系统性红斑狼疮患者中microRNAs的表达情况研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:系统性红斑狼疮(Systemic Lupus Erythematosus, SLE)是自身免疫介导的,以免疫性炎症为突出表现的弥漫性结缔组织病,其发病机制尚不完全清楚。microRNA是一类分布广泛的小的非编码蛋白质的RNAs,在生物体内负调控基因表达。本研究旨在利用生物信息学方法和分子生物学方法,寻找出与SLE发病可能相关的microRNA,并初步探讨其在疾病中的作用。方法:通过在SLE发病中起到明确作用的编码区基因,借助于哺乳动物microRNA靶基因数据库miRanda和TargetScan,利用生物信息学分析方法查找出与SLE发病机制可能相关的microRNA。应用实时荧光定量聚合酶链反应(Real-timePCR)技术验证has-miR-146a、has-miR-181d、has-miR-7在SLE患者及正常人外周血单个核细胞中的表达差异,同时对has-miR-146a、has-miR-181d、has-miR-7在基因组中的位置及其可能作用的与SLE发病相关的靶基因进行了确定和预测,为其在疾病中的作用及其靶基因测定和参与发病的机制提供了一定的线索。结果:RT-PCR结果显示SLE患者外周血PBMCs中hsa-miR-146a的ΔCt高于正常对照组(4.52±1.18 vs.2.76±1.38), mRNA的表达量显著低于正常对照组,且两者之间有显著性统计学差异(P=0.02); hsa-miR-181d的ΔCt高于正常对照组(6.39±0.31 vs. 5.75±0.88)相比,两者之间并无统计学差异(P>0.05);而hsa-miR-7的mRNA表达量(9.25±0.91 vs.9.30±1.08)与正常对照组相比无统计学差异(P>0.05)。结论:在SLE的发病中,microRNA可能起到了一定的作用。与正常对照相比,SLE患者PBMCs中hsa-miR-146a的表达水平降低,提示:hsa-miR-146a可能通过作用于与SLE发病相关的靶基因而参与疾病的发生。
Objective. Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease, to highlight the performance of immune inflammation, diffuse connective tissue disease. Its mechanism is not entirely clear.MicroRNAs (miRNAs) have been recently identified as regulators that modulate target gene expression and are widespread class of small non-protein coding RNAs. This study aims to use bioinformatics methods and biological methods, to find out the pathogenesis of SLE may be associated with the microRNA, and to investigate its role in disease.
     Methods. To determine the expression spectrum of microRNAs from patients with systemic lupus erythematosus (SLE), we investigate the relationship between microRNA expressions and SLE mechanism. With the bioinformatics, we search the gene expressions related with SLE patients;with the targetgene database,we predict the microRNAs related with SLE patients.Through the encoding gene related with the SLE disease,by means of mammalian microRNA target gene database:miRanda and TargetScan,we use the biological information method to credit the microRNAs related with SLE pathogenesis. Application of real-time fluorescence quantitative polymerase chain reaction(Real-Time PCR) technology,we assayed the expressions of hsa-miR-146a、hsa-miR-181d、hsa-miR-7 in SLE patients and healthy controls. Meanwhile,the has-miR-146a, has-miR-181d, has-miR-7 position in the genome and its possible role in the target genes associated with the pathogenesis of SLE were identified and predicted, to provide some clues for its role involved in disease mechanisms.
     Results. Real-time PCR showed results that hsa-miR-146a mRNA was obviously decreased in PBMCs of SLE patients compared to healthy controls (ΔCt 4.52±1.18 vs. 2.76±1.38,P=0.02), but the expression of hsa-miR-181d in SLE patients was no significant difference compared to that in healthy controls(ΔCt 6.39±0.31 vs. 5.75±0.88,P>0.05), there was no significant difference in hsa-miR-7 expression between SLE patients and healthy controls(ΔCt 9.25±0.91 vs.9.30±1.08, P>0.05).
     Conclusion. microRNA may play a role in the pathogenesis of SLE.Compared to healthy controls, hsa-miR-146a expressions are reduced in PBMCs from patients with SLE. Thus, by acting on the target gene with SLE disease, hsa-miR-146a may be participated in disease mechanisms.
