外源NO缓解黄瓜、油菜幼苗镉胁迫的生理效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镉(Cd)是极易富集的重金属元素之一,近年来,随着工业生产的迅猛发展、农业污水灌溉及化肥农药的大量使用,致使我国很多地方土壤中镉含量超标,导致作物生长受抑制,影响产量。黄瓜(Cucumis sativus L.)和油菜(Brassica campestris L.)是我国主要的蔬菜作物,但易发生重金属(如镉)毒害。NO是生物体中的一种重要的氧化还原信号分子,可参与植物生长、发育、抗病、抗逆等生理过程。本试验采用水培的方法,研究了镉对黄瓜和油菜幼苗的伤害抑制机理,并探讨了外源NO供体硝普钠(Sodium nitroprusside, SNP)对黄瓜及油菜幼苗镉毒害的缓解效应。主要
     研究结果如下:
     1.随Cd浓度增加,黄瓜和油菜幼苗生长受到明显抑制,光合色素含量降低;Cd处理使黄瓜净光合速率(Pn)和气孔导度(Gs)下降,而胞间二氧化碳浓度升高,叶绿素荧光参数Fv/Fo、Fv/Fm、ΦPSII降低,并随着Cd离子浓度的增大,降低程度越严重;丙二醛(MDA)和脯氨酸(Pro)含量随着Cd处理浓度的增大而增加;超氧化物歧化酶(SOD)、过氧化氢酶(CAT)活性也有不同程度的下降;随着Cd处理浓度的增加POD活性也发生变化,与对照相比,镉毒害黄瓜幼苗的POD活性在低浓度100μmol·L-1时增大,在高浓度的Cd处理时降低,并随着Cd处理浓度的增大,其降低程度越显著,而镉毒害油菜幼苗的POD活性随着Cd处理浓度的增大而增大,结果表明,300μmol·L-1的Cd浓度胁迫效果最为显著。
     2.外源NO明显缓解了Cd对黄瓜、油菜幼苗生长的抑制,与Cd处理相比,其株高、茎粗等生长指标明显增大;SNP处理使Cd胁迫下黄瓜、油菜幼苗的光合色素含量显著提高;Pn、Fv/Fo、Fv/Fm升高,ΦPSII也得以缓解;SOD、CAT、POD活性也显著升高;SNP处理降低了Cd胁迫下黄瓜、油菜幼苗的MDA和Pro含量,缓解了Cd胁迫,结果表明,300μmol·L-1浓度的SNP缓解效果最为显著。但SNP的缓解效果还是有一定差异的,说明SNP副产物对幼苗生长也有抑制作用;铁氰化钾SF作为氰化物提供CN-模拟SNP副产物对幼苗的影响,从而也证明了SNP对Cd胁迫的缓解作用。
     3.抑制剂(抑制剂1为L-硝基精氨酸(Nitro-L-arginine),抑制剂2为钨酸镁(Magnesium tungstate-325 mesh))的处理,使黄瓜幼苗的株高和茎粗减小;黄瓜幼苗叶片的叶绿素含量明显降低;其叶片荧光参数Fv/Fo、Fv/Fm、ΦPSII显著降低;抑制剂的加入使POD活性明显降低,使MDA和脯氨酸含量增加,这表明抑制剂抑制了SNP对Cd胁迫黄瓜幼苗生长的缓解作用,加重了Cd胁迫引起的活性氧的伤害,可以看出外源NO供体SNP对Cd胁迫的缓解作用。
Cucumber (Cucumis sativus L.) and Chinese cabbage (Brassica campestris L.) are main vegetables, planted widely in greenhouse and outdoor in China. Cadmium is one of the most aggressive and persistent heavy metals that may be present in natural environments as a by-product of human activities; among them, application of phosphoric fertilizers, pesticides and sewage farming constitute the major Cd inputs into agricultural soils. Cd concentration in soil is over standard in many places. Excess Cd inhibited the growth and yield of plants, including cucumber. Nitric oxide (NO) is a versatile signal molecule that functions through interaction with cellular targets via either redox or additive chemistry, and is involved in many key physiological processes of plants, such as growth, development, disease resistance and stress resistance. In this experiment, we studied the effects and the mechanism of that NO alleviate the toxic hazard that Cd to cucumber and chinese cabbage. The main results were as follows:
     1 Plant growth, chlorophyll and carotenoid contents, net photosynthetic rate (Pn) and stomatal conductance (Gs) of cucumber and chinese cabbage decreased with increasing concentration of Cd, while intracellular CO2 (Ci) significantly increased. The primary maximum photochemical efficiency of PSII(Fv/Fm), the maximum yield of the photosystem II photochemical reactions (Fv/Fm) and the quantum yield of photosysytem II electron transport (ΦPSII) were significantly inhibited by excess Cd, and was more significant with the increasing concentration of Cd. MDA and Pro contents, increased, superoxide dismutase (SOD) and catalase (CAT) activities decreased with the increasing concentration of Cd. Low concentration of Cd increased POD activity while high concentration dramatically inhibited its activity. The results showed that the Cd concentration of 300μmol·L-1 had the most significant effect.
