辽宁碱蓬BADH启动子盐诱导功能元件鉴定及转录因子分离
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
BADH(甜菜碱醛脱氢酶)是合成甜菜碱的关键酶,BADH基因受盐诱导表达。本实验室的前期工作发现辽宁碱蓬(Suaeda liaotungensis K.)BADH启动子-300~+62 bp区段具有启动子活性,是一个强的盐诱导表达启动子。本研究通过生物信息学分析找出BADH启动子中的盐诱导功能元件,通过凝胶阻滞分析对BADH启动子中的盐诱导功能元件进行鉴定,通过酵母单杂交实验,分离与BADH启动子中的盐诱导功能元件相互作用的转录因子。本研究旨在寻找该区段启动子中盐诱导功能元件及与其相互作用的转录因子,为盐诱导启动子功能元件及转录因子研究提供可靠的参考和依据。具体工作及结果如下:
     1、利用Genomatix软件,对BADH启动子-300~+62 bp区段进行生物信息学分析,得到约200个具有不同功能的元件,从中挑选7个可能的抗盐功能元件:PB1(GT-1元件)、PB2(MYB元件)、PB3(NAC元件)、PB4(WRKY元件)、PB5(MYB元件)、PB6(MYB元件)、PB7(G-box/MYC/ABA元件)。
     2、分别以这7个元件为核心序列设计探针,与辽宁碱蓬叶片核蛋白结合,进行凝胶阻滞分析,发现有5条探针具有阻滞信号,初步认为PB1(GT-1元件)、PB2(MYB元件)、PB3(NAC元件)、PB6(MYB元件)、PB7(G-box/MYC/ABA元件)是BADH启动子中的盐诱导功能元件。
     3、从所获得的5个盐诱导功能元件中选取PB3(NAC元件)作为诱饵,将该元件的4串联体构建到酵母菌株中,合成辽宁碱蓬叶片cDNA,经酵母单杂交实验,筛选出阳性克隆,经测序获得了6条序列,序列比对分析发现,其中两条序列是干旱及冷诱导相关基因,可能是与PB3相互作用的转录因子。
Betaine aldehyde dehydrogenase (BADH) is the key enzyme for betaine synthesis, itsexpression is induced by salt. Our preliminary work found that BADH promoter fragment(-300bp to+62bp) from Suaeda liaotungensis K. possesses all the essential cis-acting elementsand is sufficient for NaCl induction. The purpose of this study is to find salt-inducedcis-acting elements in BADH promoter by bioinformatics analysis, to identify salt-inducedcis-acting elements by EMSA, to isolate the transcription factors interacting with thesalt-induced cis-acting elements by yeast one-hybrid system. This study will provide areliable reference and research basis for the study of salt induction promoter elements andtranscription factors. Specific work and results are as follows:
     1. BADH promoter fragment (-300bp to+62bp) was analyzed using Genomatix software, andabout 200 different elements were obtained. From these elements, we selected sevenpossible salt-induced cis-acting elements. They are named as PB1 (GT-1), PB2 (MYB),PB3 (NAC), PB4 (WRKY), PB5 (MYB ), PB6 (MYB), PB7 (G-box/MYC/ABA).
     2. 7 probes were designed using the selected cis-acting elements as the core sequence. Theinteraction between probes and nuclear proteins from Suaeda liaotungensis leaves wasdetected by EMSA, Blocking signals were found in 7 probes. It is concluded that PB1(GT-1 ), PB2 (MYB), PB3 (NAC), PB6 (MYB), PB7 (G-box/MYC/ABA) may be thesalt-induced cis-acting elements of BADH promoter.
     3. Using PB3 (NAC) as bait, 2 transcription factors were isolated from the cDNA library ofSuaeda liaotungensis by yeast one-hybrid experiments. They are drought/cold induciblegenes. They may be the transcription factors interacting with PB3.
引文
[1] Lutcke HA,Chow C,Mickel FS.Selection of AUG in itiation codons differs inplants andanimals.Embo J,1987,6:43-48.
    [2] Lagrange T,Gauvin S,Mache R,et al.S2F,a leaf-specific trans-actingfactor,binds to a novel cis-acting element and differentially activates theRPL21 gene.Plant cell,1997,9:1469-1479.
    [3]李一琨,王金发.高等植物启动子研究进展.植物学通报,1998,15(增):l-6.
    [4]赵寿元.英汉遗传工程词典(第二版).上海:复旦大学出版社,1999
    [5]朱玉贤,李毅.现代分子生物学.高等教育出版社,1997
    [6]李明,陆长德.真核蛋白编码基因核心启动子结构研究进展.生命的化学,1995,15(4): 5-8.
