粗状假丝酵母脂肪酶的分离纯化水解乳脂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脂肪酶(triacylglycerol acylhydrolases, E.C. 3.1.1.3)是一类能催化长链脂肪酸甘油酯水解为甘油和长链脂肪酸(或者是酯合成反应)的生物催化剂,广泛应用于有机合成、脂肪和油脂的水解、油脂改性、精细化工和消旋体药物的手性拆分等诸多领域。目前,国内对脂肪酶制剂的需求不断增长,脂肪酶高产菌株的筛选,其发酵条件的优化以及适用于工业化大生产的分离纯化工艺成为研究的热点。
     乳脂是一种用途极为广泛的食品配料,但其风味物质大多是一些易挥发的酸类、酮醛类和内酯类物质。利用脂肪酶对乳脂中甘油三酯的水解反应,增加乳脂中的中、短链脂肪酸,可达到增强风味的目的。
     本课题对实验室保存的粗状假丝酵母菌种Candida valida1444诱变株进行筛选复壮,对其脂肪酶进行了分离纯化,并对该脂肪酶水解天然乳脂的特性进行了探讨。主要研究工作包括以下几个方面:
     1.利用平板涂布法对粗状假丝酵母菌种Candida valida1444诱变株进行菌种复壮,筛选得到一株产脂肪酶活性相对较高且传代稳定的菌株Z8D3。
     2.对粗状假丝酵母诱变株Z8D3产脂肪酶进行分离纯化,发酵液经超声波破碎得到粗酶液,然后经过双水相萃取、丙酮沉淀、DEAE-Sepharose FF阴离子交换层析、Phenyl Sepharose FF疏水层析等步骤的处理,比活力从8.19U/mg提高到170.43 U/mg,纯化倍数为20.81倍,活力回收率为19.8%。最后经过SDS-PAGE电泳,得到单一条带,分子量约为56.6kDa。
     3.对假丝酵母脂肪酶水解天然乳脂的各影响因素进行条件优化,得到催化水解反应的最适条件为:摇床转速180rpm,质量分数1.0%的OP乳化剂,温度为45℃,缓冲体系pH值为8.0,加酶量为200U,反应21h,乳脂水解率达到最佳。并通过GC-MS分析鉴定了水解产物中主要的致香成分。
     本论文对粗状假丝酵母诱变株产脂肪酶的分离纯化做了基础性研究,并对该脂肪酶水解天然乳脂的特性进行了探讨,为该酶的催化特性研究,高纯度酶制剂的制备工艺及在乳品工业中的应用提供了一定的理论指导。
Lipase (triacylglycerol acylhydrolase, EC 3.1.1.3) is a kind of biocatalysts to hydrolysis long-chain triglycerides to glycerol and fang-chain fatty acids. It can hydrolysis Triglyceride to fatty acid and glycerol in the interface of oil-water. Lipases occur widely in nature, but only microbial lipases are commercially significant. Many applications of lipases include speciality organic syntheses, hydrolysis of fats and oils, modification of fats, flavor enhancement in food processing, chemical analyses and resolution of racemic mixtures.As the domestic demand for lipase was growing, screening of high-yield lipase strain, optimum conditions of fermentation and industrial large-scale purification of lipase become research focuses.
     Natural milk fat is widely used in foods, but the volatile aroma of milk fat is mainly related with fatty acids, ketones, aldehydes, and lactones, which are apt to losses in the course of food processing. The flavor of milk fat could be improved by increasing the content of short- and medium-chain fatty acids by means of lipase catalyzed hydrolysis.
     Lipase exhibits a different substrate specificity and selectivity relative to the structure or length of lipid chains depending on its source. In this research work, rejuvenation was used to improve the lipase production of Candida valida mutated with UV. The lipase from Candida valida was purified to homogeneity and the hydrolysis of natural milk fat by the lipase was also studied in the paper. The main results were shown below:
     1. We used plate coating methods to rejuvenate Candida valida Z6 which was conserved by our laboratory. Finally, the high yield Candida valida Z8D3 strain was selected. Stability test demonstrated that the lipase activity remained the same level after five generations.
