外源脱落酸(ABA)对Na_2CO_3胁迫下黄瓜幼苗生理化特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验以黄瓜(Cucumis sativus L.)幼苗为试材,对其叶面喷施脱落酸溶液,研究了碱胁迫(60 mmol·L-1 Na2CO3)下外源脱落酸(ABA)对黄瓜幼苗生长指标、膜脂过氧化、保护酶活性、气体交换参数、叶绿素含量和叶绿素荧光参数的影响,以期为ABA在黄瓜生产上的应用提供科学依据。试验结果如下:
     1.碱胁迫显著降低了黄瓜幼苗的株高、根茎叶的干鲜重以及根系活力,但显著增加了黄瓜幼苗的脯氨酸(Pro)含量;外施不同浓度ABA能够缓解碱胁迫下黄瓜幼苗株高、各器官干鲜重和根系活力的降低,并增加Pro含量,其中以5×10-5 mol·L-1的ABA处理效果最好。
     2.碱胁迫下,黄瓜幼苗叶片的丙二醛(MDA)含量和细胞膜透性增加,通过叶施5×10-5 mol·L-1 ABA可显著降低黄瓜幼苗叶片在碱胁迫下的膜脂过氧化程度和明显缓解对细胞膜的伤害。
     3.随着碱胁迫时间的延长,黄瓜幼苗叶片的超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性呈显著下降趋势,而过氧化物酶(POD)和抗坏血酸过氧化物酶(APX)活性呈先升高后降低的变化趋势;外施5×10-5 mol·L-1 ABA可提高黄瓜幼苗在碱胁迫下SOD、POD、CAT和APX的活性,从而使叶片抗氧化能力增强。
     4.碱胁迫降低了黄瓜幼苗的净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr),提高了其胞间CO2浓度(Ci);通过叶面喷施5×10-5 mol·L-1 ABA提高了碱胁迫下黄瓜幼苗的Pn和Tr,降低了Gs和Ci。
     5.黄瓜幼苗的叶绿素a、叶绿素b和叶绿素总含量随着碱胁迫处理时间的延长呈先升高后降低的趋势,而叶绿素a/b的变化则是先急剧下降后缓慢上升;外施5×10-5 mol·L-1 ABA可提高黄瓜幼苗在碱胁迫下的叶绿素含量。
     6.外施5×10-5 mol·L-1 ABA可缓解碱胁迫导致的黄瓜幼苗叶片PSⅡ最大光化学效率(Fv/Fm)、PSⅡ有效光化学效率(Fv'/Fm')、PSⅡ实际光化学效率(ФPSⅡ)、光化学荧光淬灭系数(qP)、PSⅡ电子传递速率(ETR)、PSⅡ光化学速率(PCR)和PSⅡ用于光化学反应的能量(P)的下降及初始荧光(Fo)、非光化学荧光淬灭系数(NPQ)、天线色素耗散的能量(D)和非光化学耗散的能量(E)的升高,在一定程度上防止Na2CO3胁迫对黄瓜幼苗叶片PSⅡ反应中心的损伤,维持黄瓜幼苗叶片较高的光合活性。
By spraying abscisic acid on cucumber (Cucumis sativus L.) seedlings leaves, effects of exogenous abscisic acid on growth index, membrane lipid peroxidation, protective enzymes activities, gas exchange parameters, chlorophyll contents and chlorophyll fluorescence parameters in leaves of cucumber seedlings under alkaline stress were studied in this paper in order to provide scientific bases for ABA appliance in cucumber production. The results were showed below:
     1. The height of cucumber seedlings were significantly decreased under alkaline stress, and fresh and dry weight of root, stem and leaf and root activity as well, but significantly increased proline contents. It could alleviate the decrease of the height of cucumber seedlings, fresh and dry weight of root, stem and leaf and root activity, and increased proline contents when cucumber seedlings were treated with different concentrations of abscisic acid, which 5×10-5 mol·L-1 is the best for cucumber seedlings.
     2. Malondialdehyde content and membrane permeability of cucumber seedlings were increased under alkaline stress. After spraying 5×10-5 mol·L-1 abscisic acid on cucumber seedlings leaves, membrane lipid peroxidation was significantly decreased and membrance damage was alleviated.