    [7]余叔文,汤章城.植物生理与分子生物学(第二版).北京:科学出版社,1999.
    [8] Torigoe T,Izumi H.DNA topoisomeraseПpoison TAS-103 transactivates GC-boxdependent transcription via acetylation of Sp1.J Biol chem,2005,280(2):1179-1185.
    [9] Jaiswal AS,Balusu R.7,12-Dimethylbenzanthracene-dependent transcriptionalregulation of adenomatous polyposis coli(APC)gene expression in normalbreast epithelial cells is mediated by GC-box binding protein Sp3.Carcinogenesis,2006,27(2):252-261.
    [10] Agius F,Amaya I,Botella MA,et al.Functional analysis of homologous andHeterologous promoters in strawberry fruits using transient expression.JExperim Bot,2005,56(409):37-46.
    [11] Barros M D,Czarnecka E,Gurley W B.Mutational analysis of a plant heat shockelement.Plant Mol Biol,1992,19:665-675.
    [12] Winicov I.,Valliyodan B.,Xue L.,Hoober J.K.The MsPRP2 promoter enablesstrong heterologous gene expression in a root-specific manner and isenhanced by overexpression of Alfin 1.Planta 2004,219:925-935.
    [13] Kasuga M, Liu Q, Miura S, et al. Improving plant drought, salt and freezingtolerance by gene transfer of a single stress-inducible transcriptionfactor.Nat Biotechnol, 1999, 17:287–291.
    [14] Mundy J, Chua N H. Abscisic acid and water-stress induce the expressionof a novel rice gene. EMBO J, 1988, 7: 2275–2287.
    [15] Aryadeep R C, Chaitali R, Dibyendu N, et al. Transgenic tobacco plantsoverexpressing the heterologouslea gene Rab16A from rice during high saltand water deficitdisplay enhanced tolerance to salinity stress. Plant CellRep,2007,26:1839-1859.
    [16] Christoph DS, Viviane P, Mauro D,et al. The Eukaryotic promoter databaseEPD: the impact of in silico primer extension. Nucleic Acids Res,2004,32: 82-85.
    [17] Kolchanov NA, Ignatieva EV, Ananko EA, et al.Transcription regulatoryregions database(TRRD): its status in 2002. Nucleic Acids Res,2002, 30(1):312-317.
    [18] Matys V, Fricke E, Geffers R, et al. TRANSFAC: transcriptional regulation,from patterns to profiles. Nucleic Acids Res,2003,31(1): 374-378.
    [19] Higo K, Ugawa Y, Iwamoto M, et al. Plant cis-acting regulatory DNA elements(PLACE) database: Nucleic Acids Res,1999,27(1): 297-300.
    [20] Stephane R, Patrice D, Marc VM, et al. PlantCARE: A plant cis-actingregulatory element database.Nucleic Acids Res,1999, 27(1): 295-296.
    [21]杨英军,周鹏.番木瓜proteinase omega基因启动子的克隆及功能初步研究.云南植物研究,2005,27(5):545-551.
    [22] Zhang Y,Yin H,Li QL, et al.Functional analysis of BADH gene promoter fromSuaeda liaotungensis K.Plant Cell Rep,2008,27(3): 585-592.
    [23] Carey M,Stephen TS.Transcriptional Regulation in Eukaryotes Concepts,Strategies,and Techniques.New York:Cold Laboratory Press,2001.
    [24] Yamaguchi-Shinozaki K,Shinozaki K.A novel cis-acting element in allArabidopsis gene is involved in responsiveness to drought,low-temperature,or high-salt stress.Plant Cell,1994,6:251-264.
    [25] Nazmul HB,Akira H,Nana Y, et al.Regulation of betaine synthesis by precursorsupply and choline monooxygenase expression in Amaranthus tricolor. J ExpBot,2007,58(15-16):4203-4212.
    [26] Chen M,Xu ZS,Xia LQ, et al.Cold-induced modulation and functional analysesof the DRE-binding transcription factor gene, GmDREB3, in soybean (Glycinemax L.).J Exp Bot,2009,60(1):121-135.
    [27] Sun QH,Gao F,Zhao L,Li KP, et al.Identification of a new 130bp cis-actingelement in the TsVP1 promoter involved in the salt stress response fromThellungiella halophila.BMC Plant Biol,2010,10:90.
    [28] Yin T,Wu HY,Zhang SL, et al.Two negative cis-regulatory regions involvedin fruit-specific promoter activity from watermelon(Citrullus vulgarisS.). J Exp Bot,2009,60(1):169-185.
