Mg_2Si/AM60B复合材料的复合变质及在部分重熔过程中的组织演变
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Si是Mg-Al系和Mg-Zn系镁合金常用的合金化元素之一,Mg-Al-Si系合金是历史最悠久的耐热镁合金之一。Si在Mg中几乎不固溶,其固溶度为0.0003%。但是Si与Mg能原位反应生成Mg_2Si相,Mg_2Si具有熔点高、密度低、硬度高和热膨胀系数低等优点,是镁合金较理想的增强相。同时,采用原位反应获得自生增强相的自生复合材料,由于增强相在基体内原位反应生成,具有界面洁净无污染,热稳定性好,与基体相容性好,制造成本低等优点,是金属基复合材料的一个重要发展方向。但是采用原位自生法获得的Mg_2Si相呈粗大汉字状,极大的割裂了基体组织,严重降低了合金的室温性能。
     本文以Mg_2Si/AM60B镁基复合材料为研究对象,研究了MgCO_3、Sr对的Mg_2Si/AM60B镁基复合材料的复合变质工艺,并研究了对其显微组织及力学性能的影响。同时,对复合变质后的复合材料进行了部分重熔实验,对部分重熔过程中的组织演变进行了分析。
     研究结果表明:在AM60B镁合金中加入Al-Si中间合金可获得原位自生Mg_2Si增强相的镁基复合材料。随着Si含量的增加,Mg_2Si数量增多,其树枝晶形貌也越发达。在790℃加入0.5%Sr后保温30min对Si含量为2.0%的Mg_2Si/AM60B镁基复合材料中的Mg_2Si相具有较好的变质效果,Mg_2Si相形貌由粗大的树枝状或汉字状转为细小的多角形块状。在Sr变质的基础上,再经1.2%的MgCO_3在790℃保温10min进行复合变质处理,使基体晶粒的的平均尺寸由260μm减小到80μm左右,复合变质效果较好。
     经Sr和MgCO_3复合变质后的Mg_2Si/AM60B镁基复合材料在经过半固态等温热处理后可获得适合触变成形所需的半固态锭料。在复合材料的部分重熔过程中,Mg_2Si相的变化过程较为简单。由带尖角的多边形状变颗粒为边界较圆整光滑的形状,最后大部分变为类球状;而复合材料的基体组织演变过程则可分为以下几个阶段:枝晶间共晶组织的溶解而导致的初期快速粗化阶段、剩余共晶组织的熔化而引起的组织分离阶段、初生固相颗粒部分熔化所引起的球状化阶段以及最后因合并和Ostwald熟化而引起的粗化阶段。此外,复合材料的铸态基体组织的细化效果越好,则其半固态基体组织就越细小圆整,半固态组织的质量也就越高。因此要想获得高质量的半固态组织,对基体进行尽可能好的细化是很有必要的。
Si is one of the commonly used alloying elements in the Mg-Al and Mg-Zn based alloys, and Mg-Al-Si alloy is the oldest one of heat-resistant magnesium alloy. The solubility of Si in Mg is only 0.0003% and Si and Mg can generate Mg_2Si phase by in-situ reaction. Mg_2Si has high melting point, low density, high hardness and low coefficient of thermal expansion, and is an ideal reinforcement for magnesium alloys, Simultaneiously, in-situ composites with reinforcing phase generated from reaction have advantages of clean interface, high thermal stability, good compatibility with matrix, low manufacturing cost, is an important development direction of metal matrix composites. But Mg_2Si phase with Chinese characters greatly lacerate the matrix, which reduce the performance of the alloy at room temperature.
     In this thesis, the modification techqnique of Mg_2Si/AM60B magnesium matrix composite was studied by MgCO_3 and Sr. The effects of the modification on microstructure and mechanical properties was also studied. At the same time, the microstructural evolution of the modified composite was investigated.
     The results show that the in-situ Mg_2Si/AM60B composite can be produced by adding Al-Si master alloy into AM60B alloy. The number of Mg_2Si increases as the addition amount increases and the dendritic morphology become more developed. The addition of 0.5% Si at 790℃and subsequent hold for 30 min has good modification effect. The morphology of Mg_2Si phase changes from developed dendritic shape or Chinese characters to small polygonal particles. Then treated by 1.2%MgCO_3 at 790℃and held for 10min, the average grain size of matrix is decreased from 260μm to 80μm. Namely, the used complex modification technique has good effect.
     A semisolid microstructure avaible for thixoforming can be obtained after the modified Mg_2Si/AM60B being partially remelted. During partial melting, the microstructure evolution of the Mg_2Si particles is simple. They evolve from the original polygonal particle to spheroidal particles and at the same time they size also increases. The microstructure evolution of the matrix can be divided into four steps, the initial coarsening due to the dissolution of interdendritic eutectic, structure separation resulted from the melting of the residual eutectic and the penetration of the firstly formed liquid into the recrystallized boundaries, spheroidization due to the partial melting of primary particles and final coarsening attributed to the merging and Ostwald ripening. In addition The more finer the as-cast microstructure is,the more better and rounder the primary particles in the semi-solid microstructure is. Consequently, it is necessary that the as-cast microstructure must be refined to obtain the high-quality semi-solid microstructure.
