the central nervous system. Pharmacol Rev, 2000, 52: 63–89.
    30. Maze M, Tranquilli DVM.α2-adrenoceptor agonists: defining the role in clinical anesthesia. Anesthesiology, 1991, 74: 581–605.
    31. Khan ZP, Ferguson CN, Jones RM. Alpha-2 and imidazoline receptor agonists. Their pharmacology and therapeutic role. Anaesthesia, 1999, 54: 146–165.
    32. Miyazaki M, Nazarali AJ, Boisvert DP, et al. Inhibition of ischemia- induc- ed brain catecholamine alterations by clonidine. Brain Res Bull, 1989, 22: 207–211.
    33. Matsumoto M, Zornow MH, Rabin BC, et al. Theα2-adrenergic agonist, dexmede- tomidine, selectively attenuates ischemia-induced increases in striatal norepinephrine concentrations. Brain Res, 1993, 627: 325–329.
    34. Engelhard K, Werner C, Kaspar S, et al. Effect of theα2-agonist dexmedetomidine on cerebral neurotransmitter concentrations during cerebral ischemia in rats. Anesthe- siology, 2002, 96: 450–457.
    35. Nellgard BMG, Miura Y, Mackensen B, et al. Effect of intracerebral norepinephrine depletion on outcome from severe forebrain ischemia in the rat. Brain Res, 1999, 262–269.
    36. Sandoval KE, Witt KA. Blood-brain barrier tight junction permeability and ischemic stroke. Neurobiology of Disease, 2008, 32: 200-219.
    37. Choi DW. Calcium: still center-stage in hypoxic–ischaemic neuronal death. Trends Neurosci, 1995, 18: 58–60
    38. Milusheva EA, Baranyi M. Implication of ionotropic glutamate receptors in the release of noradrenaline in hippocampal CA1 and CA3 subregions under oxygen and glucose deprivation. Neurochem Int, 2003, 43: 543–550.
    39. Talke P, Bickler PE. Effects of dexmedetomidine on hypoxia-evoked glutamate release and glutamate receptor activity in hippocampal slices. Anesthesiology, 1996, 85: 551–557.
    40. McCarthy KD, Salm AK. Pharmacologically distinct subsets of astroglia can be identified by their calcium response to neuro-ligands. Neurosci, 1991, 41: 325– 333.
    41. Zhao Z, Code WE, Hertz L. Dexmedetomidine, a potent and highly specificα2 agonist, evokes cytosolic calcium surge in astrocytes but not in neurons. Neurop- harmacology, 1992, 31: 1077–1079
    42. Engelhard K, Werner C, Eberspacher E, et al. The effect ofα2-agonist dexmedetomidine and the N-methyl-D-aspartate antagonist S(+)-ketamine on the expression of apoptosis-regulating proteins after incomplete cerebral ischemia and reperfusion in rats. Anesth Analg, 2003, 96: 524–531.
    43. Wittner M, Sivenius J, Koistinaho J.α2-adrenoceptor agonist, dexmedetomidine, alters acute gene expression after global ischemia in gerbils. Neurosci Lett, 1997, 232: 75–78.
    44. Mizuki T, Kobasyashi H, Ueno S, et al. Differential changes in alpha- and beta-adrenoceptors in the cerebral cortex and hippocampus of the Mongolian gerbil after unilateral brain ischemia. Stroke, 1995, 26: 2333–2336.
    45. Huang R, Chen Y, Yu ACH, et al. Dexmedetomidine-induced stimulation of glutamine oxidation in astrocytes: a possible mechanism for its neuroprotective activity. J Cereb Blood Flow Metab, 2000, 20: 895–898.
    46. Bickler PE, Hansen BM.α2-Adrenergic agonists reduce glutamate release and glutamate receptor mediated calcium changes in hippocampal slices during hypoxia. Neuropharmacology, 1996, 35: 679–687.
    47. Chen Y, Hertz L. Noradrenaline effects on pyruvate decarboxylation: Correlation with calcium signaling. J Neurosci Res, 1999, 58: 599–606.
    48. Hertz L, Peng L. Effects of monoamine transmitters on neurons and astrocytes: correlation between energy metabolism and intracellular messengers. Prog Brain Res, 1992, 94: 283–301.
    49. Weinberger R, Neives-Rosa J. Monoamine neurotransmitters in the evolution of infarction in ischemic striatum: morphologic correlation. J Neural Trans, 1988,71: 133–142.
    50. Lee A, Rosin DL, Van Bockstaele EJ. Alpha2A-adrenergic receptors in the rat nucleus locus ceruleus: Subcellular localization in catecholaminergic dendrites, astrocytes and presynaptic axon terminals. Brain Res, 1998, 795: 157–69.
    51. MacDonald, E, Kobilka, BK, Scheinin, M. Gene targeting-homing in on alpha 2-adrenoceptor-subtype function. Trends Pharmacol Sci, 1997, 18: 211?219.
    52. Hunter JC, Fontana DJ, Hedley LR, et al. Assessment of the role of alpha2-adrenoceptor subtypes in the antinociceptive, sedative and hypothermic action of dexmedetomidine in transgenic mice. Br J Pharmacol, 1997, 122:1339–1344.
    53. MacMillan LB, Hein L, Smith MS, et al. Central hypotensive effects of the alpha- 2A-adrenergic receptor subtype. Science, 1996, 273: 801–803.
    54. Paris A, Mantz J, Tonner PH, et al. The effects of dexmedetomidine on perinatal excitotoxic brain injury are mediated by theα2-adrenoceptor subtype. Anesth Analg, 2006, 102: 456-461.
    55. Sallinen J, Link RE, Haapalinna A, et al. Genetic alteration of the alpha2C–adrenoceptor expression in mice: influence on locomotor, hypothermic, and neurochemical effects of dexmedetomidine, a subtype-nonselective alpha 2-adrenoceptor agonist. Mol Pharmacol, 1997, 51: 36–46.
    56. Rama P, Linnankoski I, Tanila H, et al. Medetomidine, atipamezole and guanfacine in delayed response performance of aged monkeys. Pharmacol Biochem Behav, 1996, 54: 1-7.
    57. Avery RA, Franowicz JS, Studholme C, et al. The alpha2A-adenoceptor agonist, guanfacine, increases regional cerebral blood flow in dorsolateral prefrontal cortex of monkeys performing a spatial working memory task. Neuropsychopharmacology, 2000,23: 240?249.
    58. Paris A, Ohlendorf C, Marquardt M, et al. Effect of meperidine on thermoregula- tion in mice: involvement of alpha2-adrenoceptors. Anesth Analg, 2005, 100: 102–106.
    59. Tanila H, Mustonen K, Sallinen J, et al. Role of alpha-2C-adrenoceptor subtype in spatial working memory as revealed by mice with targeted disruption of the alpha2C-adrenoceptor gene. Eur J Neurosci, 1999, 11: 599?603.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700