血小板膜糖蛋白单克隆抗体洗脱血管内支架的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经皮腔内血管成形术是治疗血管狭窄或闭塞性疾病的主要介入手段,但术后30%-50%的再狭窄率,严重地影响了其远期疗效。血管内支架置入术辅以抗凝、抗血小板治疗虽能有效地抑制血管急性弹性回缩和血管负性重塑,但因术后血管平滑肌细胞迁移、增殖所致的内膜过度增生仍使15%-25%的患者出现了支架再狭窄。许多抗细胞增殖药物虽在动物实验中取得了较好的效果,但在临床实践中却没有达到预期的疗效,一个重要的原因是全身给药很难在病变血管局部达到持续有效的药物浓度。药物洗脱支架通过包被于金属支架表面的聚合物携带药物,当支架置入病变部位后,药物自聚合物中缓慢释放而在损伤局部发挥持续高效的生物学效应,使再狭窄降至10%以下。
     目前药物洗脱支架的研发主要集中在以下三个方面:药物载体材料的选择和制备、药物的筛选以及药物控释的实现。本文选用国内自主研发的抗血小板膜糖蛋白Ⅲa单克隆抗体为洗脱药物,聚乳酸为药物载体,利用超声雾化喷涂和被动吸附的方法制备单抗洗脱血管内支架。在制备并检测了聚合物涂层和单抗洗脱血管内支架体外特性的基础上,应用正常兔髂动脉置入过大支架的动物模型评价了单抗洗脱血管内支架的生物安全性和防治支架内再狭窄的有效性。论文的主要内容和结果如下:①根据喷涂方法的特点和超声雾化的原理,设计并实现了超声雾化血管支架
     喷涂装置。该装置包括雾化模块、载气模块、载液模块(包括喷嘴)和载支架模块四个部分,其中雾化模块包括投入式雾化器和水槽;载气模块包括高压氮气瓶和气流表,实现对载气流量的控制和调节;载液模块和喷嘴为玻璃材质,便于雾化聚合物溶液和实验后仪器的清洗;载支架模块能够实现喷涂过程中支架的旋转往复运动,以利于制备出均匀、稳定的聚合物涂层。经后续的实验验证该装置操作简便,制备的聚合物涂层均匀、稳定,且与支架表面粘附牢固,易于实现多层涂层的喷涂制备。
     ②选择喷涂参数设计正交实验,对超声雾化喷涂装置制备聚乳酸涂层进行了工艺研究,通过不均匀区域记数法确定了适宜的喷涂条件,即喷涂时间为30s、聚乳酸浓度为1.0mg/ml、转头转速为50rpm。
     ③在适宜喷涂条件下制备聚乳酸涂层,采用荧光染色和扫描电镜确认并分析了聚乳酸涂层在支架表面的分布及其形貌特征,并结合计算机图像分析方法评价了涂层的均匀性、孔隙分布、表面粗糙度等性能。另外,对聚乳酸涂层支架进行体外扩张实验,比较了扩张前后支架表面聚乳酸涂层的变化情况,以考察涂层与支架的黏附和力学性能。实验结果证明聚乳酸涂层具有良好的孔隙度分布和表面形貌,扩张前后与支架的附着良好,涂层无龟裂、脱落或翘起等现象。
     ④应用免疫荧光的方法对吸附在聚乳酸涂层中的单抗进行染色,以确定单抗在聚乳酸涂层中的吸附;同时,对单抗、聚乳酸及其混合物进行差示扫描量热法检测,以确定单抗与聚乳酸是否结合及其结合方式,从而考察被动吸附法制备单抗洗脱血管内支架的可行性。结果表明单抗以被动吸附的方式结合到聚乳酸涂层上,且与聚乳酸涂层载体之间无共聚化反应发生,聚乳酸涂层对单抗的生物学活性没有明显影响。用扫描电镜观察与枸橼酸盐抗凝全血接触后的单抗洗脱支架发现几乎没有血小板的聚集,表明单抗洗脱支架在体外能显著抑制血小板的聚集。采用125I放射性标记单抗的方法对单抗在聚乳酸涂层上的吸附以及单抗在一定流量下的释放进行了定量的检测。从吸附实验的结果来看,单抗在聚乳酸涂层上的吸附量与单抗溶液的浓度和吸附时间有关。实验检测了支架丝在三种不同的单抗浓度中吸附120h的实验数据,最大的单抗吸附量是在2.0mg/ml的单抗溶液中吸附72h时得到的。支架上单抗的释放时间可达到2周以上,不同的制备方法和流量对药物的释放有一定影响。
     ⑤将单抗洗脱支架和对照316L不锈钢裸支架置入兔髂动脉,在1、4、12周后,对置入支架段血管及其两端的血管段、主要脏器组织和血清,运用硬组织切片、扫描电镜、透射电镜、免疫组化以及组织染色、生化检测等技术方法对此单抗洗脱支架的有效性和安全性进行检测评价。结果表明单抗洗脱支架在3个月的观察期内安全、可靠,同时能有效防止支架内再狭窄和血栓形成,其机理可能与单抗抑制血小板的粘附和聚集以及加速支架表面内皮化和抑制血管平滑肌细胞的迁移和增殖有关。
The percutaneous transluminal angioplasty (PTCA) as the main interventional therapies of stenosis and occlusion of blood vessel has induced restenosis (30%-50%), which influence it’s late curative effect. The introduction of stents in the clinical practice was a major breakthrough in the field of percutaneous coronary intervention. Its success assistant with the anticoagulant and antiplatelet therapies is thought to be due to its ability to reduce the acute elastic recoil and long-term negative remodelling associated with PTCA. The stents may also induce a more chronic and pronounced vascular response than angioplasty alone which has been defined as in-stent restenosis (ISR). There are still relatively high in-stent restenosis rates (15%-25%) after stenting, caused by the excess neointimal hyperplasia because of the smooth muscle cell migration and proliferation. Although many anti-proliferation drugs have good effects in animal experiments the clinical uses of them have depressed us. An important reason is that they could not reach the sufficient concentration at local vascular vessel by systemic therapy. Drug-eluting stents (DES) are coated with a bioresorbable polymer capable of releasing single or multiple bioactive agents into the bloodstream and surrounding tissues. Local deliveries to the vasculature achieves high regional drug concentrations and decrease the ISR to below 10%, with prolonged retention at lower doses and reduces systemic toxicity.
     The issues in the preparation process of DES are generally focused on three chief aspects, including coating material and its preparation methods, the selection of biological agents, the control release of drugs. In this article the biological agent is domestic-made platelet glycoproteinⅢa receptor monoclonal antibody (mAb) and the coating material is L-polylactic acid (PLLA). The spray method based on ultrasonic atomization is used to prepare PLLA coated stents, which is immersed into the mAb solution passively absorbed by coating. After evaluating the qualities of polymer coating and mAb eluting stents, we have examined the biosecurity and validity of prevention and cure ISR by implanted exceeding mAb eluting stents into rabbit iliac arteries. The major contents and results of the research are as follows.
     ①The spray equipment for experiment was designed and produced according to the character of spray process and the principle of ultrasonic atomization. The equipment were composed of four parties, including atomization module, gas-carrier module, solution-container module, and stent-carrier module. The atomization module could atomize the polymer solution through a drop-in ultrasonic atomizer located in the cylindrical water container. The gas-carrier module could control and adjust the outflow flux of N2 in the high-pressure air tank through gas flowmeter. The polymer-solution container and nozzle were made of glass because they were easy to atomize polymer solution and clear. The stent-carrier module helped to prepare uniform polymer coating by the means of making the stent move back-and-forth in front of nozzle at the time of maintaining circumrotation. This equipment could prepare the ideal polymer coating on the stent surface and easy to spary multi-coating.
     ②The technics process was introduced in this text. The optimal parameters, which were determined by counting the un-uniform district, were spray time 30s, PLLA concentration 1.0 mg/ml, rotate speed 50 rpm.
     ③The distribution and morphologies of PLLA coatings on the stent surface prepared under the optimal parameters were visualized through fluorescence staining and scanning electron microscopy (SEM), combined with computer image analysis method to estimate the uniformity, hole distribution and surface roughness of coating. In addition the morphologies of PLLA coating were examined both pre- and post-expansion in vitro. The results suggest the PLLA coating has favourable hole distribution and surface morphology, and no cracks, break-off, or turnup both pre- and post-expansion.
     ④The presence of the PLLA coating over the entire surface of the stent was evidenced by means of a fluorescence staining method. Whether if the PLLA combine with the mAb or not was confirmed by the DSC. After these two experiments we could make certain the feasibility of passive absorption of mAb in the PLLA coating on the stent surface. The convergence degree of fluorescence intensity distribution indicated the uniformity of PLLA coating pore distribution, which was closely related to the distribution of mAb in PLLA coating. The results indicated there are no chemistry reaction between the PLLA and mAb, and PLLA has no influence on the biology activity of mAb.