引文
[1] B.L Mordike,T.Ebert.Magnesium Properties-applications-potential[J]. Materials Science and Engineering,2001,A 302:37-45
    [2]李元元,张卫文,刘英等.镁合金的发展动态和前景展望[J].特种铸造及有色合金,2004,(1): 14-17
    [3] M.M Avedesian, H.Baker. Magnesium and Magnesium Alloys[M].ASM Speciality Handbook, ASM International, Ohio, 1999
    [4] F.Raymond. The Renaissance in Magnesium[J], Advanced Material & Process, 1998,Vol.154(3): 31-33
    [5] B.L Mordike,T.Ebert.Magnesium Properties-applications-potential [J]. Materials Science and Engineering,2001,Vol.A (302): 37-45
    [6] J. Hans. Metalcasting for the 21st Century[J], Foundry Management & Technology, 1996(12) :31-33
    [7]杨遇春.有色金属在汽车工业中的应用前景.材料导报,1993,6:19-22.
    [8] Froes F H,Eliezer D, E.Aghion.The science, technology, and applications of magnesium.JOM Journal of the Minerals, Metals and Materials Society .1998,50(9):30-34
    [9]伶丽红.汽车制造业使用镁的现状与潜力.世界有色金属,2002(8) :16-21
    [10]王滨.用镁合金铸造的便携式个人算计外壳.轻金属加工技术,19:24
    [11] Emley E F.Principles of Magnesium Technology.Pergramon Press,1986,(3) :26
    [12]徐小忠,刘强等.镁合金在工业及国防中的应用.华北工程院学报,2002,23(3):190-192
    [13]钟皓,刘培英等.镁及镁合金在航空航天中的应用及前景.航空工程与维修.2000.4
    [14]徐日瑶.结晶镁精炼熔剂的研究(I),轻金属,1994(6) :38-41
    [15]林再学.现代铸造方法[M],北京:航空工业出版社,1991
    [16]刘子利,丁文江,胡晶玉.消失模铸造AZ91镁合金的研究[J].材料科学与工艺, 2001,Vol.9(2) :189-194
    [17]吴和保,樊自田,黄乃瑜等.可控气压下镁合金消失模铸造工艺参数的研究[J]铸造2004,Vol.53(8) : 583-586
    [18]齐丕骧.挤压铸造[M],北京:国防工业出版社,1984 .
    [19] M.Kiuehi, S. Suglyama. Application of Mashy State Extrusion[J], Mater.Shaping Technology, 1990(8): 183-189
    [20] M.S Yong. A.J Clegg. Evaluation of Squeeze Cast Magnesium Alloy and Composite[J], Foundryman, 1999(3) :71-75
    [21]肖泽辉罗吉荣等.镁合金挤压铸造成形的研究.[J]铸造, 2003 Vol.52(9) :672-674
    [22]俞继志.浅谈镁合金压铸的历史,现状和未来[J],特种铸造及有色合金,2001(压铸专刊) :72-75
    [23]范琦,张立波.飞速发展的镁合金工业[J],特种铸造及有色合金,2001(压铸专刊) :79-83
    [24] G.Cole, D.Michigan. Can Magnesium Achive its Potential for Large Volume Usage in Automotive Components[C], Magnesium-the Lightweight Solution- Automotive Sourcing Special Report, Automotive Sourcing UK Ltd., London, 1998:18
    [25] D.B Spencer. R. Mehrebian, M.C Flemings. Rheological Behaviour of Sn-15%Pb in the Crystallization Range[J], Metall. Trans., 1972,Vol. B(7) :1925-1932
    [26] Murthy V SR,Rao B S.Microstructure development in the directed melt-oxidized (DIMOX) Al-Mg-Si alloys[J]. Materials Science and Engineering, 1995, 30:3091-3097
    [27] Wood.J.V,Davies P,K.Properties of reactively cast aluminium.TiB2 alloys[J]. Mater Sci Technol,1993,(9) :833-840
    [28] Luo A,Pekguleryuz M O.Review cast magnesium alloys for elevated temperature applications[J].Journal of Materials Science,1994,29:5259-5271
    [29] Luo A A.Recent magnesium alloy development for automotive powertrain application [J].Mater Sci Forum,2003,419-422:57-66
    [30] Jiang Q C,Li X L,Wang H Y .Fabrication of TiC particulate reinforced magnesium matrix composite[J].Scripta Materialia,2003,48:713717
    [31] Jiang Q C,Wang H Y,Wang J G. Fabrication of TiCp/Mg composites by the thermal explosion synthesis reaction in molten magnesium[J].Materials Letters,2003,57:2580-2583.