    [29] Park HC,Kim ML,Kang YH, et al.Pathogen-and NaCI-induced expression of theSCaM-4 promoter is mediated in part by a GT-1 box that interacts with aGT-I-like transcription factor. Plant Physiol,2004,135(4):2150-2161.
    [30] Shen QS,Zhang PN,Tuan-Hua David Ho. Modular nature of Abscisic Acid (ABA)response complexes:composite promoter units that are necessary andsufficient for ABA induction of gene expression in Barley.PlantCell,1996,8:1107-1119.
    [31] Yang YT,Yu YL,Yang GD, et al.Tissue-specific expression of the PNZIPPromoter is mediated by combinatorial interaction of differentcis-elements and a novel transcriptional factor.Nucleic Acid research,2009,37(8):2630-2644.
    [32]夏江东,程在全,吴渝生等.高等植物启动子功能和结构研究进展,云南农业大学学报(自然科学版),2006,21(1):7-14.
    [33] Rouster J,Leah R,Mundy J, et al.Identification of a methyl jasmonateresponsiveregion in the promoter of a lipoxygenase 1 gene expressed inbarley grain. Plant J,1997,11(3):513-523.
    [34] Brown APC,Dunn MA,Goddard NJ, et al.Identification of a novellow-temperature-response element in the promoter of the barley(Hordeumvulgare L.) gene blt101.1.Planta,2001,213:770-780.
    [35] Fried MG, Crothers DM. Kinetics and mechanism in the reaction of generegulatory proteins with DNA.J Mol Biol,1984,172(3):263-282.
    [36] Singh H,Sen R,Baltimore D,Sharp PA. A nuclear factor that binds to aConserved sequence motif in transcriptional control elements ofimmunoglobulin genes.Nature,1986,319:154-158.
    [37] Dunn MA,White1 A J,Vural S, et al.Identification of promoter elements ina low-temperature-responsive gene (blt4.9) from barley (Hordeum vulgareL.).Plant Mol Biol,1998,38:551-564.
    [38] Bastola DR,Pethe VV,Winicov I. Alfin1, a novel zinc-finger protein inalfalfa roots that binds to promoter elements in the salt-inducible MsPRP2gene. Plant Mol Biol,1998,38:1123-1135.
    [39]魏刚,雷娟,巩威,朱玉贤.拟南芥QRAP2基因的克隆、表达、DNA结合能力及体外转录活性分析.科学通报,2005,50(17):1863-1868.
    [40] Huang B,Jin LG,Liu JY. Molecular cloning and functional characterizationof a DREB1/CBF-like gene(GhDREB1L) from cotton. Sci China Ser C-LifeSci,2007,50(1):7-14.
    [41] Chen M,Xu ZS,Xia LQ, et al.Cold-induced modulation and functional analysesOf the DRE-binding transcription factor gene,GmDREB3,in soybean (Glycinemax L.).J Exp Bot,2009,60(1):121-135.
    [42] Boter M,Omar Ruíz-Rivero,Abdeen A,Prat S. Conserved MYC transcriptionFactors play a key role in jasmonate signaling both in tomato andArabidopsis. Genes Dev,2004,18:1577-1591.
    [43] Rawat R,Xu ZF,Yao KM,Chye ML.Identification of cis-elements for ethyleneand circadian regulation of the Solanum melongena gene encoding cysteineproteinase.Plant Mol Biol,2005,57:629-643.
    [44] Li J J, Herskowitz I.Isolation of ORC6,a component of the yeast originrecognition complex by a one-hybrid system.Science,1993,262:1870-1874.
    [45] Liu Q, Kasuga M, Sakuma Y, et al.Two transcription factors, DREB1 and DREB2,with an EREBP/AP2 DNA binding domain separate two cellular signaltransduction pathways in drought- and low-temperature-responsive geneexpression, respectively, in Arabidopsis.Plant Cell,1998,10:1391-1406.
    [46] Lu CA, Ho TH, Ho SL, Yu SM. Three novel MYB proteins with one DNA bindingrepeat Mediate sugar and hormone regulation ofα-amylase gene expression.Plant Cell,2002,14(8):1963-1980.
    [47] Shen YG,Zhang WK,He SJ, et al.An EREBP/AP2-type protein in Triticum aestivumwas a DRE-binding transcription factor induced by cold,dehydration and ABAstress.Theor Appl Genet,2003,106:923-930.
    [48] Tran LS,Nakashima K,Sakuma Y, et al.Isolation and functional analysis ofArabidopsis stress-inducible NAC transcription factors that bind to adrought-responsive cis-element in the early responsive to dehydrationstress 1 promoter.Plant Cell,2004,16:2481-2498.