     2. The lipase from Candida valida Z8D3 has been purified using ultrasonic fragmentation followed by aqueous two-phase extraction, acetone precipitation, DEAE-Sepharose FF anion-exchange chromatography and Phenyl Sepharose FF hydrophobic interaction chromatography. This protocol resulted in 20.81 fold purification with 19.8% final recovery, specific activity from 8.19U/mg to170.43 U/mg. The purified enzyme showed a prominent single band on SDS–PAGE. The molecular mass of the purified enzyme was determined to be approximately 56.6 kDa.
     3. For the hydrolysis of natural milk fat by the lipase, the optimum hydrolysis conditions were: the speed of shaker 180 rpm, OP emulsifier content of 1.0% milk fat, temperature 45℃, pH value 8.0, quantity of lipase 200 U and hydrolysis time 21h. The main fragrant ingredients in the hydrolyzed natural milk fat were also determined by GC-MS.
     This thesis has done some research on Candida valida lipase, including purification and the hydrolysis of natural milk fat by the lipase. This will be a foundation for the study of its catalysed mechanism, large-scale purification and application in dairy industry.
引文
[1]宋欣.微生物酶转化技术[M].北京:化学工业出版社,2004.5:123-151.
    [2] Desnuelle P, Sarda L, Ailhaud G. Inhibition of pancreatic lipase by diethyl-p-nitrophenyl phosphate in emulation[J].Biochimica et Biophysica Acta,1960,37(2):570-571.
    [3] Norin M,Olsen O,Svendsen A,et al. Theoretical studies of Rhizomucor miehei lipase activation[J]. Protein Engineering,1993,6(8):855-863.
    [4] Rohit S,Uttam C B.Production,puri6eation,characterization,and applications of lipase. Biotechnology Advances,2001,19:627-662.
    [5] Jaeger K E, Eggert T. Lipases for biotechnology. Current 0pinion in Biotechnology,2002,13(4):390-397.
    [6] Kazlauskas R J,Bornscheuer U T. Biotransformations with lipase. Biotechnology,1998,8:37-50.
    [7] G1oria P M, Mudge S M. Cleaning oiled shores: laboratory experiments testing the potential use of vegetable oi1 biodiesels. Chemosphere, 2004,54:297-304.
    [8] Fangrui M, Milfold A H. Biodiesel production:a review. Bioresource technology,1999,70:1-15.
    [9] Wardle D A. Global sale of green air travel supported using biodiesel. Renewable and Sustainable Energy Reviews,2003,7:1-64.
    [10] Jung H C,Sumin K,Suk J J,etal. Bacterial cell surface display of lipase and its randomly mutated library facilitates high-throughput screening of mutants showing higher specific.Jounal of activities Molecular Catalysis B:Enzymatic,2003,268(8):177-184.
    [11] Rosenau F,Jaeger K. Bacterial lipases from Pseudomonas: Regulation of gene expression and mechanisms of secretion. Biochimie,2000,82(11):1023-1032.
    [12] Yuichi K, Katsuya K, Hideo N,et al. Inverting enantioselectivity of Burkholderia cepacia KWI-56 Lipase by Combinatorial Mutation and high throughput screeningusing single molecule PCR and in vitro expression. Journal of Molecular Biology,2003,331(3):585-592.
    [13]张中义,吴新侠.脂肪酶的研究进展[J].食品与药品, 2007, 9(12):54-56.
    [14]郭铮,张根旺.脂肪酶的结构特征和化学修饰[J].中国油脂, 2003, 28(7):5-10.
    [15] Secundo F, Carrea G, Tarabiono C, et al. The lid is a structural and functional determinant of lipase activity and selectivity[J]. J Mol Catal B: Enzyme, 2006, 39(1):166-170.