     Stents eluting the mAb were tested for their adsorption characteristics by radioisotope technique with 125I labelled mAb. The elution rates were then measured in looped circuits at different velocities and durations. The amount of mAb adsorbed onto the PLLA coating was dependent on the concentration and duration of immersion in the solution. We have tested three different concentrations for 120h. Maximal mAb binding was therefore defined as the amount of agent bound to stent wires after 72 hours immersion in a 2 mg/ml solution. The method of preparation the mAb eluting stent and flow velocity significantly influenced the elution characteristics for a continuous perfusion of more than 2 weeks.
     ⑤We implant the mAb eluting stents and 316L stainless steel stents the control in rabbit iliac arteries to study the bio-security validity of prevention and cure ISR by sliding microtome, SEM, transmission electron microscope (TEM), immunohistochemi- stry, tissue stain and biochemistry methods. The blood vessel and serum samples were got from the rabbits after stents implantation for 1week, 4weeks and 12weeks. The results suggests the mAb eluting stents are biocompatible and can inhibit the thrombosis and neointimal hyperplasia by accelerating the endothelialization of the stent surface and inhibit the smooth muscle cell migration and proliferation.
引文
[1] Shepherd RFJ, Vlietstra RE. The history of balloon angioplasty. In: Vlietstra RE, Holmes DR, editors. Percutaneous transluminal coronary angioplasty. Philadelphia: F.A. Davis Company, 1987, 1-17
    [2] Myler RK, Stertzer SH. Coronary and peripheral angioplasty: historical perspective. In: Topol EJ, editor. Textbook of interventional cardiology. 2nd ed. Philadelphia: W.B. Saunders Company, 1994, 171-185
    [3] Serruys PW, de Jaegere P, Kiemeneij F, Macaya C, Rutsch W, Heyndrickx G, Emanuelsson H, Marco J, Legrand V, Materne P, Belardi J, Sigwart U, Colombo A, Goy JJ, van den Heuvel P, Delcan J, Morel M. A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. New Engl J Med, 1994, 331(8): 489-495
    [4] Fischman DL, Leon MB, Baim DS, Schatz RA, Savage MP, Penn I, Detre K, Veltri L, Ricci D, Nobuyoshi M, Cleman M, Heuser R, Almond D, Teirstein PS, Fish RD, Colombo A, Brinker J, Moses J, Shaknovich A, Hirshfeld J, Bailey S, Ellis S, Rake R, Goldberg S. A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. New Engl J Med, 1994, 331(8): 496-501
    [5] Holmes DR Jr. State of the art in coronary intervention. Am J Cardiol, 2003, 91(3A): 50A-53A
    [6] Wolf MG, Moliterno DJ, Lincoff AM, Topol EJ. Restenosis--an open file. Clin Cardiol, 1996, 19(5): 347-356
    [7] Newby AC, Zaltsman AB. Molecular mechanisms in intimal hyperplasia. J Pathol, 2000, 190(3): 300-309
    [8] Mak KH, Belli G, Ellis SG, Moliterno DJ. Subacute stent thrombosis: evolving issues and current concepts. J Am Coll Cardiol, 1996, 27(2): 494-503
    [9] Kipshidze N, Dangas G, Tsapenko M, Moses J, Leon MB, Kutryk M, Serruys P. Role of the endothelium in modulating neointimal formation: vasculoprotective approaches to attenuate restenosis after percutaneous coronary interventions. J Am Coll Cardiol, 2004, 44(4): 733-739
    [10] Goldberg SL, Loussararian A, De Gregorio J, Di Mario C, Albiero R, Colombo A. Predictors of diffuse and aggressive intra-stent restenosis. J Am Coll Cardio1, 2001, 37(4): 1019-1025
    [11] Ong AT, McFadden EP, Regar E, de Jaegere PP, van Domburg RT, Serruys PW. Late angiographic stent thrombosis (LAST) events with drug-eluting stents. J Am Coll Cardiol, 2005, 45(12): 2088-2092
    [12] Iakovou I, Schmidt T, Bonizzoni E, Ge L, Sangiorgi GM, Stankovic G, Airoldi F, Chieffo A, Montorfano M, Carlino M, Michev I, Corvaja N, Briguori C, Gerckens U, Grube E, Colombo A. Incidence, predictors, and outcome of thrombosis after successful implantation of drug-eluting stents. J Am Med Assoc, 2005, 293(17): 2126-2130
    [13] Dotter CT, Judkins MP. Transluminal treatment of arteriosclerotic obstruction. Description of a new technique and a preliminary report of its application. Circulation, 1964, 30: 654-670
    [14] Dotter CT, Buschmann RW, McKinney MK, Rosch J. Transluminal expandable nitinol coil stent grafting: preliminary report. Radiology, 1983, 147: 259-260
    [15] Palmaz JC, Sibbitt RR, Reuter SR, Tio FO, Rice WJ. Expandable intraluminal graft: a preliminary study. Work in progress. Radiology, 1985, 156(1): 73-77
    [16] Pukin L. Devices and techniques for endovascular surgery: catheters, stents, coated stents, and stented grafts. Mt Sinai J Med, 2003, 70(6): 386-392
    [17] Puel J, Lacapere B, Sabathier M, Schmitt R, Monassier JP, Valeix B, Labrunie P, Bounhoure JP. Coronary revascularization at the acute phase of myocardial infarction. Short and median-term survival of 359 patients. Multicenter study. Arch Mal Coeur Vaiss, 1986, 79(4): 409-417
    [18] Balcon R, Beyar R, Chierchia S, De Scheerder I, Hugenholtz PG, Kiemeneij F, Meier B, Meyer J, Monassier JP, Wijns W. Recommendations on stent manufacture, implantation and utilization. Study Group of the Working Group on Coronary Circulation. Eur Heart J, 1997, 18(10): 1536-1547
    [19] Colombo A, Hall P, Nakamura S, Almagor Y, Maiello L, Martini G, Gaglione A, Goldberg SL, Tobis JM. Intracoronary stenting without anticoagulation accomplished with intravascular ultrasound guidance. Circulation, 1995, 91(6): 1676-1688
    [20] Stoeckel D, Bonsignore C, Duda S. A survey of stent designs. Minim Invasive Ther Allied Technol, 2002, 11(4): 137-147
    [21] Taylor A. Metals. In: Sigwart U, editor. Endoluminal stenting. London: W.B. Saunders Company Ltd, 1996, 28-33
    [22] Schatz RA. A view of vascular stents. Circulation, 1989, 79(2): 445-457
    [23] Wong SC, Schatz RA. Developmental background and design of the Palmaz-Schatz coronary stents. In: Herrmann Jr HC, Hirshfeld JW, editors. Clinical use of the Palmaz-Schatz intracoronary stent. New York: Futura Publishing Company, Inc., 1993, 3-19
    [24] Rundback JH, Leonardo R, Rozenbilt GN. Peripheral vascular stents. In: Dolmatch BL, Blum U, editors. Stent-grafts current clinical practice. New York: Thieme, 2000, 1-22
    [25] Haudrechy P, Foussereau J, Mantout B, Baroux B. Nickel release from 304 and 316 stainlesssteels in synthetic sweat. Comparison with nickel and nickel-plated metals. Consequences on allergic contact dermatitis. Corros Sci, 1993, 35(1-4): 329-336
    [26] K?ster R, Vieluf D, Kiehn M, Sommerauer M, K?hler J, Baldus S, Meinertz T, Hamm CW. Nickel and molybdenum contact allergies in patients with coronary in-stent restenosis. Lancet, 2000, 356(9245): 1895-1897
    [27] US Food and Drug Administration, Center for Devices and Radiological Health. “BiodivYsioTMAS PC (phosphorylcholine) coated stent delivery system - P000011”. Available from updated 8 March 2001
    [28] US Food and Drug Administration, Center for Devices and Radiological Health. BeStentTM 2 with Discrete TechnologyTM Over-the-Wire and rapid exchange coronary stent delivery systems - P000022. Available from updated 31 January 2001