     3. With the increasing of alkaline stress time, the activities of superoxide dismutase and catalase were significantly decreased, while the activities of peroxidase and ascorbate peroxidase were increased firstly and then decreased. After spraying 5×10-5 mol·L-1 abscisic acid on cucumber seedlings leaves, the activities of superoxide dismutase, peroxidase, catalase and ascorbate peroxidase were increased and the antioxidant capacity was enhanced.
     4. Alkaline stress caused net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate(Tr) of cucumber seedlings were decreased and its intercellular CO2 concentration(Ci) was increased. After spraying 5×10-5 mol·L-1 abscisic acid on cucumber seedlings leaves, net photosynthetic rate and transpiration rate were increased and stomatal conductance and intercellular CO2 concentration were decreased.
     5. With the increasing of alkaline stress time, the contents of chlorophyll a, chlorophyll b and total contents of chlorophyll were increased firstly and then decreased, but chlorophyll a/b dropped dramticly and then increased slightly. After spraying 5×10-5 mol·L-1 abscisic acid on cucumber seedlings leaves, the contents of chlorophyll were increased.
     6. After spraying 5×10-5 mol·L-1 abscisic acid on cucumber seedlings leaves, it could efficiently alleviate the decrease of photochemical maximum efficiency of PSⅡ(Fv/Fm), photochemical efficiency of PSⅡ(Fv'/Fm'), actual photochemical efficiency of PSⅡ(ФPSⅡ), photochemical quenching coefficien(tQp), the electron transport rat(eETR), photochemistry rate(PCR)and the ration of absorbed light in photochemistry(P)as well as the increase of minimal fluorescence(Fo), non- photochemical quenching coefficient(NPQ), the ration of thermal dissipation(D)and excess energy(E)in cucumber seedlings induced by alkaline stress.
引文
1.白文波,李品芳,李保国.NaCl和NaHCO3胁迫下马蔺生长与光合特性的反应[J].土壤学报,2008,45(2):328-335.
    2.陈珈,朱美君.玉米根微粒体ABA结合蛋白的性质及逆境胁迫的影响[J].植物生理学报,1996,22(1):63-68.
    3.陈靠山,周燮.脱落酸对线粒体Na+-K+ATPase活性的影响[J].植物学报,1995,37(5):368-373.
    4.段九菊,郭世荣,康云艳,等.盐胁迫对黄瓜幼苗根系生长和多胺代谢的影响[J].应用生态学报,2008,19(1):57-64.
    5.龚明.脱落酸对大麦和小麦抗盐性的效应[J].植物生理学通讯,1990,(3):14-18.
    6.胡建.四川天然脱落酸核心技术世界领先[J].中国食品报,2003,1:16-20.
    7.胡学俭,孙明高,夏阳,等.NaCl胁迫对无花果与海棠膜脂过氧化作用及保护酶活性的影响[J].西北植物学报,2005,25(5):937-943.
    8.康博文,李文华,刘建军,等.ALA对红掌叶片光合作用及叶绿素荧光参数的影响[J].西北农林科技大学学报,2009,37(4):98-102.
    9.柯裕州,周金星,卢楠,等.盐胁迫对桑树幼苗光合生理及叶绿素荧光特性的影响[J].林业科学研究,2009,22(2):200-206.
    10.李玉全,张海艳,渗法富.作物耐盐性的分子生物学研究进展[J].山东科学,2002,15(2):8-14.
    11.李远华,罗金耀.灌溉理论与技术[M].武汉:武汉大学出版社,2003,10:11-17.
    12.梁新华,许兴,徐兆桢.外源ABA对不同品种春小麦幼苗叶片叶绿素荧光动力学参数的影响[J].江苏农业科学,2004,4:24-26.
    13.刘德兵,魏军亚,崔百明,等.脱落酸对香蕉幼苗抗寒性的影响[J].热带作物学报,2007,28(2):1-4.
    14.刘甜甜,于影,赵鑫,等.转LEA基因烟草的NaHCO3抗性分析[J].分子植物育种,2006,4(2):216-222.
    15.刘祖祺,林定波.ABA/GA3调控特异蛋白质与柑桔的抗寒性[J].园艺学报,1993,20(4):335-340.
    16.陆卫,贾敬芬.外源脱落酸对谷子正常愈伤组织和耐盐愈伤组织生理生化特性的影响[J].植物生理学报,1997,23(1):61-66.