引文
[1]. David PB. MicroRNAs:Genomics, biogenesis, mechanism, and function[J]. Cell,2004, 116:281-297.
    [2]. Lee RC, Feinbaum RL, Ambros V. The C.elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell,1993,75:843-854.
    [3]. Reinhart BJ, Slack FJ, Basson M, et al. The 21 nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans[J]. Nature,2000,403:901-906.
    [4]. ZHOU Dong-Gen, LUO Yu-Ping, LI Si-Guang. The structure, biogenesis and function of microRNA[J]. Biotechnology Bulletin,2005,5:20-26.
    [5]. Hutvagner Q McLachlan J, Pasquinelli AE, et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA[J]. Science.2001,293(5531):834-838.
    [6]. Lau NC, Lim LP, Weinstein EG, et al. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans[J]. Science.2001,294(5543):858-62.
    [7]. Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia[J]. Proceedings of the National Academy of Sciences of the United States of America,2002,99: 15524-15529.
    [8]. Lujambio A, Esteller M. CpG island hypermethylation of tumor suppressor microRNAs in human cancer[J] Cell Cycle.,2007,6(12):1455-1459
    [9]. Aguda BD, Kim Y, Piper-Hunter MG, et al. MicroRNA regulation of a cancer network: consequences of the feedback loops involving miR-17-92, E2F, and Myc[J]. Proc Natl Acad Sci,2008105(50):19678-19683
    [10]. Taganov KD, Boldin MP, Chang KJ, et al. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses [J]. Proc Natl Acad Sci.,2006,103(33):12481-6
    [11]. Chi SW, Zang JB, Mele A, et al.. Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps [J].Nature,2009,460(7254):479-486.
    [12]. Tay Y, Zhang J, Thomson AM, et al. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation[J].Nature,2008,455(7216):1124-1128.
    [13]. Monticelli S, Ansel KM, Xiao C,et al. MicroRNA profiling of the murine hematopoietic system[J]. Genome Biol,2005,6(8):R71.
    [14]. Cullen BR. Viruses and microRNAs[J].Nat Genet,2006,38:25-30.
    [15]. Taganov KD, Boldin MP, Chang KJ,et al. NF-KB-dependent induction of microRNA miR-146,an inhibitor targeted to signaling proteins of innate immune responses[J]..Proc Natl Acad Sci USA,2006,103(33):12481-12486.
    [16]. Johnnidis JB, Harris MH, Wheeler RT et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223[J].Nature.,2008,451(7182):1125-1129.
    [17]. Li QJ, Chau J, Ebert PJ,et al.miR-181a is an intrinsic modulator of T cell sensitivity and selection[J].Cell,2007,129(1):147-161.
    [18]. Thai TH, Calado DP, Casola S,et al. Regulation of the germinal center response by microRNA-155 [J].Science,2007,316(5824):604-608.
    [19]Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia[J]. Proc Natl Acad Sci U S A.2002 Nov 26;99(24):15524-15529
    [20]. Brennecke J, Hipfner DR, Stark A, et al. Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila[J].Cell,2003,113(1):25-36.
    [21]. Kawasaki H, Taira K. Hesl is a target of microRNA-23 during retinoic-acid-induced neuronal differentiation of NT2 cells[J]. Nature,2003,423(6942):838-842.
    [22]. Albino AP, Juan G, Traganos F, et al. Cell cycle arrest and apoptosis of melanoma cells by docosahexaenoic acid:association with decreased pRb phosphorylation[J]. Cancer Res,2000, 60(15):4139-4145.
    [23]. Kaleb M Pauley, Minoru Satoh, Annie L Chan, et al. Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients [J]. Arthritis Res Ther, 2008,10(4):101-110.
    [24]. Konstantin D. Taganov, Mark P. Boldin, Kuang-Jung Chang, et al. NF-κB-dependent induction of microRNA miR-146,an inhibitor targeted to signaling proteins of innate immune responses[J]. PNAS,2006,103(33):12481-12486.