    [29] US Food and Drug Administration, Center for Devices and Radiological Health, “CYPHERTM Sirolimus-eluting coronary stent - P020026”. Available from Supdated 10 June 2003
    [30] US Food and Drug Administration, Center for Devices and Radiological Health. “MULTI-LINK VISIONTM RX & OTW coronary stent system - P020047”. Available from updated 16 September 2003
    [31] US Food and Drug Administration, Center for Devices and Radiological Health. NIRflexTM premounted coronary stent system - P020040. Available from updated 27 January 2004
    [32] US Food and Drug Administration, Center for Devices and Radiological Health. TAXUSTM Express2TM paclitaxel-eluting coronary stent system - P030025. Available from updated 9 September 2004
    [33] [US Food and Drug Administration, Center for Devices and Radiological Health. Boston Scientific LiberteTM MonorailTM and Over-the-Wire coronary stent systems - P040016. Available from updated 13 April 2005
    [34] US Food and Drug Administration, Center for Devices and Radiological Health. Rithron-XR coronary stent system - P030037. Available from updated 23 May 2005
    [35] Sumita M, Teoh SH. Durability of metallic implant materials. In: Teoh SH, editor. Engineering materials for biomedical applications. Singapore: World Scientific Publishing Co, 2004, 2-1-2-31
    [36] Stoeckel D, Pelton A, Dueriq T. Self-expanding nitinol stents: material and designconsiderations. Eur Radiol, 2004, 14(2): 292-301
    [37] Davis JR. Metallic materials. In: Handbook of medical devices. Materials Park: ASM International, 2003, 21-50
    [38] Trepanier C, Venugopalan R, Pelton AR. Corrosion resistance and biocompatibility of passivated NiTi. In: Yahia LH, editor. Shape memory implants. New York: Springer; 2000, 35-45
    [39] Heintz C, Riepe G, Birken L, Kaiser E, Chakfe N, Morlock M, Delling G, Imig H. Corroded nitinol wires in explanted aortic endografts: an important mechanism of failure? J Endovasc Ther, 2001, 8(3): 248-253
    [40] Berger-Gorbet M, Broxup B, Rivard C, Yahia LH. Biocompatibility testing of NiTi screws using immunohistochemistry on sections containing metallic implants. J Biomed Mater Res, 1996, 32(2): 243-248
    [41] Shabalovskaya SA. On the nature of the biocompatibility and on medical applications of NiTi shape memory and superelastic alloys. Biomed Mater Eng, 1996, 6(4): 267-289
    [42] Maitz MF, Shevchenko N. Plasma-immersion ion-implanted nitinol surface with depressed nickel concentration for implants in blood. J Biomed Mater Res A, 2006, 76(2): 356-365
    [43] Schurmann K, Vorwerk D, Kulisch A, Stroehmer-Kulisch E, Biesterfeld S, Stopinski T, Gunther RW. Experimental arterial stent placement. Comparison of a new Nitinol stent and Wallstent. Invest Radiol, 1995, 30(7): 412-420
    [44] Adams GJ, Baltazar U, Karmonik C, Bordelon C, Lin PH, Bush RL, Lumsden B, Morrisett JD. Comparison of 15 different stents in superficial femoral arteries by high resolution MRI ex vivo and in vivo. J Magn Reson Imaging, 2005, 22(1): 125-135
    [45] Peuster M, Wohlsein P, Brugmann M, Ehlerding M, Seidler K, Fink C, Brauer H, Fischer A, Hausdorf G. A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal-results 6-18 months after implantation into New Zealand white rabbits. Heart, 2001, 86(5): 563-569
    [46] Heublein B, Rohde R, Kaese V, Niemeyer M, Hartung W, Haverich A. Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology? Heart, 2003, 89(6): 651-656
    [47] Staiger MP, Pietak AM, Huadmai J, Dias G. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials, 2006, 27(9): 1728-1734
    [48] Cardarelli F. Less common non-ferrous metals. In: Materials handbook. London: Springer London Limited, 2000, 99-107
    [49] Busk RS. Magnesium and its alloys. In: Kutz M, editor. Handbook of materials selection.New York: Wiley, 2002, 259-265
    [50] Eliezer D, Alves H. Corrosion and oxidation of magnesium alloys. In: Kutz M, editor. Handbook of materials selection. New York: Wiley, 2002, 267-291
    [51] Di Mario C, Griffiths H, Goktekin O, Peeters N, Verbist J, Bosiers M, Deloose K, Heublein B, Rohde R, Kasese V, Ilsley C, Erbel R. Drug-eluting bioabsorbable magnesium stent. J Interv Cardiol, 2004, 17(6): 391-395
    [52] Peuster M, Hesse C, Schloo T, Fink C, Beerbaum P, Schnakenburg C. Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials, 2006, 27(28): 4955-4962
    [53] Vogt P, Sigwart U, Urban P, Kaufmann U, Goy JJ, Stauffer JC, Endresen K, Kappenberger L. Immediate and late complications secondary to the implantation of a coronary endoprosthesis. Schweiz Med Wochenschr, 1989, 119(43): 1521-1524
    [54] van der Giessen WJ, Serruys PW, van Woerkens LJ, Beatt KJ, Visser WJ, Jongkind JF, van Bremen RH, Ridderhof E, van Loon H, Soei LK, et al. Arterial stenting with self-expandable and balloon-expandable endoprostheses. Int J Card Imag, 1990, 5(2-3): 163-171
    [55] Strauss BH, Serruys PW, Bertrand ME, Puel J, Meier B, Goy JJ, Kappenberger L, Rickards AF, Sigwart U. Quantitative angiographic follow-up of the coronary Wallstent in native vessels and bypass grafts (European experience--March 1986 to March 1990). Am J Cardiol, 1992, 69(5): 475-481
    [56] Karas SP, Gravanis MB, Santoian EC, Robinson KA, Anderberg KA, King SB 3rd. Coronary intimal proliferation after balloon injury and stenting in swine: an animal model of restenosis. J Am Coll Cardiol, 1992, 20(2): 467-474
    [57] Ribeiro PA, Gallo R, Antonius J, Mimish L, Sriram R, Bianchi S, Duran CG. A new expandable intracoronary tantalum (Strecker) stent: early experimental results and follow-up to twelve months. Am Heart J, 1993, 125(2 Pt 1): 501-510
    [58] Gunn J, Cumberland D. Stent coatings and local drug delivery. Eur Heart J, 1999, 20(23): 1693-1700
    [59] Hofma SH, van Beusekom HM, Serruys PW, van Der Giessen WJ. Recent developments in coated stents. Curr Interv Cardiol Rep, 2001, 3(1): 28-36
    [60] Hehrlein C, Zimmermann M, Metz J, Ensinger W, Kubler W. Influence of surface texture and charge on the biocompatibility of endovascular stents. Coron Artery Dis, 1995, 6(7): 581-586
    [61] Liu CL, Chu PK, Lin GQ, Qi M. Anti-corrosion characteristics of nitride-coated AISI 316L stainless steel coronary stents. Surf Coat Technol, 2006, 201(6): 2802-2806
    [62] Heldman AW, Cheng L, Jenkins GM, Heller PF, Kim DW, Ware M Jr, Nater C, Hruban RH, Rezai B, Abella BS, Bunge KE, Kinsella JL, Sollott SJ, Lakatta EG, Brinker JA, Hunter WL, Froehlich JP. Paclitaxel stent coating inhibits neointimal hyperplasia at 4 weeks in a porcine model of coronary restenosis. Circulation, 2001, 103(18): 2289-2295
    [63] Nakayama Y, Ji-Youn K, Nishi S, Ueno H, Matsuda T. Development of high-performance stent: gelatinous photogel-coated stent that permits drug delivery and gene transfer. J Biomed Mater Res, 2001, 57(4): 559-566
    [64] Chen MC, Liang HF, Chiu YL, Chang Y, Wei H,J Sung HW. A novel drug eluting stent spray-coated with multi-layers of collagen and sirolimus. J Control Release, 2005, 108(1): 178-189
    [65] Huang Y, Wang L, Verweire I, Qiang B, Liu X, Verbeken E, Schacht E, De Scheerder I. Optimization of local methylprednisolone delivery to inhibit inflammatory reaction and neointimal hyperplasia of coated coronary stents. J Invasive Cardiol, 2002, 14(9): 505-513