    [16] Luigi M,Luigia M,Margherita P,et al. Role of the N terminusin enzyme activity, stability an specificity in thermophilic esteases belonging to the HSL family[J]. J Mol Biol, 2005, 345(3):501-512.
    [17] Kohno M,Enatsu M,Funatsu J,et al. Improvement of the optimum temperature of lipase activity for Rhizopusniveus by random mutagenesis and its structural interpretation[J].J Biotechnol, 2001, 87(3):203-210.
    [18]韩振林,朱传合,赵明明,等.铜绿假单胞菌脂肪酶基因在枯草芽孢杆菌中的克隆与表达[J].食品与发酵工业,2006,32(1):11-14.
    [19] Yahya A R M, Anderson W A, Ester synthesis in lipase-catalyzed reactions [J]. Enzyme Microb Technol, 1998, 23:438-450.
    [20] Cleasby A,Garman E,Egmond M R,et al. Crystalization and preliminary X-ray study of a lipase from Pseudomonas glumae [J]. J Mol Biol,1992,224:281-282.
    [21] Noble M E M, Cleasby A,Johnson L N. The crystal structure of triacylglycerol lipase from Pseudomonas glumae reveals apartially redundant catalytic aspartate [J]. FEBS Lett,1993,331:123-128.
    [22] Brady L, Brzozowski A M, Derewenda Z S, et al. Aserine protease triad forms the catalytic center of a triacylglycerol lipase [J]. Nature,1990,243:761-770.
    [23] Petersen S B. Lipases and esterases:Some evolutionary and protein engineering aspects[M]. Dordrecht: Kluwer Acdemic Publishers,1996:125-142.
    [24] Pleiss J, Fischer M, Schmid R D.Anatomy of lipase bindind sites: the scissile fatty acid binding site[J]. Chem. Phys. Lipids, 1998,93(1):67-80.
    [25] Joerger R D, Haas M J.Alteration of chain length selectivity of a Rhizopus delemar lipase through site-directed mutagenesis[J]. Lipids, 1994,29(2): 377-384.
    [26] Kuo S J, Parkin KL. Acetylacylglycerol formation by lipase in microaqueous milieu: effects of acetyl group donor and environmental factors[J]. J.Agric. Food Chem, 1995,43(10):1775-1783.
    [27] Zaks A, Klibanov A M. Enzymatic catalysis in nonaqneous solvents [J]. J Biol Chem, 1988,263:3194-3201.
    [28] Tanaka A, Sonomoto K. Immobilized biocatalysts in organic solvents [J].Chem Tech, 1990,20:112-117.
    [29] Basheer S, Mogi K. Surfactant-modified lipase for the catalysis of the interesterfication of triglycerides and fatty acids [J].Biotechnol.Bioeng, 1995, 45:187-195.
    [30] Halling P J. Organic liquids and biocatalysis: Theory and practice [J]. TI Btech, 1989:(7): 50-51.
    [31] Dudal Y, Lortie R. Influence of water activity on the synthesis of triolein catalyzed by immobilized Mucor miehei lipase [J]. Biotechnol Bioeng, 1995, 45:129-134.
    [32]曹淑桂.有机溶剂中酶催化研究的新进展[J].化学通报,1995,(5):5-12.
    [33]曹淑桂.脂肪酶的底物特异性及其应用潜力[J].生物化学与生物物理进展,1995(22):9-13.
    [34] Sztajer H, Bryjak M.Capillar membrance for purification of pseudomonas fluorescens lipase[J].Eng.1989,(4):257-259.
    [35] Harris E L V,Angal S Protein Purification Methods[M].New York:IRL Press,1989:282-292.
    [36]郭勇.现代生化技术(第二版)[M].北京:科学出版社, 2005.