    [25]. Mark M. Perry, Sterghios A. Moschos, Andrew E. Williams, et al. Rapid changes in microRNA-146a expression negatively regulate the interleukin-1β induced inflammatory response in human lung alveolar epithelial cells[J]. J Immunol,2008,180(8):5689-5698.
    [26]. Debernardi S,Skoulakis S,Molloy G,et al. MicroRNA miR-181a correlates with morphological sub-class of acute myeloid leukaemia and the expression of its target genesinglobal genome-wide analysis[J]. Leukemia,2007,21(5):912-916.
    [27]. PekarskyY, SantanamU, CimminoA,et al.Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and mir-181 [J]. CancerRes,2006,66(24):11590-11593.
    [28]. NakajimaG, HayashiK, XiY, etal. Non-coding MicroRNAs hsa-let-7g and hsa-miR-181b are Associated with Chemoresponse to S-lin Colon Cancer[J]. Cancer Genomics Proteomics,2006,3(5):317-324.
    [29]. Correa-Medina M, Bravo-Egana V, Rosero S, et al. MicroRNA miR-7 is preferentially expressed in endocrine cells of the developing and adult human pancreas[J]. Gene Expr Patterns,2009,9(4):193-199.
    [30]. Angie M.Cheng, Mike W.Byrom, Jeffrey Shelton,et al.Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis[J].NucleicAcidsResearch,2005,33(4):1290-1297.
    [31]. Srinivas Veerla,David Lindgren,Anders Kvist,et al. MiRNA expression in urothelial carcinomas Important roles of miR-10a,miR-222,miR-125b,miR-7 and miR-452 for tumor stage and metastasis,and frequent homozygous losses of miR-31[J]. Int.J.Cancer,2009,124:2236-2242.
    [32].BarrelDP..MicroRNAs:genomics,biogenesis,mechanism,andfunction[J].Cell,2004,116(2):281-287.
    [33]. Ambros V. The functions of animal microRNAs[J].Nature,2004,431(7006):350-355.
    [34]. O'Connell RM, Taganov KD, Boldin MP,et al. MicroRNA-155 is induced during the macrophage inflammatory response[J]. Proc Natl Acad Sci USA,2007,104(5):1604-1609.
    [35]. Tili E, Michaille JJ, Cimino A, et al. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock[J].J Immunol.2007,179(8):5082-5089.
    [36]. Perry MM, Williams AE, Tsitsiou E, Larner-Svensson HM, Lindsay MA. Divergent intracellular pathways regulate interleukin-1beta-induced miR-146a and miR-146b expression and chemokine release in human alveolar epithelial cells[J]. FEBS Lett. 2009,583(20):3349-3355
    [37]. Donahue RE, Jin P, Bonifacino AC, et al. Plerixafor (AMD3100) and granulocyte colony-stimulating factor (G-CSF) mobilize different CD34+cell populations based on global gene and microRNA expression signatures[J]. Blood.2009,114(12):2530-2541.
    [1]. Harley JB, Alarcon-Riquelme ME, Criswell LA et al. Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci[J]. Nat Genet,2008,40:204-210.
    [2]. 陈雪,王兰兰,蔡蓓,等.Fas-FasL和caspase-3信号通路在启动SLE患者T细胞亚群凋亡中的作用[J].细胞与分子免疫学杂志,2006,22(5):588-590.
    [3]. Chu JL, Drappa J, Parnassa A, et al. The defect in FasmRNA exp ression inMRL/1p rmice is ass ociated with inserti on of the retrotrans pos on[J]. J Exp Med,1993,178 (2):723-730.
    [4]. Takahashi T, TanakaM,Brannan C, et al. Generalized lympho2 proliferative disease in mice, caused by a pointmutation in the Fas ligand[J].Cell,1994,76:969-976.
    [5]. GraningerWB. Transcriptional overexpression of the proto2 oncogene bcl22 in patientswith systemic lupus erythematosus[J].Wien KlinWochenschr,1992,104 (7):205-207.