     2 Application of SNP significantly alleviated the inhibition of plant growth of cucumber and chinese cabbage seedlings under Cd stress, and increased the contents of photosynthetic pigment significantly. Pn, Fv/Fm, Fv/Fo,ΦPSII and activities of SOD, CAT and POD increased with application of SNP, whereas MDA content decreased with application of SNP. The results showed that 300μmol·L-1 concentration of SNP had the most significant relief effect. However the application of SNP was different, this indicated that the by-products of SNP had inhibition. Potassium ferricyanide (SF) as the by-products of simulates SNP, which offered CN- affected the seedlings.
     3 Application of inhibitors significantly decreased photosynthetic pigment content, Pn, Fv/Fm, Fv/Fo,ΦPSII, and POD activity. At the same time, inhibitors increased the content of MDA and Pro, which indicated that inhibitors aggravated the stress of Cd to cucumber and chinese cabbage seedling. Thus, we can see that application of SNP was an effective way to alleviate the toxic hazard of Cd to cucumber and chinese cabbage seedlings.
引文
陈桂珠.重金属对黄瓜籽苗发育影响的研究[J].植物学通报,1990,7(1):34-39
    陈明,沈文飚,阮海华等.一氧化氮对盐胁迫下小麦幼苗根生长和氧化损伤的影响[J].植物生理与分子生物学报,2004,30(5):569-576 程红焱,宋松泉.植物一氧化氮生物学的研究进展[J].植物学通报,2005,22(6):723-737
    陈英旭,林琦,陆芳.萝卜根系对环境中重金属铅、镉富集的修复作用[J].浙江大学学报(农业与生科学版),2006,(1),20:61-66
    陈世军,张明生,韦美玉.SNP处理的辣椒幼苗对Cd2+胁迫的生理响应[J].植物生理学通讯,2009,45(3):229-232
    陈新红,叶玉秀,庞润瑾.镉、铅对黄瓜种子发芽及幼苗生长的影响[J].中国蔬菜,2009,(8):18-22
    慈敦伟,姜东,戴廷波,等.镉毒害对小麦幼苗光合及叶绿素荧光特性的影响[J].麦类作物学报, 2005,25(5):88-91
    党锋,江荣风,夏立江.Cd、Zn处理对烤烟生长和烟株Cd量的影响[J].农业环境科学学报,2006,26(2):713-717
    樊怀福,郭世荣,张润花等.外源NO对NaCl胁迫下黄瓜幼苗生长和根系膜脂过氧化作用的影响[J].生态与农村环境学报,2007,23 (1):63-67
    冯建鹏,史庆华,王秀峰,洪艳艳.镉对黄瓜幼苗光合作用、抗氧化酶和氧化代谢的影响[J].植物营养与肥料学报.2009,15(4):970-974
    付世景,宗良纲,张丽娜,孙静克.镉、铅对板蓝根种子发芽及抗氧化系统的影响[J].种子,2007,3:22
    郭燕梅,王昌全,李冰.重金属镉对植物的毒害研究进展[J].陕西农业科学,2008.(3):122-125
    郭艳丽,台培东,韩艳萍,冯倩,李培军.镉胁迫对向日葵幼苗生长和生理特性的影响[J].环境工程学报,2009,3(12):2291-2296
    郭晓燕,袁玲.重金属Pb、Cd在石灰性褐土上对小白菜生长及产量的影响[J].山东农业科学,2006,1:49-55
    何俊瑜,任艳芳.镉胁迫对莴苣幼苗生长和光合性能的影响[J].西南农业学报,2009,22(4):922-926
    洪仁远,蒲长辉.镉对小麦幼苗的生长和生理生化反应的影响[J].华北农学报,1991,6(3):70-75
    黄益宗,朱永官,胡莹,刘云霞.玉米和羽扇豆、鹰嘴豆间作对作物吸收积累Pb、Cd的影响[J].生态学报,2006,5:184-191