    [66] Huang N, Leng YX, Yang P, Chen JY, Sun H, Wang J, Wan GJ, Zhao AS, Ding PD. Surface modification of coronary artery stent by Ti O/Ti N complex film coating prepared with plasma immersion ion implantation and deposition. Nucl Instrum Methods Phys Res Sec B: Beam Interact Mater Atoms, 2006, 242(1-2): 18-21
    [67] Thierry B, Winnik FM, Merhi Y, Silver J, Tabrizian M. Radionuclides-hyaluronan- conjugate thromboresistant coatings to prevent in-stent restenosis. Biomaterials, 2004, 25(17): 3895-3905
    [68] Consigny PM. Endothelial cell seeding on prosthetic surfaces. J Long Term Eff Med Implants, 2000, 10(1-2): 79-95
    [69] Drachman DE, Edelman ER, Seifert P, Groothuis AR, Bornstein DA, Kamath KR, Palasis M, Yang D, Nott SH, Rogers C. Neointimal thickening after stent delivery of paclitaxel: change in composition and arrest of growth over six months. J Am Coll Cardiol, 2000, 36(7): 2325-2332
    [70] Tanguay JF, Zidar JP, Phillips HR 3rd, Stack RS. Current status of biodegradable stents. Cardiol Clin, 1994, 12(4): 699-713
    [71] Tsuji T, Tamai H, Igaki K, Kyo E, Kosuga K, Hata T, Nakamura T, Fujita S, Takeda S, Motohara S, Uehata H. Biodegradable stents as a platform to drug loading. Int J Cardiovasc Intervent, 2003, 5(1): 13-16
    [72] Kanellakopoulou K, Giamarellos-Bourboulis EJ. Carrier systems for the local delivery of antibiotics in bone infections. Drugs, 2000, 59(6): 1223-1232
    [73] Saito N, Murakami N, Takahashi J, Horiuchi H, Ota H, Kato H, Okada T, Nozaki K, TakaokaK. Synthetic biodegradable polymers as drug delivery systems for bone morphogenetic proteins. Adv Drug Deliv Rev, 2005, 57(7): 1037-1048
    [74] Kimura H, Ogura Y. Biodegradable polymers for ocular drug delivery. Ophthalmologica, 2001, 215(3): 143-155
    [75] Yasukawa T, Ogura Y, Kimura H, Sakurai E, Tabata Y. Drug delivery from ocular implants. Expert Opin Drug Deliv, 2006, 3(2): 261-273
    [76] Domb A, Maniar M, Bogdansky S, Chasin M. Drug delivery to the brain using polymers. Crit Rev Ther Drug Carrier Syst, 1991, 8(1): 1-17
    [77] Wang PP, Frazier J, Brem H. Local drug delivery to the brain. Adv Drug Deliv Rev, 2002, 54(7): 987-1013
    [78] Sousa JE, Serruys PW, Costa MA. New Frontiers in Cardiology Drug-Eluting Stents: Part I. Circulation, 2003, 107(17): 2274-2279
    [79] Suzuki T, Kopia G, Hayashi S, Bailey LR, Llanos G, Wilensky R, Klugherz BD, Papandreou G, Narayan P, Leon MB, Yeung AC, Tio F, Tsao PS, Falotico R, Carter AJ. Stent-based delivery of sirolimus reduces neointimal formation in a porcine coronary model. Circulation, 2001, 104(10): 1188-1193
    [80] 汤顺清, 周长忍, 邹翰. 生物材料的发展现状与展望. 暨南大学学报(自然科学版), 2000, 21(5): 122-125
    [81] Wieneke H, Sawitowski T, Wnendt S, Fischer A, Dirsch O, Karoussos IA, Erbel R. Stent coating: A new approach in interventional cardiology. Herz, 2002, 27(6): 518-526
    [82] Schwartz RS, Edelman ER, Carter A, Chronos N, Rogers C, Robinson KA, Waksman R, Weinberger J, Wilensky RL, Jensen DN, Zuckerman BD, Virmani R, Consensus Committee. Drug-Eluting Stents in Preclinical Studies. Circulation, 2002, 106(14): 1867-1873
    [83] Simamora P, Alvarez JM, Yalkowsky SH. Solubilization of rapamycin. Int J Pharm. 2001, 213(1-2): 25-29
    [84] Sharma US, Balasubramanian SV, Straubinger RM. Pharmaceutical and physical properties of paclitaxel (Taxol) complexes with cyclodextrins. J Pharm Sci, 1995, 84(10): 1223-1230
    [85] Song D, Hsu LF, Au JL. Binding of taxol to plastic and glass containers and protein under in vitro conditions. J Pharm Sci, 1996, 85(1): 29-31
    [86] Alexis F, Venkatraman SS, Rath SK, Boey F. In vitro study of release mechanisms of paclitaxel and rapamycin from drug-incorporated biodegradable stent matrices. J Control Release, 2004, 98(1): 67-74
    [87] Sharkawi T, Leyni-Barbaz D, Chikh N, Mcmullen JN. Evaluation of the In Vitro Drug Release from Resorbable Biocompatible Coatings for Vascular Stents. Journal of Bioactiveand Compatible Polymers, 2005, 20(2): 153-168
    [88] Mehran R, Dangas G, Abizaid AS, Mintz GS, Lansky AJ, Satler LF, Pichard AD, Kent KM, Stone GW, Leon MB. Angiographic patterns of in-stent restenosis: classification and implications for long-term outcome. Circulation, 1999, 100(18): 1872-1878
    [89] Kasaoka S, Tobis JM, Akiyama T, Reimers B, Di Mario C, Wong ND, Colombo A. Angiographic and intravascular ultrasound predictors of in-stent restenosis. J Am Coll Cardiol, 1998, 32 (6 ): 1630-1635
    [90] Singh M, Gersh BJ, McClelland RL, Ho KK, Willerson JT, Penny WF, Holmes DR Jr. Clinical and angiographic predictors of restenosis after percutaneous coronary intervention: insights from the Prevention of Restenosis With Tranilast and Its Outcomes (PRESTO) trial. Circulation, 2004, 109(22): 2727-2731
    [91] Mauri L, O’Malley AJ, Cutlip DE, Ho KK, Popma JJ, Chauhan MS, Baim DS, Cohen DJ, Kuntz RE. Effects of stent length and lesion length on coronary restenosis. Am J Cardiol, 2004, 93(11): 1340-1346
    [92] Hoffmann R, Mintz GS, Mehran R, Pichard AD, Kent KM, Satler LF, Popma JJ, Wu H, Leon MB. Intravascular ultrasound predictors of angiographic restenosis in lesions treated with Palmaz-Schatz stents. J Am Coll Cardiol, 1998, 31(1): 43-49
    [93] Edelman ER, Rogers C. Hoop dreams: Stent without restenosis. Circulation, 1996, 94(6): 1199-1202
    [94] Ferns GA, Avades TY. The mechanisms of coronary restenosis: insight from experiments models. Int Exp Path, 2000, 81(2): 63-88
    [95] Barnes MJ. Collagens in atherosclerosis. Coll Relat Res, 1985, 5(1): 65-97
    [96] Shi Y, O’Brien JE, Fard A, Mannion JD, Wang D, Zalewski A. Adventitial myofibroblasts contribute to neointimal formation in injured porcine coronary arteries. Circulation, 1996, 94(7): 1655-1664
    [97] Brandl R, Mauter PC, Hofling B, Bauriedel G. Migration behavior of human smooth muscle cells cultivated from restenotic andprimary lesions. Angiology, 1995, 46(11): 973-980
    [98] Santin M, Morris C, Harrison M, Mikhalovska L, Lloyd AW, Mikhalovsky S. Factors inducing in-stent restenosis: an in-vitro model. Med J Malaysia, 2004, 59(suppl B): 93-94
    [99] Komatsu R, Ueda M, Naruko T, Kojima A, Becker AE. Neointimal tissue response at sites of coronary stenting in humans: macroscopic, histological, and immunohistochemical analysis. Circulation, 1998, 98(3): 224-233
    [100] Hoffmann R, Mintz GS, Dussaillant GR, Popma JJ, Pichard AD, Satler LF, Kent KM, Griffin J, Leon MB. Patterns and mechanisms of in-stent restenosis. A serial intravascular ultrasound study. Circulation, 1996, 94 (6): 1247-1254
    [101] van Beusekom HM, Whelan DM, Hofma SH, Krabbendam SC, van Hinsbergh VW, Verdouw PD, van der Giessen WJ. Long-term endothelial dysdfunction is more pronounced alter stenting than after balloon angioplasty on porcine coronary arteries. J Am Coll Cardio1, 1998, 32(4): 1109-1117
    [102] Kohler R, Wulff H, Eichler I, Kneifel M, Neumann D, Knorr A, Grgic I, Kampfe D, Si H, Wibawa J, Real R, Borner K, Brakemeier S, Orzechowski HD, Reusch HP, Paul M, Chandy KG, Hoyer J. Blockade of the intermediate-conductance calcium-activated potassium channel as a new therapeutic strategy for restenosis. Circulation, 2003, 108(9): 1119-1125