    [6]. Banima B, Sticherling M. Apoptosis in different cutaneous manifestations of lupus erythematosus[J]. Br J Dermatol,2001,144 (5):958-966.
    [7]. Badillo-Almaraz I, Daza L, Avalos-Diaz E, et al. Glomerular expression of Fas ligand and Bax mRNAin lupus Dephritis[J]. Autoimmunity,2001,34 (4):283-289.
    [8]. 杨青,侯元,霍胜德,等.SLE患者血清TNF-a、 HA、LN水平及临床意义[J].中华综合临床医学杂志,2006,8(1):1115-1116.
    [9]. 张江林,刘稚然。谢红付,等.SLE患者TNF-B基因多态性分析[J].现代免疫学,2005,25(4):340.
    [10]. SONG Qing-hua,WANG Jing,CHEN Ying-yu,DI Chun-hui SUN Rong-hua,CHEN Xue-rong,LI Shi-yin. The role of TF-lcell apoptosis-related gene 19 in systemic lupus erythematosus[J]. Chinese Journal of Pathophysiology,2003,19(2):193-202
    [11]. 张戎,邢关芬,顾镭,等.SLE患者血清中的IL-6对造血干细胞来源的树突状细胞分化发育的影响[J].南京医科大学学报,2007,27(7):671-675.
    [12]. 张运丽,朱燕,高戈.IL-2、IL-6表达与ds-DNA在SLE检测中的相关性和临床意义[J].现代医药卫生,2007,23(4):477-478.
    [13]. 王慧娟,季晓辉,刘晓华,等.系统性红斑狼疮患者白介素-10表达的研究[J].中华皮肤科杂志,2003,36(12):716-717.
    [14]. 王红兵,何黎,曾卫玲.SLE患者血清IL-15水平检测及其意义[J].中国麻风皮肤病杂志,2007,23(8):680-682.
    [15]. Lynnm.Williams,Giuseppericchetti,Ushasarma,et al.Interleukin-10 suppression of myeloid cell activation-acontinuing puzzle[J]. Immunology,2004,113:281-292.
    [16].李富荣,叶志中,齐晖,等.IL-18对系统性红斑狼疮患者淋巴细胞凋亡和p53蛋白表达的影响[J].免疫学杂志,2002,18(6):456-458.
    [17]. 彭学标,朱小亮.系统性红斑狼疮患者外周血IL-18的表达[J].中国皮肤性病学杂志,2004,18(4):208.
    [18]. Creagh EM, Conroy H, Martin SJ. Caspase-activation pathways in apoptosis and immunity[J]. Immunol Rev,2003,193:10-21.
    [19]. 徐爱芳,许志良。SLE患者外周血淋巴细胞凋亡及Caspase表达研究[J].医学研究杂志,2007,36(7):87-89.
    [20]. Lohoff M. Mak TW. Roles of. interferon—regulatory factors in T help-cell differentiation[J]. Nat Rev Immunol,2005,5:125-135.
    [21]. QIAN. Nan sHEN Nan,GUO Gui-mei,et al.The expression of interferon-regulatory factor genes in patients with systemic lupus erythematosus[J]. Chin J Rheumatol,,2006,10(9)
    [22]. Kozyrev SV, Alarcon-Riquelme ME. The genetics and biology of IRF5-mediated signaling in lupus[J]. Autoimmunity,2007,40:591-601.
    [23]. Graham RR, Kozyrev SV, Baechler EC et al. A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus[J]. Nat Genet,2006,38:550-555.
    [24], Sigurdsson S, Nordmark G, Goring HH et al. Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus[J]. Am J Hum Genet,2005,76:528-537.
    [25]. F. Y. K. DemirciS. Manzi, R. Ramsey-Goldman, R. L. Minsterl,et al. Association of a Common Interferon Regulatory Factor 5(IRF5) Variant with Increased Risk of Systemic Lupus Erythematosus (SLE)[J]. Annals of Human Genetics,2006,71:308-311.
    [26]. Deborah S. Cunninghame Graham, Harinder Manku, Susanne Wagner, et al. Association of IRF5 in UK SLE families identifies a variant involved in polyadenylation Human Molecular [J].Genetics,2007,16(6):579-591.