    黄薇,王静,赵文明,林栖凤.渗透胁迫对春小麦根质膜H+-ATPase活力的影响及其与脯氨酸积累的关系[J].海南大学学报自然科学版,2002,20(1):33-36
    纪秀娥,许青华.水体镉污染对小麦种子萌发及幼苗生长的影响[J].安徽农业科学,2009,37(31):15193-15194,15237
    贾广宁.重金属污染的危害与防治[J].有色矿冶,2004,20(1):39-42 蒋明义,杨文英,徐江,等.渗透胁迫下水稻幼苗中叶绿素降解的活性氧损伤作用[J].植物学报.1994,36(4):289-295
    蒋文智,陈丽梅.镉对离体叶片光合、呼吸强度及细胞膜透性的影响[J].广西科学院学报,1994,6:84-92
    江行玉,赵可夫.植物重金属伤害及其抗性机理[J].应用与环境生物学报, 2001,1:93-100
    孔祥生,郭秀璞,张妙霞.Cd胁迫对玉米幼苗生长及生理生化的影响[J].华中农业大学学报,1999,18(2):111-113
    李其林,刘光德,赵中金,等.重庆市菜地土壤重金属污染现状与防治对策[J].农业环境与发展,2001:30-32
    李源,李金娟,魏小红.镉胁迫下蚕豆幼苗抗氧化能力对外源NO和H2O2的响应[J].草业学报,2009,18(16):186-191
    梁芳,郭晋平.植物重金属毒害作用机理研究进展[J].山西农业科学.2007,35(11):56-61
    梁五生,李德葆.一氧化氮(NO)对植物的生理和病理功能[J].植物生理学通讯,2001,54:109-136
    罗立新,孙铁珩,靳月华.Cd胁迫对小麦叶片细胞膜脂过氧化的影响[J].中国环境科学.1998,18(1):72-75
    刘开力,韩航如,徐颖洁,等.外源一氧化氮对盐胁迫下水稻根部脂质过氧化的缓解作用[J].中国水稻科学. 2005,19 (4):333-337
    刘海亮,崔世民,李强,等.镉对作物种子萌发、幼苗生长及氧化酶同工酶的影响[J].环境科学,1991,12(6):29-31,37
    鲁如坤,熊礼明,时正元.关于土壤一作物生态系统中Cd的研究[J].土壤学报,1992,24(3):129-132:137-141
    马向丽,魏小红,龙瑞军,等.外源一氧化氮提高一年生黑麦草抗冷性机制[J].生态学报.2005,25 (6):1269-1274
    孟紫强.环境毒理学基础[M].北京:高等教育出版社,2003 宁兵,翟丽雅,黄泽琴,孙嘉龙.农田生态系统中镉的形态与迁移转化研究进展[J].贵州农业科学,2009,37(10):192-194
    彭鸣,王焕校,吴玉树.镉、铅诱导的玉米幼苗细胞超微结构的变化[J].中国环境科学,1991,11:426-431
    秦天才,吴玉树,王焕校.镉、铅及其交互作用对小白菜根系生理生态效应的研究[J].生态学报,1998,18(3):320-328.
    仇硕,张敏,孙延东,等.植物重金属镉(Cd2+)吸收、积累及耐性机理研究进展[J].西北植物学报,2006,26(12):2 615-2 622.
    任继平,李德发,张丽英.镉毒性研究进展[J].动物营养学报,2003,1-6
    邵国胜,谢志奎,张国平.镉胁迫对不同水稻基因型植株生长和抗氧化酶系统的影响[J].中国水稻科学,2006,20(2):189-193
    史庆华,赖齐贤等.一氧化氮在植物中的生理功能[J].细胞生物学杂志[J]. 2005,27:39-42
    孙光闻,朱祝君,方学智.镉对小白菜光合作用及叶绿素荧光参数的影响[J].植物营养与肥料学报,2005,11(5):700-703
    孙赛初,王焕校,李启任.水生维管束植物受镉污染后的生理变化及受害机制初探[J].植物生理学报,2004,30:469-474
    汤春芳,刘云国,曾光明.镉胁迫对萝卜幼苗活性氧产生、脂质过氧化和抗氧化酶活性的影响[J].植物生理与分子生物学学报,2004,30:469-474
    屠洁,沈文飚,徐朗莱.一氧化氮对小麦叶片老化过程的调节[J].植物学报,2003,45(9):1055-1062
    田丽梅,徐震,张建顺.天津市蔬菜生产环境污染现状及治理对策[J].天津农业科技,2001,2:13-15
    徐春花,朱萍,黄卫红,卫冒其,吴卫芳.农田中重金属镉污染对食用农产品安全性的影响研究[J].上海农业科技,2009,(4):40-43
    徐秋曼,陈宏,程景胜,等.镉对油菜叶细胞膜的损伤及细胞自身保护机制初探[J].农业环境保护. 2001,20(4):235-237
    徐素琴,程旺大.油菜、芥菜萌芽与幼苗生长的耐镉性差异[J].浙江农业科学,2005,6:436-438
    徐照丽,吴启堂,依艳丽.不同品种菜心对镉抗性的研究[J].生态学报,2002,(4):571-576
    许大全.光系统Ⅱ反应中心的可逆失活及其生理意义[J].植物生理学通讯.1999.8,(4):273-276
    任继凯,陈清朗,陈灵芝,等.土壤镉污染与作物[J].植物生态学与地植物学丛刊, 1982,6(2):131-141.