    [103] Riessen R, Wight TN, Pastore C, Henley C, Isner JM. Distribution of hyaluronan during extracellular martrix remodeling in human restenotic arteries and balloon-injured rat carotid arteries. Circulation, 1996, 93(6): 1141-1147
    [104] Topol EJ. Serruys PW. Frontiers in interventional cardiology. Circulation, 1998, 98(17): 1802-1820
    [105] Galli M, Sommariva L, Prati F, Zerboni S, Politi A, Bonatti R, Mameli S, Butti E, Pagano A, Ferrari G. Acute and mid-term results of phosphorylcholine-coated stents in primary coronary stenting for acute myocardial infarction. Catheter Cardiovasc Interv, 2001, 53(2): 182-187
    [106] Bartorelli AL, De Cesare NB, Kaplan AV, Fabbiocchi F, Montorsi P, Squadroni L, Galli S, Sganzerla P, Loaldi A. Local heparin delivery prior to coronary stent implantation: acute and six-month clinical and angiographic results. Cathet Cardiovasc Diagn, 1997, 42(3): 313-320
    [107] Vrolix MC, Legrand VM, Reiber JH, Grollier G, Schalij MJ, Brunel P, Martinez-Elbal L, Gomez-Recio M, Bar FW, Bertrand ME, Colombo A, Brachman J. Heparin-coated Wiktor stents in human coronary arteries (MENTOR trial). MENTOR Trial Investigators. Am J Cardiol, 2000, 86(4): 385-389
    [108] Shin EK, Son JW, Sohn MS, Jin DK, Park GS, Koh KK, Ahn TH, Choi IS.. Efficacy of heparin-coated stent in early setting of acute myocardial infarction. Catheter Cardiovasc Interv, 2001, 52(3): 306-312
    [109] Albiero R, Adamian M, Kobayashi N, Amato A, Vaghetti M, Di Mario C, Colombo A. Short- and intermediate-term results of (32)P radioactive beta-emitting stent implantation in patients with coronary artery disease: The Milan Dose-Response Study. Circulation, 2000, 101(1): 18-26
    [110] Marx SO, Jayaraman T, Go LO, Marks AR. Rapamycin-FKBP inhibits cell cycle regulators ofproliferation in vascular smooth muscle cells. Circ Res, 1995: 76(3): 412-417
    [111] Poon M, Marx SO, Gallo R, Badimon JJ, Taubman MB, Marks AR. Rapamycin inhibits vascular smooth muscle cell migration. J Clin Invest, 1996, 98(10): 2277-2283
    [112] Mehta SR, Yusuf S, Peters RJ, Bertrand ME, Lewis BS, Natarajan MK, Malmberg K, Rupprecht H, Zhao F, Chrolavicius S, Copland I, Fox KA, Clopidogrel in Unstable angina to prevent Recurrent Events trial (CURE) Investigators. Effects of pretreatment with clopidogrel and aspirin followed by long-term therapy in patients undergoing percutaneous coronary intervention: the PCI-CURE study. Lancet, 2001, 358(9281): 527-533
    [113] 樊冰, 葛均波, von Birgelen C, 钱菊英, 王齐兵, 葛雷, 陈濒珠, Erbel R. 切割球囊成形术与经皮腔内 β-射线放射疗法联合治疗冠状动脉支架内再狭窄. 中华心血病杂志, 2004, 32(5): 386-389
    [114] Gershlick AH. Antiplatelet therapy. Hosp Med, 2000, 61(1): 15-23
    [115] Giles H, Smith RE, Martin JF. Platelet glycoprotein Ⅱb-Ⅲa and size are increased in acute myocardial infarction. Eur J Clin Invest, 1994, 24(1): 69-72
    [116] 田凤石, 蒋云华, 陈晨, 曹槛梅, 贾文军, 王金良, 赵明, 王培元. 急性心机梗死和稳定型心绞痛血小板 GPⅡb、GPⅢa 动态变化的比较研究. 天津医药, 1999, 27(11): 646-648
    [117] 陈征, 汪家瑞. 血小板活化功能检测在急性心肌梗死及不稳定性心绞痛时的临床初步应用. 中国循环杂志, 1998, 13(3): 142-143
    [118] Gurbel PA, Serebruary VL, Shustoo AR, Bahr RD, Carpo C, Ohman EM, Topol EJ. Effects of reteplase and alteplase on platelet aggregation and major receptor expression during the first 24 hours of acute myocardial infarction treatment. GUSTO-III Investigators. Global Use of Strategies to Open Occluded Coronary Arteries. J Am Coll Cardiol, 1998, 31(7): 1466-1473
    [119] Gawaz M, Neumann FJ, Ott I, May A, Rudiger S, Schomig A. Changes in membrane glycoproteins of circulating platelets after coronary stent implantation. Heart, 1996, 76(2): 162-172
    [120] Chandrasekar B, Tanguary JF. Platelet and Restenosis. J Am Coll Cardiol, 2000, 35(3): 555-562
    [121] Coller BS. Blockade of platelet GP Ⅱb/Ⅲa receptors as an antithrombotic strategy. Circulation, 1995, 92(9): 2373-2380
    [122] Tcheng JE, Ellis SG, George BS, Kereiakes DJ, Kleiman NS, Talley JD, Wang AL, Weisman HF, Califf RM, Topol EJ. Pharmacodynamics of chimeric glycoprotein Ⅱb/Ⅲa integrin antiplatelet antibody Fab 7E3 in high-risk coronary angioplasty. Circulation, 1994, 90(4): 1757-1764
    [123] Talley JD. Pharmacology of GP Ⅱb/Ⅲa platelet inhibition, part IV. J of Interven Cardiol, 2000, 13: 243-254
    [124] Vorchheimer DA, Badimon JJ, Fuster V. Platelet glycoprotein Ⅱb/Ⅲa receptor antagonists in cardiovascular disease. JAMA, 1999, 281(15): 1407-1414
    [125] Lincoff AM, Califf RM, Topol EJ. Platelet glycoprotein Ⅱb/Ⅲa receptor blockade in coronary artery disease. J Am Coll Cardiol, 2000, 35(5): 1103-1115
    [126] The EPIC investigator. Use of a monoclonal antibody directed against the platelet glycoprotein Ⅱb/Ⅲa receptor in high-risk coronary angioplasty. The EPIC Investigation. N Engl J Med, 1994, 330(14): 956-961
    [127] The EPILOG investigator: Platelet glycoprotein Ⅱb/Ⅲa receptor blockade and low-dose heparin during percutaneous coronary revascularization. The EPILOG Investigators. N Engl J Med, 1997, 336(24): 1689-1696
    [128] The EPISTENT investigators. Randomised placebo-controlled and balloon-angioplasty- controlled trial to assess safety of coronary stenting with use of platelet glycoprotein Ⅱb/Ⅲa blockade. The EPISTENT Investigators. Evaluation of Platelet Ⅱb/Ⅲa Inhibitor for Stenting. Lancet, 1998, 352 (9122): 87-92
    [129] The CAPTURE investigators. Randomised placebo-controlled trial of abciximab before and during coronary intervention in refractory unstable angina: the CAPTURE Study. Lancet, 1997, 349(9063): 1429-1435
    [130] Brener SJ, Barr LA, Burchenal JE, Katz S, George BS, Jones AA, Cohen ED, Gainey PC, White HJ, Cheek HB, Moses JW, Moliterno DJ, Effron MB, Topol EJ. Randomized, placebo-controlled trial of platelet glycoprotein Ⅱb/Ⅲa blockade with primary angioplasty for acute myocardial infarction. ReoPro and Primary PTCA Organization and Randomized Trial (RAPPORT) Investigators. Circulation, 1998, 98(8): 734-741
    [131] Dangas G, Marmur JD, King TE, De Leon J, Sharma SK, Vidhun R, Feldman D, Stoynov MY, Badimon JJ, Ambrose JA. Effects of platelet glycoprotein Ⅱb/Ⅲa inhibition with abciximab on thrombin generation and activity during percutaneous coronary intervention. Am Heart J, 1999, 138 (1 Pt 1): 49-54
    [132] Tcheng IE , Kereiakes DJ , Bradn GA , et al. Safety of abciximab retreatment-final clinical report of the reopro readministration Reg istry (R3) (abstr). Circulation, 1998, 98: 1-17
    [133] Rocnik EF, Chan BM, Pickering JG. Evidence for a role of collagen synthesis in arterial smooth muscle cell migration. J Clin Invest, 1998, 101(9): 1889-1898
    [134] Leclerc JR. Platelet glycoprotein Ⅱb/Ⅲa antagonists :lessons learned from clinical trials and future directions. Crit Care Med, 2002, 30(5 Suppl): S332-S340
    [135] Reidy MA, Irvin C, Lindner V. Migration of arterial wall cells. Expression of plasminogen activators and inhibitors in injured rat arteries. Circ Res, 1996, 78(3): 405-414