    [27]. M. V. Prasad Linga Reddy, Rafael Velazquez-Cruz, Vicente Baca,et al. Genetic association of IRF5 with SLE in Mexicans:higher frequency of the risk haplotype and its homozygozity than Europeans[J]. Hum Genet,2007,121:721-727.
    [28]. Akahoshi M, Nakashima H, Sadanaga A, et al.Promoter polymorphisms in the IRF3 gene confer protection against systemic lupus erythematosus [J]. Lupus,2008,17(6):568-574.
    [29]. Dunn IF, Sannikova TY, Geha RS, et al. Identification and characterization of two CD40-inducible enhancers in the mo use TRAF1 gene locus [J]. Mol Immunol,2000,37(16): 961-973.
    [30]. 黄向阳顾越英沈南。干扰素-Ⅰ及其诱导蛋白IFIT4在系统性红斑狼疮中的研究进展[J]。Chin J Rheumatol,2006,10(5):297-300.
    [31]. Xiangyang Huang, Nan Shen, Chunde Bao, et al.Interferon-induced protein IFIT4 is associated with systemic lupus erythematosus and promotes differentiation of monocytes into dendritic cell-like cells[J]. Arthritis Research & Therapy,2008,10:R91.
    [32]. S. Ye, H. Pang, Y.-Y. Gu, J. Hual, et al. Protein interaction for an interferon-inducible systemic lupus associated gene, IFIT1[J]. Rheumatology,2003,42:1155-1163.
    [33]. Antoni Hrycek,Urszula Siekiera, Pawell CieslikWitold Szkrobka.HLA-DRB1 and-DQB1 alleles and gene polymorphisms of selected cytokines in systemic lupus erythematosus[J].Rheumatol Int,2005,26:1-6.
    [34]. Hiroshi Sano, Laurel J. Compton, Naoko Shiomi, et al.Low Expression of Human Histocompatibility Leukocyte Antigen-DR Is Associated with Hypermethylation of Human Histocompatibility Leukocyte Antigen-DRa Gene Regions in B Cells from Patients with Systemic Lupus Erythematosus[J].The American Society for Clinical Investigation,1985,76: 1314-1322.
    [35]. Fernando MM, Stevens CR, Sabeti PC et al. Identification of two independent risk factors for lupus within the MHC in United Kingdom families[J]. PLoS Genet,2007,,3:2109-2121.
    [36]. Atsushi Fujisaku, Mark Barton Frank, Barbara Neas, et al. HLA-DQ Gene Complementation and Other Histocompatibility Relationships in Man with the Anti-Ro/SSA[J]. The Journal of Clinical Investigation,1990,86:606-611.
    [37]. Yang Y, Chung EK, Wu YL et al. Gene copy-number variation and associated polymorphisms of complement component C4 in human systemic lupuserythematosus (SLE):low copy number is a risk factor for and high copy number is a protective factor against SLE susceptibility in European Americans[J]. Am J Hum Genet,2007,80:1037-1054.
    [38]. Stewart CA, Horton R, Allcock RJ et al. Complete MHC haplotype sequencing for common disease gene mapping[J]. Genome Res,2004,14:1176-1187.
    [39]. Hepburn AL, Mason JC, Davies KA. Expression of Fcgamma and complement receptors on peripheral blood monocytes in systemic lupus erythematosus and rheumatoid arthritis [J]. Rheumatology,2004,43:547-554.
    [40]. Nath SK, Han S, Kim-Howard X et al. A nonsynonymous functional variant in integrin-alpha(M) (encoded by ITGAM) is associated with systemic lupus erythematosus[J]. Nat Genet,2008,40:152-154.
    [41]. ZHANG Jie, Li Dong-qin, YIN Guang-wen, et al. Changement of T-bet、 GATA3 and Foxp3 mRNA expression on the peripheral blood mononuclear cells of patients with systemic lupus erythematosus and the significance[J].ShanDong Medical Journal.,2008,48(47):20-21
    [42]. Tetsuya Oishi,Aritoshi Iida,Shigeru Otsubo, et al. A functional SNP in the NKX2.5-binding site of ITPR3 promoter is associated with susceptibility to systemic lupus erythematosus in Japanese population[J]. Hum Genet,2008,53:151-162.