    任安芝,高玉葆,刘爽.铬、镉、铅胁迫对青菜叶片几种生理生化指标的影响[J].应用与环境生物学报,2000,6(2):112-116
    任小林,张少颖,于建娜.一氧化氮与植物成熟衰老的关系[J].西北植物学报,2004,24(1):167-171
    阮海华,沈文飚,叶茂炳等.一氧化氮对盐胁迫下小麦叶片氧化损伤的保护效应[J].科学通报,2001,46(23):1993-1997
    邵云,李春喜,李向力,等.灌浆期Cd、Cu、Zn胁迫对小麦旗叶生理活动的影响[J].西北农业学报,2006,15(4):108-111
    史吉平,董永华.重金属胁迫对小麦幼苗超氧化物歧化酶活性的影响[J].国外农学-麦类作物,1996,3:33-34
    宋玉芳,许华夏,任丽萍,等.重金属对土壤中萝卜种子发芽与根生长抑制的生态毒性[J].生态学杂志,2001,20(3):4-8
    王国莉,郭振飞.植物耐冷性分子机理的研究进展[J].植物学通报. 2003,20 (6) : 671- 679
    王宏镔,束文胜,蓝崇玉.重金属污染生态学研究现状与展望[J].生态学报,2005,25(3):596-605
    汪洪,赵世诚,夏文建.不同浓度镉胁迫对玉米幼苗光合作用、膜质过氧化和抗氧化酶活性的影响[J].植物营养与肥料学报,2008,14(1):36-42
    王宏镇,王焕校,文传浩.镉处理下不同小麦品种几种解毒机制探讨[J].环境科学学报,2002
    王辉,张文合.不同浓度的镉胁迫对大豆幼苗生长的影响[J].聊城大学学报(自然科学版).2008,21(3):76-78
    王凯荣.我国农田镉污染现状及其治理利用对策[J].农业环境保护,1997,16(6):274-278
    王淼,李秋荣,付士磊等.外源一氧化氮对干旱胁迫下杨树光合作用的影响[J].应用生态学报,2005,16(2):218-222.
    王淼,李秋荣,付士磊等.一氧化氮对杨树耐旱性的影响[J].应用生态学报,2005,16(5):805-810
    王松华,卫红,周正义,陈庆榆.水杨酸对小麦镉毒害的缓解效应[J].种子,2005,24:15-17
    王素平,李娟,郭世荣等. NaCl胁迫对黄瓜幼苗植株生长和光合特性的影响[J].西北植物学报, 2006, 26 (3) : 0455-0461
    王新,梁仁禄.土壤、水稻系统中重金属复合污染物交互作用及生态效应的研究[J].生态学杂志,2000,19(4):38-42
    王新,吴燕玉,熊先哲.改性措施对复合污染土壤重金属行为影响的研究[J].应用生态学报,1995,6(4):440-444
    王逸群,郑金贵,陈文列,等.Hg2+、Cd2+污染对水稻叶肉细胞伤害的超微观察[J].福建农林大学学报:自然科学版,2004,33(4):409-413
    王宪叶,沈文飚,徐朗莱.外源一氧化氮对渗透胁迫下小麦幼苗叶片膜脂过氧化的缓解作用[J].植物生理与分子生物学学报,2004,30(2):195-200
    吴燕玉,陈涛.沈阳张士灌溉区Cd污染生态研究[J].生态学报,1989,9(1):21- 26
    肖强,郑海雷.植物中的一氧化氮信号分子[J].生物学通报,2005,40(11):17-18
    肖强,陈娟,吴飞华,等.外源NO供体硝普钠(SNP)对盐胁迫下水稻幼苗中叶绿素和游离脯氨酸含量以及抗氧化酶的影响[J].作物学报.2008,34(10) : 1849?1853
    徐勤松,施国新,郝怀庆.Cd、Cr(VI)单一及复合污染对菹草叶绿素含量和抗氧化酶系统的影响[J].广西植物,2001,21(1):87-90
    徐素琴,程旺大.油菜、芥菜萌芽与幼苗生长的耐镉性差异[J].浙江农业科学,2005,6:436-438
    杨丹慧.重金属离子对高等植物光合膜结构与功能的影响[J].植物学通报,1991,8:26-29
    杨丹慧,许春辉,王可玢,等.镉离子对菠菜叶绿体色素蛋白质复合物及激发能分配的影响[J].植物学报,1990,32(3):198-204
    杨居荣,贺建群,蒋婉茹.Cd污染对植物生理生化的影响[J].农业环境保护,1995,14(5):193-197.