    17.马焕成,陈绍良,王沙生.脱落酸与胡杨抗盐性的关系[J].西南林学院学报,1998,18(1):8-14.
    18.马永贵,王生财.高寒盐生植物叶片中脯氨酸(Pro)和脱落酸(ABA)含量的研究[J].安徽农业科学,2007,35(23):7100-7101.
    19.钱琼秋,魏国强,朱祝军,等.不同品种黄瓜幼苗光合机构对盐胁迫的响应[J].科技通报,2004,20(5):459-463.
    20.盛艳敏,尹金植,石德成,等.盐碱协同胁迫对向日葵抗氧化酶系统的影响[J].中国生物化学与分子生物学报,2008,24(8):704-711.
    21.史庆华,朱祝军,钱琼秋,等.等渗Ca(NO3)2和NaCl胁迫对番茄光合作用的影响[J].植物营养与肥料学报,2004,10:188-191.
    22.孙菲菲,赵彦坤,李霞,等.高pH对拟南芥萌发和主根伸长的影响[J].中国农学通报,2007,23(7):285-289.
    23.谭巍巍,李凤山,张玉霞,等.氯化钠和碳酸钠对芦笋的胁迫效应比较[J].植物生理科学,2006,22(7):322-325.
    24.汤日圣,黄益洪,唐现洪.微生物源脱落酸(ABA)对辣椒苗耐冷性的影响[J].江苏农业学报,2002,24(4):467-470.
    25.汪月霞,孙国荣,陈刚,等.Na2CO3与NaCl胁迫下星星草幼苗叶绿素荧光参数的比较[J].江苏农业科学,2007,2:114-117.
    26.王爱国,邵从本,罗广华.丙二醛作为植物脂质过氧化指标的探讨[J].植物生理学通讯,1986,(2):55-57.
    27.王书宏,杜永吉.外源激素对干旱胁迫下草莓光合特性的影响[J].中国农学通报,2008,24(12):367-371.
    28.王伟,解建仓,黄俊铭,等.盐碱地治理新模式研究[J].水资源与水工程学报,2009,20(5):117-122.
    29.王玮,李德全,邹琦,等.水分胁迫下外源ABA对玉米幼苗根叶渗透调节的影响[J].植物生理学通讯,2000,36(6):523-526.
    30.王业遴,汪良驹,刘友良.脱落酸提高无花果耐盐性效应[J].植物生理学通讯,1990,(5):21-23.
    31.王遵亲.中国盐渍土[M].北京:科学出版社,1993:325-344.
    32.魏国强,朱祝军,方学智,等.NaCl胁迫对不同品种黄瓜幼苗生长、叶绿素荧光特性和活性氧代谢的影响[J].中国农业科学,2004,37(11):1754-1759.
    33.魏金凤,赵翔,张骁.脱落酸调节植物根系补偿生长机制分析[J].安徽农业科学,2009,37(26):12403-12405.
    34.吴成龙,尹金来,刘兆普,等.碱胁迫对菊芋幼苗生长及其光合作用和抗氧化作用的影响[J].西北植物学报,2006,26(3):447-454.
    35.吴楚,王政权.脱落酸及其类似物与植物抗寒性之间的关系[J].植物生理学通讯,2000,36(6):562-567.
    36.吴三桥,丁锐,李新生.赤霉素和脱落酸对黑稻黄化幼苗中胚轴伸长生长的作用研究[J].氨基酸和生物资源,2002,24(3):44-45.
    37.吴锡冬,李子芳,张乃华,等.外源脱落酸对盐胁迫玉米激发能分配和渗透调节的影响农业环境科学学[J].2006,25(2):312-316.
    38.吴新江,杨特武,何光明.脱落酸(ABA)对白三叶抗旱作用机理的初步研究[J].湖北畜牧兽医,1998,2:3-5.
    39.武敬亮,田桂香,孙敏.盐碱胁迫和SNP对黄连膜脂过氧化及保护酶活性的影响[J].浙江林业科技,2006,26(5):5-9.
    40.夏凯.脱落酸结合蛋白的纯化与抗体的制备[J].南京农业大学学报,1996,19(3):3-8.
    41.徐虹.天然脱落酸实现规模生产[J].四川日报,2003,3:4-9.
    42.徐利利,陈焱山,张士权,等.ABA对木樨科植物抗冻性影响的研究[J].现代农业科技,2007,15:8-9.