    [136] Blindt R, Bosserhoff AK, Krott N, Vogt F, Hanrath P, Demircan L, vom Dahl J. Decrease of vascular smooth muscle cell locomotion by abciximab ,but not tirofiban: a possible role of different affinity to alpha v beta 3 integrins. Coron Artery Dis, 2002, 13(7): 357-364
    [137] Lincoff AM, Califf RM, Moliterno DJ, Ellis SG, Ducas J, Kramer JH, Kleiman NS, Cohen EA, Booth JE, Sapp SK, Cabot CF, Topol EJ. Complementary clinical benefits of coronary-artery stenting and blockade of platelet glycoprotein Ⅱb/Ⅲa receptors. Evaluation of Platelet Ⅱb/Ⅲa Inhibition in Stenting Investigators. N Engl J Med, 1999, 341(5): 319-327
    [138] Marso SP, Lincoff AM, Ellis SG, Bhatt DL, Tanguay JF, Kleiman NS, Hammoud T, Booth JE, Sapp SK, Topol EJ. Optimizing the percutaneous interventional outcomes for patients with diabetes mellitus: results of the EPISTENT (Evaluation of platelet Ⅱb/Ⅲa inhibitor for stenting trial) diabetic substudy. Circulation, 1999, 100(25): 2477-2484
    [139] JK, John PR , Thomas MB , et al . Ⅱ b’s are not Ⅱ b’s. Am J Cardial, 2000, 85: 23c-31c
    [140] Coating at the speed of light-processing cycle times for profitability. www.surmodics.com
    [141] 杨枚, 王立华. 表面涂层的制备工艺与测试技术. 武汉科技大学学报(自然科学版), 2003, 26(3): 241-244
    [142] 袁易全. 近代超声原理及应用. 南京. 南京大学出版社, 1996 年 4 月
    [143] Waksman R. Drug-eluting stents: from bench to bed. Cardiovasc Radiat Med. 2002, 3(3): 226-241(16)
    [144] Nakayama Y, Nishi S, Ishibashi-Ueda H. Fabrication of drug-eluting covered stents with micropores and differential coating of heparin and FK506. Cardiovasc Radiat Med. 2003, 4(2): 77-82
    [145] Verhoeven ML, Driessen AA, Paul AJ, Brown A, Canry JC, Hendriks M. DSIMS characterization of a drug-containing polymer-coated cardiovascular stent. J Control Release. 2000, 96(1): 113-121
    [146] 王春宁, 高润霖, 程树军, 宋来凤, 郑金刚, 訾振军, 阮英茆, 孟亮. 聚-乳酸-乙醇酸涂层冠状动脉支架的生物相容性实验研究. 中华心血管杂志, 2003, 31(7): 528-531
    [147] 王春宁, 高润霖, 程树军, 宋来风, 郑金刚, 訾振军, 阮英茆, 孟亮, 胡文伟. 聚-消旋乳酸-乙醇酸涂层支架置入小型猪冠状后损伤处愈合过程的观察. 中国循环杂志, 2003, 18(1): 57-60
    [148] 刘学波, 葛均波, 王克强, 钱菊英, 樊冰, 贾剑国, 张国辉, 王灏, 冯琪, 蔡乃绳, 陈灏珠. 载 Rapamycin 多聚物涂层支架在猪冠状动脉模型预防再狭窄的实验研究. 中华心血管杂志, 2002, 30(5): 290-293
    [149] 潘继岗, 樊自拴, 孙冬柏, 俞宏英, 李辉勤, 王旭东, 孟惠民. 采用两种喷涂技术制备铁基合金涂层的摩擦磨损特性研究. 摩擦学学报, 2005, 25(5): 412-415
    [150] 张鑫, 王恩清, 阎玉凤, 刘春暖, 胡宝琴. 几种喷涂方式在离心铸管生产中的应用. 中国铸造装备与技术, 2004, 5: 47-49
    [151] 刘宏, 向寓华, 刘长德. 影响粉末涂料涂膜质量因素的探讨, 电镀与涂饰. 2005, 24(8): 27-32
    [152] Bustamante G, Fabri-Miranda FJ, Margarit CP, Mattos OR. Influence of prephosphating on painted electrogalvanized steel. Progress in Organic Coating, 2003, 46(2): 84-90(7)
    [153] del Amoa B, Veleva L, Di Sarli AR, Elsner CI. Performance of coated steel systems exposed to different media- part I. Painted galvanized steel. Progress in Organic Coatings, 2004, 50(3): 179-192
    [154] Ko TM, Lin JC, Cooper SL. Surface characterization and platelet adhesion studies of plasma-sulphonated polyethylene. Biomaterials, 1993, 14(9): 657-664
    [155] 黄嘉. 聚醚砜、磺化聚醚砜血液净化膜材生物相容性的研究[学位论文]. 成都, 四川大学, 1999, 32
    [156] Fischell, TA, Polymer coatings for stents. Can we judge a stent by its cover? Circulation, 1996, 94(7): 1494-1495
    [157] Van der Giessen WJ, Lincroft AM, Schwartz RS, Van Beusekom HM, Serruys PW, Holmes DR Jr, Ellis SG, Topol EJ. Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary arteries. Circulation, 1996, 94(7): 1690-1697
    [158] Vert M, Schwach G, Coudane J, Engel R. Something new in the field of PLA/GA bioresorbable polymer? J Control Release, 1998, 53(1-3): 85-92
    [159] Menei P, Daniel V, Montero-Menei C, Brouillard M, Pouplard-Barthelaix A, Benoit JP. Biodegradation and brain tissue reaction to poly(D,L-lactide-co-glycolide) microspheres. Biomaterials, 1993, 14(6): 470-478
    [160] Reverchon E. Supercritical antisolvent precipitation of micro- and nano-particles. J Supercrit Fluids, 1999, 15(1): 1-21
    [161] Hsu AL, Lu PJ, Chen CS. Regulation of nuclear calcium uptake by inositol phosphate and external calcium. Biochem Biophys Res Commun, 1998, 243(3): 653-656
    [162] Hossainy SFA, Sanders-Millare D, Guruwaiya J, et a1. Biocompatible coating[P]. PCT Publication: WO 01/45763. 2001-06-28
    [163] 微创医疗器械(上海)有限公司. 一种具有防再狭窄涂层的血管支架. 发明专利: 00137207.6, 2002-07-31
    [164] 华东理工大学, 曾敏. 药物洗脱性心血管支架及其制备方法. 发明专利: 01142641.1, 2002-06-26
    [165] 崔长琮, 兰燕平, 马怀宪. 一种具有防治再狭窄作用的冠脉支架. 实用新型专利: 00226145.6, 2001-05-23
    [166] 维科医疗器械(苏州)有限公司. 一种药物包被血管支架. 发明专利: 02112955.X, 2002-11-13
    [167] Larson ML, Larson EA. Drug delivery via conformal film[P]. United States Patent: 6309380, 2001-10-30
    [168] Jan H. Eftichia-Vassiliki Z. Heparin stent[P]. PCT Publication: WO 03/011250, 2003-02-13
    [169] 戴军, 高润霖, 汤健, 宋来凤, 魏英杰, 宋莉, 李永利, 唐承君, 史瑞文. 蛋白涂层支架携带一氧化氮合酶基因转染小型猪冠状动脉的可行性研究. 中国循环杂志, 2001, 16(1): 61-63
    [170] 戴军, 高润霖, 史瑞文, 汤健, 宋来凤, 阮英茆, 陈纪林, 李永力, 唐承君, 孟亮. 蛋白涂层支架携带质粒介导的一氧化氮合酶基因预防冠状动脉球囊扩张后再狭窄的实验研究. 中华心血管病杂志, 2001, 29(3): 169-172
    [171] Heldman AW, Cheng L, Jenkins GM, Heller PF, Kim DW, Ware M Jr, Nater C, Hruban RH, Rezai B, Abella BS, Bunge KE, Kinsella JL, Sollott SJ, Lakatta EG, Brinker JA, Hunter WL, Froehlich JP. Paclitaxel stent coating inhibits neointimal hyperplasia at 4 weeks in a porcine model of coronary restenosis. Circulation, 2001, 103(18): 2289-2295
    [172] Huang Y, Liu X, Wang L, Li S, Verbeken E, De Scheerder I. Long-term biocompatibility evaluation of a novel polymer-coated stent in a porcine coronary stent model. Coron Artery Dis, 2003, 14(5): 401-408
    [173] Finkelstein A, McClean D, Kar S, Takizawa K, Varghese K, Baek N, Park K, Fishbein MC, Makkar R, Litvack F, Eigler NL. Local drug delivery via a coronary stent with programmable release pharmacokinetics. Circulation, 2003, 107(5): 777-784
    [174] Zeldis JB. Methods and compositions for the prevention and treatment of atherosclerosis restenosis and related disorders[P]. PCT Publication: WO 01/43743, 2001-06-21
    [175] Shekalim A, Shmulewitz A. Stent coating device[P]. PCT Publication: WO 03/0929099, 2003-11-l3
    [176] Villareal PK. Stent mounting device and a method of using the same to coat a stent[P]. US Patent: 2003/0207020, 2003-11-06
    [177] Taylor AS, Tolhurst LA, Hempensal DT. Coating[P]. US Patent: 62l4115, 2001-04-10
    [178] Sundar R. Stent delivery system, device, and method for coating[P]. US Patent: 2003/022545 l, 2003-12-04
    [179] Hossainy SFA, Steward J, Method for coating an implantable device and system for performing the method[P]. US Patent: 2003/0157241, 2003-08-21
    [180] Ranade SV, Miller KM, Richard RE, Chan AK, Allen MJ, Helmus MN. Physical characterization of controlled release of paclitaxel from the TAXUS Express2 drug-eluting stent. J Biomed Mater Res A. 2004, 71(4): 625-634
    [181] Kandzari DE, Tcheng JE, Zidar JP. Coronary artery stents: evaluating new designs for contemporary percutaneous intervention. Catheter Cardiovasc Interv, 2002, 56(4): 562-576
    [182] Nath FC, Muller DW, Ellis SG, Rosenschein U, Chapekis A, Quain L, Zimmerman C, Topol EJ. Thrombosis of a flexible coil coronary stent: frequency, predictors and clinical outcome. J Am Coll. Cardiol, 1993, 21(3): 622-627
    [183] Foley JB, Brown RI, Penn IM. Thrombosis and restenosis after stenting in failed angioplasty: comparison with elective stenting. Am Heart J, 1994, 128(1): 12-20