    杨福愉.生物膜的流动性.生物化学与生物物理进展[J].1981,(5):1-6
    杨颖丽,张峰,张立新,郭进魁,毕玉蓉.盐胁迫对小麦根质膜ATPase活性的影响[J].西北植物学报,2003,23(3):401-405
    严重玲,洪业汤,付舜珍,方重华,雷基祥,沈芹.Cd、Pb胁迫对烟草叶片中活性氧清除系统的影响[J].生态学报,1997,17(5),488-492
    曾翔,张玉烛,王凯荣.镉对水稻种子萌发的影响[J].应用生态学报,2007,18(7):1665-1668
    赵世杰,刘华山,董新纯主编.植物生理学实验指导[M].中国农业科技出版社,1998
    赵世杰等.植物生理学实验指导[M].北京:中国农业科学技术出版社,2002:140-141
    张宝悦,王激清,刘社平,茹淑华.重金属镉污染对蔬菜的影响及防治对策[J].长江蔬菜,2006,3:34-36
    张国屏,深见元弘,关本根.不同镉水平下小麦对镉及矿质养分吸收和积累的品种间差异[J].应用生态学报,2002,13(4):454-458
    张义贤.重金属对大麦(Hordeumvulgare)毒性的研究[J].环境科学学报,1997,17(2):199-205
    张金彪,黄维南.镉对植物的生理生态效应的研究进展[J].生态学报,2002,20(3):514-523
    张芬琴,沈振国,刘友良.A1和A1+Ca对小麦幼苗根尖质膜、液泡膜微囊ATP酶和膜流动性的影响[J].植物生理学报,2000,26(2):105-110
    张金彪.镉胁迫对草莓光合的影响[J].应用生态学报,2007,18(7):1673-1676
    张少颖,任小林,程顺昌,等.外源一氧化氮供体浸种对玉米种子萌发和幼苗生长的影响[J].植物生理学通讯,2004,40(3):309-310
    张文利,沈文飚,徐朗莱.一氧化氮在植物体内的信号分子作用[J].生命的化学,2002,22(1):61-62
    张艳艳,刘俊,刘友良.一氧化氮缓解盐胁迫对玉米生长的抑制作用[J].植物生理与分子生物学学报.2004,30(4):455-459
    赵建忠,李冉,封朝晖.镉在小白菜体内的累积规律及其生物效应的研究[J].中国土壤与肥料,2009(4):40-43
    周毅.土壤镉污染对作物的影响[M].国外农业环境保护,1986,12-18
    Alscher R q Donahue J L, Cramer C L.Reactive oxygen species and antioxidant: relationship in green cells.Physiol[J]. Plant.1997,100,224- 233
    Babani F,Lichtenthaler H K.Light-induced and age-dependent development of chloroplasts in etiolated barley leaves as visualized by determination of photosynthetic pigments, assimilation rates and different kinds of chlorophyll fluorescence ratios[J].J.Plant Physiol.1996,148:555-566
    Barroso J B,Corpas FJ,Carteras A et al.Localization of nitric oxide synthase in plant peroxisomes[J].Journal of Biological Chemistry.1999,274(51): 36729-36733
    BarcelóJ,Poschenrieder C.Plant water relations as affected by heavy metal stress:a review.J[J].Plant.Nutr.1990,13:1-37
    BASZYNSKIT,WAJDA L,KROLM,et al.Photosynthetic activities of cadmium reated tomato[J]. Physiol Plant.1980,48:365-370
    Belogni MV et al. Trends Plant Sci.2001, 6:508
    Beligni M V,Lamattina L.Is nitric oxide toxic or protective[J].Trends in Plant Science.1999b,4(8):299-300
    Beligni M V,Lamattina L. Nitric oxide stimulates seed germination and deetio- n,and inhibits hypocot elomgation.Three light inducible responses in plants[J].Planta.2000,210:215-22
    Beligni M V, Lamattina L.Nitric oxide:a non-traditional regulator of plantgrowth[J].Trends Plant Sci.2001,6(11):508-509
    Beligni M V,Lamattina L.Nitric oxide interferes with plant photo-oxidative stress by detoxifying reactive oxygen species.Plant, Cell& Environme- nt[J].2002,25(6):737-748
    Booth B.The added danger of counterfeit cigarettes[J].Environmental science and Technology.2005,39,34
    Boussama N, Ouariti O, Suzuki A, et al. Cd stress on nitrogen assimilation[J]. Plant Physiol.1999,155:310-317
    BrzoskaM, KaminskiM. Changes in the structure and function of the kidney of rats chronically exposed to cadmium: Biochemical and histopathological studies [ J ].Arch Toxicol. 2003, 77(6):344-352
    Cagno R di,Guidi L.,Stefani A.Effects of cadmium on growth of Helianthus annuus seedlings:physiological aspects[J].New Phytologist.1999,144 (1):65-71
    Cakmak I, Marschner H . Magnesium deficiency and high light intensity on enhance activities of superoxide dismutase, ascorbate peroridase and glutathione reductase in bean leaves[J]. Plant Physio.1992, 98:1222- 1227
    Cataldo D A,Garland T R,Wildung R E.Cadmium distribution and chemical fate in soybean.Plant Physioh[J] .1981,68:835-839 Chaneryrl, Reeves P G,Ryan J A,et al.An improved understanding of soil Cd risk to humans and low cost methods to phytoextract Cd from contaminated soils to prevent soil Cd risks[J].Biometals.2004,17:549- 553