    43.许健,高树仁,崔美燕,等.苗期玉米对碱胁迫的生理响应[J].黑龙江八一农垦大学学报,2009,21(1):19-21.
    44.薛延丰,刘兆普.不同浓度NaCl和Na2CO3处理对菊芋幼苗光合及叶绿素荧光的影响[J].植物生态学报,2008,32(1):161-167.
    45.严寒,许本波,赵福永,等.脱落酸和水杨酸对干旱胁迫下芝麻幼苗生理特性的影响[J].干旱地区农业研究,2008,26(6):163-166.
    46.颜宏,石德成,尹尚军.外施Ca2+、ABA及H3PO4对盐碱胁迫的缓解效应[J].应用生态学报,2000,11(6):889-892.
    47.颜宏,赵伟,石德成,等.羊草对不同盐碱胁迫的生理响应[J].草业学报,2006,15(6):49-55.
    48.姚满生,杨小环,郭平毅.脱落酸与水分胁迫下棉花幼苗水分关系及保护酶活性的影响[J].棉花学报,2005,17(3):141-145.
    49.尹尚军.NaCl与Na2CO3对水培小麦幼苗胁迫作用的比较[J].浙江万里学院学报,2002,15(1):54-57.
    50.尤扬,袁志良,张晓云.叶面喷施ABA对香樟幼树抗寒性的影响[J].河南科学,2008,26(11):1352-1354.
    51.于颖,刘元英,罗盛国,等.重茬胁迫下硒对大豆叶绿体超微结构和叶片中微量元素含量的影响[J].应用生态学报,2003,14(4):573-576.
    52.张建锋,李吉跃,宋玉民,等.植物耐盐机理与耐盐植物选育研究进展[J].世界林业研究,2003,16(2):16-22.
    53.张景云,吴凤芝.盐胁迫对黄瓜不同耐盐品种叶绿素含量和叶绿体超微结构的影响[J].中国蔬菜,2009,(10):13-16.
    54.张明生,谢波,谈锋.水分胁迫下甘薯内源激素的变化与品种抗旱性的关系[J].中国农业科学,2002,35(5):498-501.
    55.张乃华,高辉远,邹琦.Ca2+缓解NaCl胁迫引起的玉米光合能力下降的作用[J].植物生态学报,2005,29:324-330
    56.张石城,刘祖祺.植物化学调控原理与技术[M].北京:中国农业出版社,1999.
    57.张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,1999,16(4):444-448.
    58.张宪政.作物生理研究法[M].北京:农业出版社,1990.
    59.张新春,庄炳昌,李自超.植物耐盐性研究进展[J].玉米科学,2002,10(1):50-56.
    60.张玉鑫,康恩祥,陈年来,等.NaCl胁迫对甜瓜幼苗叶片膜脂过氧化和渗透调节物质的影响[J].果树学报,2007,24(2):194-198.
    61.张云霞,石勇,王瑞刚,等.初始盐胁迫下ABA与CaM对胡杨叶片气体交换的调控[J].林业科学,2008,44(1):57-63.
    62.张韵,郁继华,钟新榕,等.外源ABA和GA3对NaCl胁迫下黄瓜种子萌发特性的影响[J].甘肃农业大学学报,2006,41(4):27-30.
    63.赵可夫,范海,HarrisPC.盐胁迫下外源ABA对玉米幼苗耐盐性的影响[J].植物学报,1995,37(4):295-300.
    64.赵可夫.植物抗盐生理[M].北京:中国科学技术出版社,1993.
    65.赵世杰,许长成,邹琦,等.植物组织中丙二醛测定方法的改进[J].植物生理通讯,1994,30(3):207-210.
    66.赵毓橘,陈季楚.植物生长调节剂生理基础与检测方法[M].北京:化学工业出版社,2002,53-65.
    67.钟新榕,郁继华,颉建明,等.NaCI胁迫及外源ABA和GA3对黄瓜幼苗抗氧化酶活性的影响[J].甘肃农业大学学报,2005,40(4):467-470.
    68.周芬,曾长立,王建波.外源钙降低拟南芥幼苗盐害效应[J].武汉植物学研究,2004,22(2):179-182.
    69.周建,杨立峰,张琳,等.碱胁迫对合欢种子萌发及幼苗生理指标的影响[J].浙江大学学报,2008,34(4):401-408.