    [49] Souer E,van Houwelingen A,Kloos D, et al.The No Apical Meristem gene ofPetunia is required for pattern formation in embryos and flowers and isexpressed at meristem and primordia boundaries.Cell,1996,85:159–170.
    [50] Aida M,Ishida T,Fukaki H, et al.Genes involved in organ separation inArabidopsis: an analysis of cup-shaped cotyledon mutant. PlantCell,1997,9:841–857.
    [51] Hongling Jiang,Hongmei Li,Qingyun Bu, et al.The RHA2a-interacting proteinsANAC019 and ANAC055 may play a dual role in regulating ABA response andjasmonate response. Plant Signaling & Behavior,2009,4(5):464-466.
    [52] Nuruzzaman M,Manimekalai R,Sharoni AM, et al.Genome-wide analysis of NACtranscription factor family in rice. Gene,2010.
    [53] Xia N,Zhang G,Liu XY, et al.Characterization of a novel wheat NACtranscription factor gene involved in defense response against striperust pathogen infection and abiotic stresses.Mol Biol Rep,2010.
    [54] Graf T.Myb:a transcriptional activator linking proliferation anddifferentiation in hematopoietic cells, Curr. Opin.Genet. Dev.,1992,2(2):249-255
    [55] Paz-Ares J,Ghosal D,Wienand U, et al.The regulatory c1 locus of Zea maysencodes a protein with homology to myb proto-oncogene products and withstructural similarities to transcriptional activators. EMBO J,1987,6:3553-3558.
    [56] Manu Agarwal,Yujin Hao,Avnish Kapoor, et al. A R2R3 Type MYB TranscriptionFactor is Involved in the Cold Regulation of CBF Genes and in AcquiredFreezing Tolerance.J Biol Chemistry,2006,281(49):37636-37645.
    [57] Yong Liao,Hong-Feng Zou,Hui-Wen Wang, et al.Soybean GmMYB76, GmMYB92, andGmMYB177 genes confer stress tolerance in transgenic Arabidopsis plants.Cell Research,2008,18:1047-1060.
    [58] Meshi T,Iwabuchi M. Plant transcription factors. Plant Cell Physiol,1995,36:1405-1420.
    [59] Onishi M,Tachi H,Kojima T, et al.Molecular cloning and characterizationof a Novel salt-inducible gene encoding an acidic isoform of PR-5 proteinin Soybean (Glycine max [L.] Merr.)Plant Physiol Biochem,2006,44(10):574-580.
    [60] Narendra Tuteja.Abscisic Acid and Abiotic Stress Signaling. Plant Signaling& Behavior,2007,2(3):135-138.
    [61] Ishiguro S.,Nakamura K. Characterization of a cDNA encoding a novelDNA-binding protein, SPF1, that recognizes SP8 sequences in the 50 upstreamregions of genes coding for sporamin and beta-amylase from sweet potato.Mol. Gen.Genet,1994,244(6):563-571.
    [62] Ren X,Chen Z,Liu Y, et al.ABO3,a WRKY transcription factor, mediates plantresponses to abscisic acid and drought tolerance in Arabidopsis. PlantJ,2010.
    [63] Green PJ, Kay SA, Chua NH. Sequence-specific interactions of a pea nuclearfactor with light-responsive elements upstream of the rbcS-3A gene. EMBOJ,1987,6(9):25439-2549.
    [64] Weigel P,Weretilnyk EA,Hanson AD.Betaine aldehyde oxidation by spinachchloroplasts.Plant Physiol,1986,82:753-759.
    [65] McCue K F,Hanson A D.Effects of soil salinity on the expression of betainealdehyde dehydrogenase in leaves:investigation of hydraulic,ionic andbiochemical signals.Aust J Plant Physiol,1992,1(9):555-564.
    [66] lshitani M,Nakamura T,Han S Y,Takabe T. Expression of the betaine aldehydeDehydrogenase gene in barley in response to osmotic stress and abscisicacid.Plant Mol Biol,1995,27:307-315.
    [67]陈秀娟,王峻岭,赵彦修等.中亚滨藜甜菜碱醛脱氢酶基因的表达特性.植物生理学报,2001,27(4):309-312.
    [68] Li QL,Gao XR,Yu XH, et al.Molecular cloning and characterization of betaineAldehyde dehydrogenase gene from Suaeda liaotungensis and its use inimproved tolerance to salinity in transgenic tobacco.Biotechn Lett,2003,25:1431-1436.
    [69] Weretilnyk EA,Hanson AD.Molecular cloning of a plant betaine-aldehydedehydrogenase,an enzyme implicated in adaptation to salinity and drought.Proc Natl Acad Sci USA,1990,87:2745-2749.