    Chaoui A,Mazhoudi S,Ghorbal M H,El Ferjani E.Cadmium and zinc induction of lipid peroxydation and effects on antioxidant enzyme activities in bean(Phaseolus vulgaris L.) [J].Plant Sci.1997,127:139-147
    Chen S.L,Kao C.H.Cd induced changes in praline level and peroxidase activity in roots of rice seedings.J[J]. Plant Growth Reguul.1995,17:67- 71
    Chugh L K,Sawhney S K.Photosynthetic activities of Pisum sativum seedlings grown in presence of cadmium[J]. Plant Physiol.Biochem.1999,37(4):297 -303
    Cooney R V,Harwood P J,Custer I J et al.Light-mediated conversion of nitrogen dioxide to nitric oxide by carotenoids[J].Environmental Health Perspectives.1994,102(5):460-462
    Cutler J M,Rains D W.Characterization of cadmium uptake by plant tissue[J].Plant physiol.1974,54:67-71
    Das P,Samantaray S,Rout G R. Studies on cadmium toxicity in plants: a revie- w[J]. Environmental Pollution.1998, 98: 29-36
    Delledonne M,Xia Y,Dixon R A et al.Nitric oxide functions as a signal in plant disease resistance[J].Nature.1998,394(6693):585-588
    Ding B Z, Shi G X, Xu Y, et al. Physiological responses of A lternanthera philoxeroides (Mart.)Griseb leaves to cadmium stress[J].Environmental Pollution. 2007,147 (3):800-803
    Dumer J, Klessig DF (1999). Nitric oxide as a signal in plants[J]. Curr Opin Plant Biol. 2: 369-374
    Durner J,Klessig D F.Erratum:Nitric oxide as a signal in plants[J].Current Opinion in PlantBiology.1999,2(5):269-374
    Durner J,Wendehenne D,Klessig D F.Defense gene induction in tobacco by nitric oxide,cyclic G M P,and cyclic ADP-ribose[J].Proceedings of the National Academy of Sciences.1998,95(17):10328-10333
    Florijn P J,Van Beusichem M L.Uptake and distribution of cadmium in maize inbred lines[J].Plant and Soil.1993,150:25-32
    Foyer C.H.,Looez-Delgado H,Dat J.F.,et al.Hydrogen peroxide- and lutathion- eassociated mechanisms of acclamatory stress tolerance and ignaling[J]. Physiol Plant.1997,100:241-254
    Foyer C H,Noctor G.Oxygen processing in photosynthesis: regulation and signaling[J].New Phytol.2000,146:359-388
    Furchgott R F.Role of endothelium in responses of vascular smooth muscle[J].Circul.Res.1983,53:557-573
    Giba Z, Crubisic D,Todorovic S,Sajc J,Konjecic R,Stojakovic D.Effect ofnitric oxide-releasing compounds on photochrome-controlled germination of Empress tree seeds[J].Plant Growth Reg.1998,26:175-181
    GILJ,MORAL R, GOMEZ I,et al.Effects of cadmium on physiological and nutritional aspects of tomato plant I. ChlorophyⅡ(a and b) and carotenoids [J].Fresenkius Environ Bull.1995,4(4):430-435
    Gouvêa CMCP, Souza J F, Magalhes CAN.NO·-releasing substances that induce growth elongation in maize root segments[J].Plant Growth Reg.1997,21:183-187
    Grant J T, Loake G J.Role of reactive oxygen intermediates and cognate redox signaling in disease resistance[J].Plant Physiol.2000,124:21-29
    Graziano M,Beligni M V,Lamattina L.Nitric oxide improves internal iron availability in plants[J].Plant Physiol.2002,130:1852-1859
    Guttormsen G,Singh B R,Jeng B R.Cadmium concentration in vegetable crops grown in a sandy soil as affected by Cd levels in fertilizer and soil pH[J].Fertilizer.Res.1995,41(1):27-32
    Guo Y T,Marschner H.Uptake,distribution,and binding of cadmiwn and nickel in different plant species[J].J.Plaet Nutr.1995,18(12):2691-2706
    Hall J L. Cellularmechanisms for heavymetal detoxification and tolerance[J]. Journal of Experimental Botany.2002, 53: 1-11
    Hardiman R T,Jacoby B.Absorprion and translocation of Cd in bush bean (Phaseolus vulgaris) [J].Physiol.Plant.1984,61:670-674
    Hart J J,Welch R M,Norvell W A,Sullivan L A,Kochian L V. Characterization of cadmium binding,uptake,and translocation in intact seedlings of bread and durum wheat cultivars[J].Plant Physiol.1998,116:1413-1420