    70.周文彬,邱报胜.植物细胞内pH值的测定[J].植物生理学通讯,2004,40(6):724-728.
    71.邹琦.植物生理学实验指导[M].北京:中国农业出版社,2001.
    72.AebiH.Catalaseinvitro.MethodEnzymol,1984,105:121-126.
    73.AnderbergRJ,Walker-SimmonsMK.IsolationofawheatcDNAcloneforanabscisicacid-inducibletranscriptwithhomologytoproteinkinase.ProcNatlAcadSciUSA,1992,89:10183-10187.
    74.AndersonBE,WardJM,SchroederJI.EvidenceforanextracellularreceptionsiteforabscisicacidinCommelinaguardcells.PlantPhysiol,1994,104:1177-1183.
    75.ArmstrongF,LeungJ,GrabovA,etal.SensitivitytoabscisicacidofguardcellK+channelsissuppressedbyabi1-1,amutantArabidopsisgeneencodingaputativeproteinphosphates.ProcNatlAcadSciUSA,1995,92:9520-24
    76.ArocaR,VernieriP,IrigoyenJJ,etal.Involvementofabscisicacidinleafandrootofmaize(ZeamaysL.)inavoidingchillinginducedwaterstress.PlantSci,2003,165:671-679.
    77.Dalton,HanusFJ,RussellSA,etal.Purification,properties,anddistributionofascorbateperoxidaseinlegumerootnodules.PlantPhysiol,1987,83:789-794.
    78.Da-PengZhang,etal.PlantPhysiology,2002,128:714-725.
    79.DaviesWJ,ZhangJ.Rootsignalsandtheregulationofgrowthanddevelopmentofplantsindryingsoil.AnnuRevPlantPhysiolMolBoil,1991,42:55-76.
    80.Demmig-AdamsB,AdamsⅢWW.Photoprotectionandotherresponsesofplanttohighlightstress.AnnRevPlantPhysio1PlantMolBiol,1992,43:599-626.
    81.Demmig-AdamsB,AdamsⅢWW.Xanthophyllcycleandlightstressinnature:uniformresponsetoexcessdirectsunlightamonghigherplantspecies.Planta,1996,198:460-470.
    82.FarquharGD,SharkeyTD.Stomatalconductanceandphotosynthesis.AnnulReviewofPlantPhysiology,1982,(33):317-345.
    83.FrandsenG,FriederNU,NielsenM,etal.NovelplantCa2+-bindingproteinexpressedinresponsetoabscisicacidandosmoticstress.JBioChem,1996,271:343-345.
    84.GiannopolitisCN,RiesSK.Superoxidedismutases:I.Occurrenceinhigherplants.PlantPhysiol,1977,59:309-314.
    85.GilroyS,TrewavasT.Adecadeofplantsignals.BioEssays,1994,16:677-681.
    86.GrabovA,LeungJ,GiraudatJ,etal.Alterationofanionchannelkineticsinwild-typeandabi11trancgenicNicotianabenthamianaguardcellsbyabscisicacid.PlantJ,1997,12:203-213.
    87.HeimovaaraDS,NielandTJF,NielandRM,etal.Abscisicacid-inducedgene-expressionrequirestheactivityofproteinsensitivetotheprotein-tyosinephosphataseinhibitorphenylarsineoxide.PlantGrowthRegul,1996,18:115-122.
    88.HeySJ,BaconA,BurnettE,etal.AbscisicacidsignaltransductioninepidermalcellsofPisumsativumL.Argenteum:BothdehydrationmRNAaccumulationandstomatalresponsesrequireproteinphosphirylationandphosphorylation.Planta,1997,202:85-92
    89.JacksonMB.Areplanthomonesinvolvedintheroottoshootcommnnication.AdvBotRes,1993,85:183-187.
    90.JanK,KazywanskiZ.Changesinpolyamineconcentrationandproteasesactivityinspringbarleyduringincreasingwaterstress.ActaPhysiologicaPlantarum,1991,13:13-20.
    91. Johnson G N, Young A J, Scholes J D, et al. Relationships between carotenoid composition and growth habitat in British plant species. Plant Cell and Environment, 1993, 16:673-679.