    [184] Liu MW, Voorhees WD 3rd, Agrawal S, Dean LS, Roubin GS. Stratification of the risk of thrombosis after intracoronary stenting for threatened or acute closure complicating coronary balloon angioplasty: a Cook registry study. Am Heart J, 1995, 130(1): 8-13
    [185] Morice MC, Zemour G, Benveniste E, Biron Y, Bourdonnec C, Faivre R, Fajadet J, Gaspard P, Glatt B, Joly P et al. Intracoronary stenting without coumadin: one month results of a French multicenter study. Cathet Cardiovasc Diagn, 1995, 35(1): 1-7
    [186] Hasdai D, Garrat KN, Holmes DR Jr, Berger PB, Schwartz RS, Bell MR. Coronary angioplasty and intracoronary thrombolysis are of limited efficacy in resolving early intracoronary stent thrombosis. J Am Coll Cardiol, 1996, 28(2): 361-367
    [187] Costa MA, Foley DP, Serruys PW. Restenosis: the problem and how to deal with it. In: Practical Intervention Cardiology. 2nd ed. Grech ED, Ramsdale DR, Martin Dunitz eds. 2002: 279-294
    [188] Fraker PJ, Speck JC Jr. Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphenylglycoluril. Biochem Biophys Res Commun, 1978, 80(4): 849-857
    [189] 奚延裴, 王春仁, 雷学会, 田文华. 生物材料表面粘附的血小板形态变化及分类研究. 北京生物医学工程, 1990, 9(3): 149-158
    [190] Zwart-van Rijkom JE, Klungel OH, Leufkens HG, Broekmans AW, Schrijver-van Velthoven S, Umans VA. Costs and effects of combining stenting and abciximab (ReoPro?) in daily practice. Int J Cardiol, 2001, 77(2-3): 299-303
    [191] Islam MA, Blankenship JC, Balog C, Iliadis EA, Lincoff AM, Tcheng JE, Califf RM, Topol EJ, EPISTENT Investigators. Effect of abciximab on angiographic complications duringpercutaneous coronary stenting in the Evaluation of Platelet Ⅱb/Ⅲa Inhibition in Stenting Trial (EPISTENT). Am J Cardiol, 2002, 90(9): 916-921
    [192] Lincoff AM. Important triad in cardiovascular medicine: diabetes, coronary intervention, and platelet glycoprotein Ⅱb/Ⅲa receptor blockade. Circulation. 2003, 107(11): 1556-1559
    [193] 安广宇, 董宁征, 阮长耿. 抗血小板膜糖蛋白单克隆抗体 SZ-21 基因克隆及单链抗体的构建和表达. 免疫学杂志, 2001, 17(3): 200-203
    [194] 安广宇, 董宁征, 邵波静, 朱明清, 阮长耿. 抗血小板膜糖蛋白 SZ-21 单链抗体的制备和生物学特性研究. 中华血液学杂志, 2002, 23(9): 480-483
    [195] Costa MA. Drug-coated stents for restenosis. In: Faxon DP, ed. Restenosis: A Therapeutic Guide. London: Martin Dunitz, 2001: 113-129
    [196] G-X. Wang, T-Y. Yin, L-L. Luo, Y-B. Hou, Y-Z. Wang, C-G. Ruan, R. Guzman, R. Guidoin. Eluting characteristics of a platelet glycoprotein receptor antibody using a PLA coated stent. J Biomater Sci Polym Ed
    [197] Baron JH, Gershlick AH, Hogrefe K, Armstrong J, Holt CM, Aggarwal RK, Azrin M, Ezekowitz M, de Bono DP. In vitro evaluation of c7E3-Fab (ReoProTM) eluting polymer- coated coronary stents. Cardiovasc Res, 2000, 46(3): 585-594
    [198] Prasad CK, Resmi KR, Krishnan LK, Vaishnav R. Survival of endothelial cells in vitro on Paclitaxel-loated coronary stents. J Biomed Appl, 2005, 19(4): 271-286
    [199] Krishna-Prasad C., Vaishnav, R., Krishnan, L.K. Study of the drug coated stents for inhibition of cell proliferation using endothelial cells. Trends Biomat. Artif. Organs, 2004, 17: 71-77
    [200] Davis HW, VandenBerg E, Reid MD, Roy-Chandhury P, Edwards JD. Paclitaxel impairs endothelial cell adhesion but not cytokine-induced cellular adhesion molecule expression. Ann. Vasc. Surg, 2005, 19(3): 398-406
    [201] Kim W, Jeong MH, Hong YJ, Lee SH, Park WS, Kim JH, Kim IS, Choi MJ, Ahn YK, Cho JG, Park JC, Cho DL, Kim H, Kang JC. The long-term clinical results of a platelet glycoprotein Ⅱb/Ⅲa receptor blocker (Abciximab: Reopro) coated stent in patients with coronary artery disease. Korean J Intern Med, 2004, 19(4): 220-229
    [202] Aoki J, Serruys PW, van Beusekom H, Ong AT, McFadden EP, Sianos G, van der Giessen WJ, Regar E, de Feyter PJ, Davis HR, Rowland S, Kutryk MJ. Endothelial progenitor cell capture by stents coated with antibody against CD34: the HEALING-FIM (Healthy Endothelial Accelerated Lining Inhibits Neointimal Growth-First In Man) Registry. J Am Coll Cardiol, 2005, 45(10): 1574-1579
    [203] Gunn J, Arnold N, Chan KH, Shepherd L, Cumberland DC, Crossman DC. Coronary artery stretch versus deep injury in the development of in-stent neointima. Heart, 2002, 88(4):401-405
    [204] Wilensky RL, March KL, Gradus-Pizlo I, Spaedy AJ, Hathaway DR. Methods and devices for local drug delivery in coronary and peripheral arteries. Trends Cardiovasc Med, 1993, 3(5): 163-170
    [205] Hertzog BA, Thanos C, Sandor M, Raman V, Edelman ER. Cardiovascular drug delivery systems. In: Mathiowitz E, editor. Encyclopedia of controlled drug delivery. New York: Wiley, 1999, 161-72
    [206] Apisarnthanarax S, Chougule P. Intravascular brachytherapy: a review of the current vascular biology. Am J Clin Oncol, 2003, 26(3): e13-21
    [207] Hong MK, Kornowski R, Bramwell O, Ragheb AO, Leon MB. Paclitaxel-coated Gianturco-Roubin II (GR II) stents reduce neointimal hyperplasia in a porcine coronary in-stent restenosis model. Coron Artery Dis, 2001, 12(6): 513-515
    [208] Tanabe K, Serruys PW, Grube E, Smits PC, Selbach G, van der Giessen WJ, Staberock M, de Feyter P, Muller R, Regar E, Degertekin M, Ligthart JM, Disco C, Backx B, Russell ME. TAXUS III Trial: in-stent restenosis treated with stent-based delivery of paclitaxel incorporated in a slow-release polymer formulation. Circulation, 2003, 107(4): 559-564
    [209] Hong MK, Mintz GS, Lee CW, Song JM, Han KH, Kang DH, Song JK, Kim JJ, Weissman NJ, Fearnot NE, Park SW, Park SJ, ASian Paclitaxel-Eluting Stent Clinical Trial. Paclitaxel coating reduces in-stent intimal hyperplasia in human coronary arteries: a serial volumetric intravascular ultrasound analysis from the Asian Paclitaxel-Eluting Stent Clinical Trial (ASPECT). Circulation, 2003, 107(4): 517-520
    [210] Whelan DM, van der Giessen WJ, Krabbendam SC, van Vliet EA, Verdouw PD, Serruys PW, van Beusekom HM. Biocompatibility of phosphorylcholine coated stents in normal porcine coronary arteries. Heart, 2000, 83(3): 338-345
    [211] Malik N, Gunn J, Shepherd L, Crossman DC, Cumberland DC, Holt CM. Phosphorylcholine-coated stents in porcine coronary arteries: in vivo assessment of biocompatibility. J Invasive Cardiol, 2001, 13(3): 193-201
    [212] Liistro F, Stankovic G, Di Mario C, Takagi T, Chieffo A, Moshiri S, Montorfano M, Carlino M, Briguori C, Pagnotta P, Albiero R, Corvaja N, Colombo A. First clinical experience with a paclitaxel derivate-eluting polymer stent system implantation for in-stent restenosis: immediate and long-term clinical and angiographic outcome. Circulation, 2002, 105(16): 1883-1886
    [213] Klugherz BD, Llanos G, Lieuallen W, Kopia GA, Papandreou G, Narayan P, Sasseen B, Adelman SJ, Falotico R, Wilensky RL. Twenty-eight-day efficacy and phamacokinetics of the sirolimus-eluting stent. Coron Artery Dis, 2002, 13(3): 183-188
    [214] Sousa JE, Costa MA, Sousa AG, Abizaid AC, Seixas AC, Abizaid AS, Feres F, Mattos LA, Falotico R, Jaeger J, Popma JJ, Serruys PW. Two-year angiographic and intravascular ultrasound follow-up after implantation of sirolimus-eluting stents in human coronary arteries. Circulation, 2003, 107(3): 381-383