    He J Y, Zhu C, Ren Y F, et al. Genotyp ic variation in grain cadmium concentration of lowland rice[J]. Journal of Plant Nutrition and Soil Science.2006, 169: 711-716
    Hendry G.A.F.,Baker A.J.M.,Ewart C.F.Cd tolerance and toxicity oxygenradical processes and molecular damage in Cd-tolerant and Cd- sensiti- veclones of Holcus lanatus,Acta Bot.Neerl.1992,41: 271–281
    Kazuo N, Hiroko N.Cadmium-induced renal dysfunction: new mechanism, treatment and prevention[J].Trace Elements in Experim Med. 1998, 11: 275 - 288
    Kopyra M, Gwozdz EA (2003). Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus[J]. Plant Physiol Biochem. 41: 1011-1017
    Krupa Z.Cadmium induced changes in the composition and structure of the light-harvesting comp lex in radish cotyledons[J].Physiol Plant. 1988, 73: 518-524
    Larsson E H,Bordman J F,Asp H.Influence of UV-B radiation and Cd2+ on chlorophyll fluorescence,growth and nutrient content in Brassica napus[J].Expri.Bot.1998,49:1031-1039
    Laspina NV, Groppa MD, Tomaro ML, Benavides MP (2005). Nitric oxide protects sunflower leaves against Cd-induced oxidative stress[J]. Plant Sci.169 (2): 323-330
    Lee S M, Leustek T.Distribution of cadmium and induced Cd binding proteins in roots,stems and leaves of Phaseolus vulgaris[J]. Plant Sci.1999,141: 201-207
    Lee S,Petros D, Moon J S,Ko T S,Goldsbrough P B, Korban S S.Higher levels of ectopic expression of Arabidopsis pytochelatin synthase do not lead to increased cadmium tolerance and accumulation[J].Plant Physiol Biochem.2003,41:903-910
    Leita L,De Nobili M,Cesco S,Mondini C.Analysis of intercellular cadmium forms in roots and leaves of bush bean[J].Plant Nutr.1996,19:527-533 Leshem Y Y, Hamaraty E. Plant aging: the emission of NO and ethylene and effect of NO-releasing compounds on growth of pea (Pisum sativum) foliage[J]. Journal of Plant physiology.1996,148:258-263
    LeshemY Y, Wills R B H, Ku V V V. Evidence for the function of the freeradi-cal freeradical as nitric oxide(NO)-an endogenous maturation and senescence regulation factor in higher plant[J]. Plant Physiol. Biochen. 1998,36(11):825-833
    Lin R Z, Wang X R, Luo Y, et al. Effects of soil cadmium on growth, oxidative stress and antioxidant system in wheat seedlings( Triticum aestivum L. )[J]. Chemosphere. 2007, 69 (1):89-98
    Mata CG,Lamattina L Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress[J]. Plant Physiol.2001, 126(3):1196-1204
    Mata C G,Lamattia L.Nitric oxide and abscisic acid cross talk in guard cells[J].Plant Physiology.2002,128(3):790-792 Martins,L.L.,Mourato,M.P.Effect of Excess Copper on Tomato Plants:Growth Parameters,Enzyme ctivities,Chlorophyll,and MineralContent[J].J.Plant Nutr.2006,29(12):2179-2198
    MiloneM T, Sgherri C, ClijstersH. Antioxidative responses ofwheat treated with realistic concentration of cadmium [J]. Environmental and Experim -ental Botany. 2003, 50: 265 - 276
    MORALR,GOMEZ I,PEDRENOJN, et al. Effeet of cadmiumon nutrient distribution, yield and growth of tomato grown in soilless culture[J]. Plant Nutri.1994,17(6):953-962
    Neill S J L,Desikan R,Clarle A,Hancock J T.Nitric oxide is a novel component of abscisic acid signal in stomatal guard cells[J]. Plant Physiol.2002,128: 13-16
    Pagnussat G C,Luciana M,Lamattina L.Nitric oxide is required for root organ- ogenesis[J].Plant Physiol.2002,129:954-956
    Pedroso M C,Magalhaes J R,Durzan D.Nitric oxide induced cell death in Taxics cells[J].Plant Sci.2000,157:173-180
    Perfus B L, Leonhardt N, VavasseurA, et al. Heavymetal toxicity: cadmium permeates through calcium channels and disturbs the plant water status [J].Plant Journal.2002, 32: 539-548
    Prasad D D K, Prasad A R K. Effect of lead andmercury on chlorophylls synth-esis in mung bean seedlings[ J ]. Phytochemistry.1987,26: 881 - 883