    [37] Terstappen G C, Geerts A J, Kula M R . The use of detergent-based aqueous two-phase systems for the isolation of extracellular proteins: purification of a lipase from Pseudom- onascepacia. Biotechnol Appl Biochem, 1992, 16: 228-235.
    [38] Queiroz J, Garcia F, Cabral J. Hydrophobic interaction chromatography of Chromobacterium viscosum lipase on polyethylene glycol immobilized on sepharose[J]. J Chromatogr, 2006,734: 213-219.
    [39]梅乐和,朱自强,林东强等.聚合物/盐系统中BSA分配系数的测定和关联[J ].浙江大学学报, 1999,33(1) :52-55.
    [40]闫云君,陈晖,杨江科,等. ATPS法分离纯化Aspergillus sp. F044脂肪酶.华中科技大学学报, 2005,33(10):92-95.
    [41] Menge U, Schmid R D.Extraction and crystallization of lipase from Mucor miehei.Proceedings of 15th Scandinavian Symposium on Lipids[C]. Skorping, Denmark, 1989:305-316.
    [42]李燕妮,曹红光.硫酸铵-丙酮协同沉淀法纯化南极假丝酵母产脂肪酶[J].化学与生物工程, 2006, 23(5):36-37.
    [43]秦韶巍,于明锐,谭天伟. Candida sp.脂肪酶的纯化及其性质[J].过程工程学报,2007,2:141-144.
    [44]高贵,韩四平,王志等.国内脂肪酶研究状况分析.生物技术通讯, 2003,6:543-545.
    [45]李春香.脂肪酶的研究进展.肉类工业, 2003,4:45-48.
    [46]谈重芳,王雁萍,陈林海,等.微生物脂肪酶在工业中的应用及研究进展[J].食品工业科技, 2006(07):193-195.
    [47]彭立凤,赵汝琪,谭天伟.微生物脂肪酶的应用[J].食品与发酵工业, 2000, 26(3):68-73.
    [48] EI-syed H, Hamed R R, Kantouch A, et a1. Enzyme-based feltproofing of wool[J]. AATCC Rev, 2002, 2(1):25-28.
    [49] Kathiervelu S S. Enzymatic preparatory processes[J].TextileTrendsIndia, 2002, 45(9):93-96.
    [50] Pencreac H G, Baratti J C. Hydrolysis of p-nitrophenyl palmitate in n-heptane by Pseudomonas cepacia lipase:a simple test for the determination of lipase activity in organic media [J].Enzyme Microb Technol,1996,18:417- 422.
    [51] Vaysse L, Dubreucq E, Pirat J L, et al. Fatty hydroxamic acid biosynthesis in aqueous medium in the presence of the lipase-acyl transferase from Candidaparasilosis [J ].Biotechnol,1997,53:41- 46.
    [52]陈雄金.脂肪酶的研究及其应用[J].科技信息, 2008,19:58-59.
    [53]金世琳.乳品生物化学[M].北京:中国轻工业出版社,1983.27-35
    [54]侯园园.酶处理对天然乳脂组成和风味的影响研究[D].无锡:江南大学, 2008.
    [55]丁耐克.食品风味化学[M].北京:中国轻工业出版社,1996:255-256.
    [56]于铁妹,徐迅,王永华,等.脂肪酶水解乳脂制备天然奶味香基的研究[J].食品与发酵工业,2008,34(4):150-153.
    [57]蒋晓鹤,陈历俊,罗永康,等.酶法制备天然乳脂增味物的研究[J].中国乳品工业, 2008, 36(7):35-39.
    [58]郑毅,黄建忠,施巧琴等.中温碱性脂肪酶的研究──扩展青霉PF868变株碱性脂肪酶的纯化及其酶学性质[J].工业微生物,1996,26(8):15-19.
    [59] Desnuelle P. Pancreatic Lipase. Advance in Enzymology[M]. NewYork:F.Nord,Interseienee Publ,1961:129-161.