    [215] Degertekin M, Regar E, Tanabe K, Smits PC, van der Giessen WJ, Carlier SG, de Feyter P, Vos J, Foley DP, Ligthart JM, Popma JJ, Serruys PW. Sirolimus-eluting stent for treatment of complex in-stent restenosis: the first clinical experience. J Am Coll Cardiol, 2003, 41(2): 184-189
    [216] Foo RS, Gershlick AH, Hogrefe K, Baron JH, Johnston TW, Hussey AJ, Garner I, de Bono DP. Inhibition of platelet thrombosis using an activated protein C-loaded stent: in vitro and in vivo results. Thromb Haemost, 2000, 83(3): 496-502
    [217] Sino-SIRIUS 研究组. 国人应用雷帕霉素药物洗脱支架预防再狭窄的初步经验——Sino-SIRIUS 临床试验. 中华心血管病杂志, 2003, 31(11): 814-817
    [218] Cho A, Reidy MA. Matrix metalloproteinase-9 is necessary for the regulation of smooth muscle cell replication and migration after arterial injury. Circ Res, 2002, 91(9): 845-851
    [219] Tamai H, Igaki K, Kyo E, Kosuga K, Kawashima A, Matsui S, Komori H, Tsuji T, Motohara S, Uehata H. Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans. Circulation, 2000, 102(4): 399-404
    [220] Clowes AW, Schwartz SM, Significance of quiescent smooth muscle cell migration in the injured rat carotid artery. Circ Res, 1985, 56 (1): 139-145
    [221] Baron JH, Moiseeva EP, Azrin MA, Ezekowitz MD, de Bono DP, Gershlick AH. c7E3-Fab (abciximab) inhibits the migration of vascular smooth muscle cells via the v 3 integrin: A possible explanation for prevention of restenosis. Circulation, 1998, 98 (17): 4243
    [222] Tam SH, Sassoli PM, Jordan RE, Nakada MT. Abciximab (ReoPro, chimeric 7E3-Fab) demonstrates equivalent affinity and functional blockade of glycoprotein Ⅱb/Ⅲa and v 3 integrins. Circulation, 1998, 98(11): 1085-1091
    [223] Jones JI, Prevette T, Gockerman A, Clemmons DR. Ligand occupancy of the v 3 integrin is necessary for smooth muscle cells to migrate in response to insulin-like growth factor I. Proc Natl Acad Sci U S A, 1996, 93 (6): 2482-2487
    [224] Liaw L, Skinner MP, Raines EW, Ross R, Cheresh DA, Schwartz SM, Giachelli CM. The adhesive and migratory effects of osteopontin are mediated via distinct cell surface integrins.Role of v 3 in smooth muscle cell migration to osteopontin in vitro. J Clin Invest, 1995, 95 (2), 713-724
    [225] Srivatsa SS, Fitzpatrick LA, Tsao PW, Reilly TM, Holmes DR Jr, Schwartz RS, Mousa SA. Selective v 3 integrin blockade potently limits neointimal hyperplasia and lumen stenosis following deep coronary artery stent injury: Evidence for the functional importance of integrin v 3 and osteopontin expression during neointima formation. Cardiovasc Res, 1997, 36 (3), 408-428
    [226] Rogers C, Edelman ER. Endovascular stent design dictates experimental restenosis and thrombosis. Circulation, 1995, 91(12): 2995-3001
    [227] Schulz C, Herrmann RA, Beilharz C, Pasquantonio J, Alt E. Coronary stent symmetry and vascular injury determine experimental restenosis. Heart, 2000, 83(4): 462-467
    [228] Rogers C, Tseng DY, Squire JC, Edelman ER. Balloon-artery interactions during stent placement: a finite element analysis approach to pressure, compliance, and stent design as contributors to vascular injury. Circ Res, 1999, 84(4): 378-383
    [229] Carter AJ, Lee DP, Suzuki T, Bailey L, Lansky A, Jones R, Virmani R. Experimental evaluation of a short transitional edge protection balloon for intracoronary stent deployment. Catheter Cardiovasc Interv, 2000, 51(1): 112-119
    [230] Squire JC. Dynamics of endovascular stent expansion[Dissertation]. Massachusetts Institute of Technology Press, MA, USA, 2000, 41-89
    [231] Migliavacca F, Petrini L, Colombo M, Auricchio F, Pietrabissa R. Mechanical behavior of coronary stents investigated through the finite element method. J Biomech, 2002, 35(6): 803-811
    [232] Ikari Y, Hara K, Tamura T, Saeki F, Yamaguchi T. Luminal loss and site of restenosis after Palmaz-Schatz coronary stent implantation. Am J Cardiol, 1995, 76(3): 117-120
    [233] Morice MC, Serruys PW, Sousa JE, Fajadet J, Ban Hayashi E, Perin M, Colombo A, Schuler G, Barragan P, Guagliumi G, Molnar F, Falotico R, RAVEL Study Group. Randomized Study with the Sirolimus-Coated Bx Velocity Balloon-Expandable Stent in the Treatment of Patients with de Novo Native Coronary Artery Lesions. A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N Engl J Med, 2002, 346(23): 1773-1780
    [234] Moses JW, Leon MB, Popma JJ, Fitzgerald PJ, Holmes DR, O'Shaughnessy C, Caputo RP, Kereiakes DJ, Williams DO, Teirstein PS, Jaeger JL, Kuntz RE, SIRIUS Investigators. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N Engl J Med, 2003, 349(14): 1315-1323
    [235] Schampaert E, Cohen EA, Schluter M, Reeves F, Traboulsi M, Title LM, Kuntz RE, Popma JJ, C-SIRIUS Investigators. The Canadian study of the sirolimus-eluting stent in the treatment of patients with long de novo lesions in small native coronary arteries (C-SIRIUS). J Am Coll Cardiol, 2004, 43(6): 1110-1115
    [236] Moussa I, Leon MB, Baim DS, O’Neill WW, Popma JJ, Buchbinder M, Midwall J, Simonton CA, Keim E, Wang P, Kuntz RE, Moses JW. Impact of sirolimus-eluting stents on outcome in diabetic patients: a SIRIUS (SIRolImUS-coated Bx Velocity balloon- expandable stent in the treatment of patients with de novo coronary artery lesions) substudy. Circulation, 2004, 109(19): 2273-2278
    [237] Morice MC, Serruys P, Constantini C, Wuelfert E, Wijns W, Fajadet J, Colombo A, Guagliumi G, Molnar F, Hayashi EB, Sousa JE, Perin M. Three-year follow-up of the RAVEL study: a randomized study with the Sirolimus-eluting Bx VelocityTM stent in the treatment of patients with De Novo native coronary lesions. J Am Coll Cardol, 2004, 43(5 Suppl): 87A-88A
    [238] Schofer J, Schluter M, Gershlick AH, Wijns W, Garcia E, Schampaert E, Breithardt G, E-SIRIUS Investigators. Sirolimus-eluting stents for treatment of patients with long atherosclerotic lesions in small coronary arteries: double-blind, randomized controlled trial (E-SIRIUS). Lancet, 2003, 362(9390): 1093-1099
    [239] Wijns W, Schofer J, Breithardt G, Gershlick AH, Garcia E. The European multicentre, randomized, double-blind study of the sirolimus- eluting stent in the treatment of patients with de novo coronary artery lesions (E-SIRIUS): 1-year clinical outcomes. Presented at the ESC Congress 2003, August 30-Seprember 3, 2003, Vienna, Austria. Abstract 1493 Eur Heart J, 2003, 24(5 Suppl 1): 267
    [240] McFadden EP, Stabile E, Regar E, Cheneau E, Ong AT, Kinnaird T, Suddath WO, Weissman NJ, Torguson R, Kent KM, Pichard AD, Satler LF, Waksman R, Serruys PW. Late thrombosis in drug-eluting coronary stents after discontinuation of antiplatelet therapy. Lancet, 2004, 364(9444): 1519-1521
    [241] Joner M, Finn AV, Farb A, Mont EK, Kolodgie FD, Ladich E, Kutys R, Skorija K, Gold HK, Virmani R. Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol, 2006, 48(1): 193-202
    [242] Bushel P, Kim JH, Chang W. Two serum response elements mediate transcriptional repression of humam smooth muscle α-actin promotor in ras-transfected cells. Oncogene, 1995, 10: 1361-1370

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700