    [70] Weretilnyk E A,Hanson A D.Molecular cloning of a plant betaine aldehydeDehydrogenase,a enzyme implicated in adaption to sanlinity and drought.Proc Natl Acad Sci USA,1990,87:2745-2749.
    [71] McCue KF,Hanson AD.Salt-inducible betaine aldehyde dehydrogenase fromsugar beet:cDNA cloning and expression.Plant Mol Biol,1992,18:1-11.
    [72] Hibino T,Meng YL,Kawamitsu Y, et al.Molecular cloning and functionalCharacterization of two kinds of betaine-aldehyde dehydrogenase inbetaine-accumulating mangrove Avicennia marina(Forsk.)Vierh.Plant MolBiol,2001,45:353-363.
    [73] Xiao G,Zhang GY,Liu FH, et al.The study of BADH gene in Atriplex hortensis.China Sci Bull,1995,40:741-745.
    [74] Jia GX,Zhu ZQ,Chang FQ, et al.Transformation of tomato with the BADH geneFrom Atriplex improves salt tolerance.Plant Cell Rep,2002,21:141-146.
    [75] Legaria J,Rajsbaum R,Munoz-Clares RA, et al.Molecular characterization oftwo genes encoding betaine aldehyde dehydrogenase from Amaranth.Expression in leaves under short-term exposure to osmotic stress ofabscisic acid.Gene,1998,218:69-76.
    [76] Ishitani M,Nakamura T,Han SY, et al.Expression of the betaine aldehydeDehydrogenase gene in barley in response to osmotic stress and abscisicacid.Plant Mol Biol,1995,27:307-315.
    [77] Nakamura T,Yokota S,Muramoto Y, et al.Expression of a betaine aldehydedehydro-genase gene in rice,a glycinebetaine nonaccumulator,and possiblelocation of its protein in peroxisomes.Plant J,1997,11(5):1115-1120.
    [78] Yin XJ,Zhao YX,Luo D, et al.Expression of the betaine aldehyde dehydrogenase(AcBADH)gene and isolation of its promoter from the halophyte AtriplexCentralasiatica Iljin.J Plant Physiol Mol Biol,2002,28(6):479-484.
    [79] Wood AJ,Saneola H,Rhides D,et al.Betaine aldehyde dehydrogenase in Sorghum.Plant Physiol,1996,110:1301-1308.
    [80] Yin XJ,Zhao YX,Luo D, et al.Isolating the promoter of a stress-induced geneEncoding betaine aldehyde dehydrogenase from the halophyte Atriplexcentralasiatica Iljin.Biochim Biophys Acta,2002,1577:452-456.
    [81]何晓兰,刘桂华,倪万潮等.三角叶滨藜甜菜碱醛脱氢酶基因5′侧翼序列的克隆与分析.江苏农业学报,2004,20(2):65-69.
    [82]李秋莉,张毅,尹辉等.辽宁碱蓬甜菜碱醛脱氢酶基因(BADH)启动子分离及序列分析.生物工程学报,2006,22(1):77-81.
    [83]张毅辽宁碱蓬BADH基因启动子功能分析(硕士学位论文).大连:辽宁师范大学,2008.
    [84]刘蕾,杜海,唐晓凤等. MYB转录因子在植物抗逆胁迫中的作用及其分子机理.遗传,2008,10,3(10):1265-1271.
    [85]彭辉,于兴旺,成慧颖等.植物NAC转录因子家族研究概况.植物学报,2010, 45(2):236–248.
    [86]于延冲,乔孟,刘振华等. WRKY转录因子功能的多样化.生命科学,2010,4:45-351.
    [87] Dignam J D, Lebovitz R M, Roeder R G.Accurata transcription by RNA polymeraseII in a soluble extract from isolated nuclei. Nucleic Acids Research, 1983,11: 1475-1489.
    [88] Xia Z X, Ao S Z. PHO4 and PHO2 protein interact with upstream sequence ofPHO81 gene. Acta Biochimica et Biophysica Sinica, 1999,31:191-196.
    [89] Yanagisawa S,Izui K. Multiple interactions between tissue-specific nuclearproteins and the promoter of the phosphoenolpyruvate carboxylase gene forC4 photosynthesis in Zea mays. Molecular and General Genetics,1990,224:325-332.
    [90] Delaney SK, Orford S J, Mart, et al. The fiber specificity of the cottonFSltp4 gene promoter is regulated by an AT rich promoter region and theAT2 Hook transcription factor GhAT1 [J]. Plant Cell Physiology,2007,48(10):1426-1437.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700