    Ramos I, Esteban E, Lucena J J, et al. Cadmium up take and subcellular distrib-ution in plants of Lactuca sp. Cd-Mn interaction [ J ].Plant Science, 2002, 162: 761-767
    Ribeiro E A,Cunha F Q,Tamashiro W M S C et al.Growth phase-dependent subcellular localization nitric oxide synthase in maize cells[J].FEBS Letter.1999,445(2-3):283-286
    Rockel P, Strube F, Rockel A. Regulation of nitric oxide(NO)production by plant nitrate reductase in vivo and in vitro[J].J.Exp.Bot. 2002,53:103-110
    Romero-Puertas M C,McCatthy I,Sandalio L M,PaIma J M,Corpas F J, Gómez M,Del Rio L A.Cadmium toxicity and oxidative metabolism of pea leaf peroxisomes[J].Free Rad.Res.1999,31:S25-S31
    Ruan H H,Shen W B,Xu L L.Nitric oxide modulates the activities of plasma membrane H+-ATPase and PPase in wheat seedling roots and promotes the salt tolerance against salt stress[J].Acta Botanica Sinica.2004,46(4): 415-422
    Ruderman M A.Possible consequence of nearby surpernove explosions for atmospheric ozone and terrestrial life[J].Science.1974,184:1079-1081 Siedlecka A,Krupa Z.Cd/Fe interaction in higher plants-its consequences for the photosynthetic apparatus.Photosynthetica.1999,36:321-331
    Soisungwan S, Jason R B, Supanee U, et al1 A global perspective on cadmium pollution and toxicity in nonoccupationally exposed population[J].Tox- icology Letters.2003,(137):65-83
    Somashekaraiah B V,Padmaja K,Prasad A R K.Phytotoxicity of cadmium ions on germinating seedlings of mung bean(Phaseolus vulgaris)-involvem- ent of lipid peroxides in chlorophyll degradation.Physiol[J].Plant.1992, 85:85-89
    Suzuki N, Koizumi N, Sano H. Screening of cadmium responsive genes inArabidop sis thaliana [J]. Plant Cell Environmant.2001, 24: 1177 -1188
    Tanyolac D.,Ekmekc Y.,Unalan,S.Changes in photochemical and ntioxidant enzyme activities in maize(Zea mays L.)leaves exposed to excess opper[J].Chemosphere.2007,67:89-98.
    Uchida A,Jagendorf A T,HIbinot R.Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice[J]. Plant Sci.2002,163: 515-523
    Valcho D, Niels E N.Effect of heavymetals on peppermint and cornmint [J]. Plant and Soil.1996,178: 59-66
    Van Assche F, Clijsters H. Effects of heavymetal on enzyme activity in plant[J].Plant Cell Environ,1990,13(2):195-206
    Van camp W, van Montagu M, Inze D.H2O2 and NOx redox signals in disease resistance[J].Trends Plant Sci.1998,3:330-334
    Verma S,Dubey R S.Effect of cadmium on soluble sugars and enzymes of their metabolism in rice.Biol[J].Plant.2001,44:117-123
    Wildt J,Kley D,Rockel A et al.Emission of NO from several higher plant species[J].Journal of Geophysical Research.1997,102(D5):5919-5927.
    Yamasaki H,Sakihama Y,Takahashi S.An alternative pathway for nitric oxide production in plant:new feather of an old enzyme[J].Trends in Plant Science.1999,4(4):128-129
    Yamasaki H,Sakihama Y.Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase:in vitro evidence for the NR-dependent formation of active nitrogen species[J]. FEBS Lett.2000, 468:89-92
    Zhang G P,Fukami M,Sekimoto H.Influence of cadmium on mineral concentr- ations and components in wheat genotypes differing in Cd tolerance at seedling stage[J].Field Crops Res.2002,77:93-98
    Zhang H,Shen W B,Xu L L.Effects of nitric oxide on the germination of wheat seeds and its reactive oxygen species metabolisms under osmotic stress[J].Acta Botanica Sinica.2003,45(8):901-905
    Zhao Z,Chen G,Zhang C.Intraction between reactive oxygen species and nitric oxide in drought-induced abscisic acid synthesis in root tips of wheat seedlings[J].J.Plant Physiol.2001,28:1055-1061

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700