    [32] Wang H Y,Jiang Q C,Li X L.In situ synthesis of TiC/Mg composites in molten magnesium[J] Scripta Materialia,2003,48:1349-1354
    [33] Wang H Y,Jiang,Q C.Zhao Y Q Fabrication of TiB2 and TiB2-TiC particulates reInforced magnesium matrix composites[J]materials science and Engineering A,2004,372:109-114
    [34] L .Klinger,Gotman I,Horvitz D.In sity processing of TiB2-TiC ceramiccomposites by thermal explosion under pressure:experimental study and modeling [J].Materials Science and Engineering A,2001,302:92-99
    [35] L.Contreras,Turrillas X,Vaughan G.B M,etal.Time-resolved XRD study of TiC-TiB2 composites obtained by SHS[J].Acta Materialia,2004,52:4783-4790
    [36] A.O.Kunrath.Reimanis I.E.Moore J J.Combustion synthesis of TiC-Cr3C2 composites[J]. Journal of Alloys and Compounds,2001,329:131-135
    [37] H Z Ye,.Lin X Y.,Ben Luan.In situ synthesis of AlN particles in Mg-Al-alloy by Mg3N2 addition[J].Materials Letters,2004,58:2361-2364
    [38] Zhang Xiuqing.Liao Lihua.Ma Naiheng Mechanical properties and damping capacity of magnesium[J].Composites ,Part A,2006,37:2011-2016
    [39] Zhang Xiuqing,Wang Haowei.Liao,Li hua.In situ synthesis method and damping characterization of magnesium matrix composites [J].Composites Science and Technology,2006,67(3-4):1-8
    [40]陈晓,傅高升等.原位反应自生MgO/Mg2Si增强镁基复合材料的热力学和动力学研究[J].铸造技术,2003,24(4) :321-323
    [41]于化顺,闵光辉等.SiO2与Mg-Li合金熔体反应动力学分析[J].中国有色金属学报,1999,9(4):785-789
    [42]王连登,傅高升,陈晓等.硅对Mg2Si/ZM5复合材料组织和性能的影响[J].特种铸造及有色合金,2003(2):7-10
    [43]李元元,田文峰,胡侨丹等.Si及变质处理对Mg2Si/Mg复合材料的影响[J]-特种铸造及有色合金,2006,(会刊):294-296.
    [44] WANG Ji-jie,GUO Jin-hua,CHEN Li-qing.TiC/AZ91D composites fabricated by in situ reactive infiltration process and its tensile deformation[J].中国有色金属学会会刊(英文版),2006,16:892-896
    [45] Contreras A,leon C A,Drew R A.Wettability and spreading kinetics of Al and Mg on TiC[J].Scripta Materialia,2003,48:1625-1630
    [46]陈礼清,董群,赵明久,毕敬.原位反应渗透法TiCp/Mg复合材料的制备和性能[J].材料研究学报,2004,18(2):193-198
    [47]陈礼清.董群等.TiC/AZ91D镁基复合材料高温压缩变形行为[J]-金属学报2005,41(3) :326-332
    [48] Wang L,Qin X Y.The effect of mechanical milling on the formationof nanocrystalline Mg2Si through solid-state reaction [J].Scripta Materialia, 2003,49:243-248
    [49] Lai M O,Lu L,Chung B Y.Formation of Mg-Al-Ti/MgO composite via reduction of TiO2[J].2002,57:183-187
    [50] A.Srinivasan,J.Swaminathan,U.T.S.Pillai,B.C.KrishnaGuguloth,Pai,Mater[J].Sci. Eng, 2008,A485:86–91
    [51] Y.Z.Lu,Q.D.Wang,X.Q.Zeng,et al. Effects of silicon on microstructure, fluidity, mechanical properties, and fracture behaviour of Mg6Al alloy [J]. Mater .Sci.Technol, 2001,17:207-214.