    [60]罗珊珊. Penicillium expansum PED-03固态发醉产脂肪酶及酶学性质研究[D].杭州:浙江大学,2006:2.
    [61] Caro J D, Boudouard M, Bonicel J, etal. Porcine pancreatic lipase: Completion of the primary structure[J]. Biochimica&Biophysica Acta(BBA)-Protein Structure.1981,12,671(2):129-138.
    [62] G?tz F, PoppF, Korm E, et al. Complete nucleotide sequence of the lipase gene from Staphylococcus hyicus cloned in Staphylococcus aureus[J]. Nucleic Acids Res.1985.8,13(16):5895-5906.
    [63] Lee C Y, landolo J J. Mechanism of bacteriophage conversion of lipase activity in Staphylococcus aureus[J].Bacteriol.1985.10,164(l):288-293.
    [64] Brady L,Brzozowski A M,Derewenda Z S,et al. A serine protease triad from the catalytic center of a triacylglycerol lipase[J]. Nature, 1990,343:767-770.
    [65] Winkler F K, D'Arcy A, Hunziker W. Structure of human pancreatic lipase[J]. Nature,1990,343:771-774.
    [66]施巧琴,吴松刚.工业微生物育种学(第二版)[M].北京:科学出版社,2003
    [67]姜锡瑞.酶制剂应用手册[M].北京:中国轻工业出版社,1999,2:304-308.
    [68]刘仁春.产脂肪酶粗壮假丝酵母的诱变育种及其催化性能的研究[D].广州:华南理工大学,2008.
    [69]吴义真.异常毕赤酵母1003胞外脂肪酶的分离纯化及表征研究[D].福州:福建师范大学,2008.
    [70]李波,芦菲,张军合,等.双水相萃取法分离纯化α-淀粉酶的研究[J].食品工业科技, 2006, 27(8):77-79.
    [71]陆建.蛋白质纯化技术及应用[M].北京:化学工业出版社,2005.9:25-281.
    [72]秦韶巍,于明锐,谭天伟. Candida sp.脂肪酶的纯化及其性质[J].过程工程学报, 2007,7(1):141-144.
    [73]夏其昌,张祥民,周仲驹等.蛋白质电泳技术指南[M].北京:化学工业出版社,2007, 7:23-30.
    [74]郑楠,刘杰.双水相萃取技术分离纯化蛋白质的研究[J].化学与生物工程,2006,23(10):7-9.
    [75]雷佳红.耐受有机溶剂的脂肪酶产生菌的筛选及其酶的分离纯化的研究[D].成都:四川师范大学,2008.
    [76]赵永芳.生物化学技术原理及应用[M].北京:科学出版社,2002,7:70-72, 64-65.
    [77] Kannappan Veeraragavan and Bernard F. Gibbs. Detection and partial purification of two lipases from Candida rugosa [J]. Biotechnology Letters,1989,11(5):345-348.
    [78]余瑞元.生物化学实验原理和方法[M].北京:北京大学出版社,2005:451-452.
    [79]鲁玉侠.两步酶法制备底香鲜奶料的研究[D].广州:华南理工大学,2007.
    [80]于铁妹,王卫飞,杨博,等. GC-MS分析天然奶味香精的致香成分[J].现代食品科技,2008(1):80-82.
    [81]艾萍,张伟民,孙舰.黄油乳脂香精的研制[J].食品工业, 2007(6):31-33
    [82]张立坚,蔡春,宏苹苹,等.婴儿奶粉脂肪酸含量的GC-MS分析[J].分析测试学报, 2007(9):267-268.
    [83]侯冬岩,回瑞华,徐丽丽,等.奶粉中脂肪酸的气相色谱-质谱分析[J].分析测试学报, 2007,26(9):233-235.
    [84]侯园园,王兴国,刘元. GC-O与GC-MS结合鉴定天然乳脂风味中的特征致香成分[J].食品工业科技, 2008(3):143-145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700