    92. Knetsch M L M, Wang M, Snaarjagalska B E, et al. Abscisic acid induced mitogen-activated protein kinase activation in barley aleurone protoplasts. Plant Cell, 1996, 8:1061-1106.
    93. Komatsu S, Karibe H, Masuda T. Effect of abscisic acid on phosphatidyserine-sensitive calcium- independendent protein kinase activity and protein phosphorylation in rice. Biosci Biotech Biochem, 1997, 61(3):418-423.
    94. Kooten O V, Snel J F H. The use of chlorophyll fluorescence nomenclature in plant Stress physiology. Photosynthesis Research, 1990, 25:147-150.
    95. Leung J, Giraudat J. Abscisic acid signals transduction.Annu Rev Physiol Plant Mol Biol, 1998, 49: 199-222.
    96. Li J X, Assmann S M. An abscisic acid-activated and calcium-independent protein kinase from guard cells of Fava bean.Plant Cell, 1996, 8:1061-1067.
    97. Liu J, Zhu J K. A calcium sensor homolog required for plant salt tolerance. Sci, 1998, 280:1943-1945.
    98. Monti A, Amaducci M T, Venturi G.Growth response, leaf gas exchange and fructans accumulation of Jerusalem artichoke (Helianthus tuberosusL.) as affected by differentwater regimes.European Journal ofAgronomy, 2005, 23:136-145.
    99. Mori I C, Muto S. Abscisic acid activates a 48-kilodalton protein kinase in guard cells protoplasts. Plant Physiol, 1997, 113:833-839.
    100. Pei Z M, Murata Y, Benning G, et al. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature, 2000, 406:731-734.
    101. Pennisi E. Plants decode a universal signal.Sci, 1997, 278:2054-2055.
    102. Pitet P E.Some cellular and molecular properties of abscisic acid:its patticular involvement in growing plant roots[J].Cellular and Molecular Life Sciences, 1998, 54:851-865.
    103. Rao M V, Paliyath G, Ormrod DP.Ultraviolet-B and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol, 1996, 110:125-136.
    104. Romero M F. In the beginning there was the cell:cellular homeostasis. Adv. Physiol.Educ., 2004, 28: 135-138.
    105. Saneoka H, Ishiguro S, Moghaieb J. Effect of salinity and abscisic acid on accumulation of glycinebetaine and betaine aldehyde dehydrogenase mRNA in Sorghum leaves(Sorghumbicolor). Plant Physiol, 2001, 158:853-859.
    106. Saradhi P P, Suzuki I, Katoh A, Sakamoto A, et al. Protection against the photo-induced inactivation of the photosystem II complex by abscisic acid.Plant Cell Environ, 2000, 23: 711-718.
    107. Schwartz A, Wu W H, Tucker E B, et al.Inhibition of inward K+channels and stomatal response by abscisic acid:an intracellular locus of phytohormone action. Proc Natl Acad Sci USA, 1994, 91: 4019-4023.
    108. Sharp E, Lenoble M E. ABA, ethylene and the controlofshootan rootgrowth underwater stress.J Exp Bot, 2002, 53:33-37.
    109. Smet I D, Signora L, Beeckman T, et al.An abscisic acid-sensitiv checkpoint in lateral root development of Arabidopsis.Plant J, 2003, 33:543-555.
    110. Spollen W G, Lenoble M E, Samuels T D, et al.Abscisic acid acumulation maintains maize prmiary root elongation at low water potentia by restricting ethylene production. Plant Physiol, 2000, 122: 967-976.
    111. Stone J M, Walker J C. Plant protein kinase families and signal transduction. Plant Physiol, 1995, 108:451-457.
    112. Tester M, Davenport R. Na+ tolerance and Na+ transport in higher plants.Annals ofBotany, 2003, 91: 503-527.
    113. Verslues P E, Zhu J K. New developments in abscisic acid perception metabolism. Curr Opin Plant Biol, 2007, 10:447-452.
    114. Willekens H, Van Camp W, vanMontagu M, et al. Ozone, sulfur dioxide, and ultraviolet-B have similar effect on mRNA accumulation of antioxidantgenes in Nicotiana plumbaginifoliaL. Plant Physiology, 1994, 106:1007-1014.
    115. Wu Y, Kuzma J, Marechal E, et al. Abscisic acid signaling through cyclic ADP-Ribose in plants. Sci, 1997, 278:2126-2230.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700