    [52]胡勇,闫洪等.Sb变质对Mg2SiAM60镁基复合材料组织及性能的影响[J].塑性工程学报,2009,3(16):176-181
    [53]孙扬善,翁坤忠,袁广银.Sn对镁合金显微组织和力学性能的影响[J].中国有色金属学报,1999(01)
    [54] Yosuke Tamura;Tadashi Haitani;Eiji Yano Grain refinement of high-purity Mg-Al alloy ingots and influences of minor mounts of iron and manganese on cast grain size 2002(11)
    [55] Pekguleryuz M O,Luo A A,Aliravci C.Proc.Int.Symp.symp.Light metals processing and applications.(ed.Bickert C et al.)409-416:Canada.The Metallur- gical Society of CIM,1993
    [56]刘子利,丁文江,袁广银等.镁铝基耐热铸造镁合金的进展.机械工程材料,2001,25(11):1-4
    [57] W.L Winterbottom. Semi-solid Forming Application: High Volume Automotive Products[C], Proc. of the 6th International Semi-solid Processing of Alloys and Composites, Torino, Italy, Sep., 2000: 121-128
    [58] T. Witulski, A. Winkelmann, G. Hir. Thixoforming of Aluminum Components for Lightweight Structure[C], Proc.of the 4th Internationa Semi-solid Processing of Alloys and Composites, Sheffield, England, June, 1996: 242-247
    [59] J.C Choi, H.J Park. Microstructural Characteristics of Aluminum 2024 by Cold Working in the SIMA Process[J], Mater. Proc. Tech., 1998,Vol. 82(1-3): 107-116
    [60] X. Liang, E.J Lavernia. Evolution of Interaction Domain Microstructure During Spray Deposition[J], Metall. & Mater. Trans., 1994,Vol. 25A(11): 2341-2355
    [61] D. Apelian. Semi- solid Processing Routes and Microstructure Evolution[C], Proc. of the 7th International Conference on Semi-solid Processing of Alloys and Composites, Tsukuba, Japan, Sep., 2002: 25-30
    [62] Flemings M C.Behaviour of metal alloys in the semi-solid state.Metall Trans A,1991,22A(5):957-981
    [63] Midson S P.The commercial status of semi-solid casting in the USA.In:Kirkwood D H and Kapranos P.Proc.of the 4th Int.Conf. On Semi-solid Processing ofAlloys and Composites,University of Sheffield.England.1996.19-21. UK: Department of Engineering Materials,University of Sheffield, 1996. 251-255
    [64] Young.K.P,Kyonka C P,courtois J A.Fine grained metal composition.US Patent,4415374,1983
    [65]朱鸣芳,苏华钦。半固态等温处理制备粒状组织ZA12合金的研究.铸造,1996,(4):1-5
    [66]毛卫民.非枝晶AlSi7Mg合金半固态坯料组织形成规律及成形研究:博士论文.北京:北京科技大学,1999
    [67] Yong K P,Clyne T W.A powder mixing and preheating route to slurry production for semisolid diecasting.Powder Metall,1986,29(3):195-199
    [68]李元东,郝远,陈体军,阎峰云.等温热处理工艺对AZ91D镁合金在半固态组织演变和成形性的影响[J].中国有色金属学报,2002 (12) :1144-1145
    [69]朱鸣芳,苏华钦.半固态等温处理制备粒状组织ZA12合金的研究[J].铸造,1996 (4):1-5
    [70] Kim J-N,Kim K-T,J ung W-J.Effects of isothermal heating procedure and strontium addition on semisolid forming of AZ91 magnesium alloy[J].Materials Science and Technology,2002,(18) :698-701
    [71] A.Srinivasan,J.Swaminathan,U.T.S.Pillai,B.C.Krishna Guguloth,Pai,Mater[J].Sci. Eng, 2008,A485:86-91
    [72] Sasaki Hiroto,Adachi Mitsuruet a1.Effect of solidified microstructures on mechanical properties of AZ91 magnesium alloy[J].Journal of Japan Institute of Light Metals,1997,47(3) :133-138
    [73]袁广银,孙扬善,王震.Sb低合金化对Mg-9Al基合金显微组织和力学性能的影响.中国有色金属学报,1999,9(4):799-784.
    [74] Pekguleryuz M O,Aveksian M M.Magnesium alloying,some potentials for alloy development[J].Journal of Japan of Institute of Light Metals,1992, A42(12):679-686.
    [75]王瑞权,张大华,刘二勇等.MgCO3对AM60B镁合金组织形貌及性能的影响.铸造工程[J],2010,1:19-22
    [76]陈振华.耐热镁合金[M].北京:化学工业出版社,2007.
    [77]张小立,李廷举,藤海涛等.等温热处理过程中铸态AZ91镁合金的微观组织演化[J].铸造, 2007, 56(10): 1048-1052
    [78] Zhang L,Liu Y B,Cao Z A,et al. Effects of isothermal process parameters on the microstructure of semisolid AZ91D alloy produced by SIMA[J]. Journal of Alloys and Compounds, 2008, 446(2):98-105
    [79]李元东,文靖,陈体军等.添加SiC对不同尺寸AZ91D镁合金坯料半固态组织的影响[J].中国有色金属学报, 2010, 3(3); 407- 414.
    [80]陈体军,郝远.预变性SiCP/ZA27复合材料在半固态等温热处理过程中组织的扫描电镜观察[J].铸造, 2003, 52(3); 180-184.
    [81]王瑞权.镁合金的晶粒细化、部分重熔及触变成形[D].兰州:兰州理工大学,2010,72-77

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700