    [43]. Remmers EF, Plenge RM, Lee AT et al. STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus[J]. N Engl J Med,2007,357:977-986.
    [44]. Darnell JE Jr, Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins[J]. Science,1994,264:1415-1421.
    [45]. Watford WT, Hissong BD, Bream JH, et al. Signaling by IL-12 and IL-23 and the immunoregulatory roles of STAT4[J]. Immunol Rev,2004,202:139-156.
    [46]. Morinobu A, Gadina M, Strober W et al. STAT4 serine phosphorylation is critical for IL-12-induced IFN-gamma production but not for cell proliferation[J]. Proc Natl Acad Sci, 2002,99:12281-12286.
    [47]. Nguyen KB, Watford WT, Salomon R et al. Critical role for STAT4 activation by type 1 interferons in the interferon-gamma response to viral infection[J].Science, 2002,297:2063-2066.
    [48]. Nishikomori R, Usui T, Wu CY, et al. Activated STAT4 has an essential role in Th1 differentiation and proliferation that is independent of its role in the maintenance of IL-12R beta 2 chain expression and signaling[J]. J Immunol,2002,169:4388-4398.
    [49]. Mathur AN, Chang HC, Zisoulis DG et al. Stat3 and Stat4 direct development of IL-17-secreting Th cells[J]. J Immunol,2007,178:4901-4907.
    [50]. Snaevar Sigurdsson, Gunnel Nordmark, Sophie Gamier, et al.Risk haplotype of STAT4 for systemic lupus erythematosus is over-expressed, correlates with anti-dsDNA and shows additive effects with two risk alleles of IRF5[J]. Human Molecular Genetics,2008, 17(18):2868-2876.
    [51]. Hom G, Graham RR, Modrek B, et al. Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX[J]. N Engl J Med,2008,358:900-909.
    [52]. Kozyrev SV, Abelson AK, Wojcik J et al. Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus[J]. Nat Genet,2008,40:211-216.
    [53]. Karassa FB, Trikalinos TA, Ioannidis JP. Role of the Fcgamma receptor Ⅱa polymorphism in susceptibility to systemic lupus erythematosus and lupus nephritis:a meta-analysis[J]. Arthritis Rheum,2002,46:1563-1571.
    [54]. Marissa C. Blank, Radu N. Stefanescu Emi Masuda, Francesc Marti, et al.Decreased transcription of the human FCGR2B gene mediated by the-343 G/C promoter polymorphism and association with systemic lupus erythematosus[J].Hum Genet,2005,117:220-227
    [55]. Willcocks LC, Lyons PA, Clatworthy MR, et al..Copy number of FCGR3B, which is associated with systemic lupus erythematosus, correlates with protein expression and immune complex uptake[J]. J Exp Med,2008,205(7):1573-1582.
    [56]. Fanciulli M, Norsworthy PJ, Petretto E et al. FCGR3B copy number variation is associated with susceptibility to systemic, but not organ-specific, autoimmunity[J].Nat Genet,2007,39:721-723.
    [57]. Aitman TJ, Dong R,Vyse TJ,et al. Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans [J]. Nature,2006,439:851-855.
    [58]. Graham DS, Graham RR, Manku H et al. Polymorphism at the TNF superfamily gene TNFSF4 confers susceptibility to systemic lupus erythematosus [J]. Nat Genet, 2008,40:83-89.
    [59]. Delgado Vega AM, Abelson AK, Sanchez E, et al.Replication of the TNFSF4 (OX40L) promoter region association with systemic lupus erythematosus[J]. Genes Immun., 2009,10(3):248-253.
    [60]. Deborah S,Cunninghame Graham, Robert R Graham,et al.Polymorphism at the TNF superfamily gene TNFSF4 confers susceptibility to systemic lupus erythematosus [J]..Nature Genetics,2008,40(1):83-89.
    [61]. Sawalha AH, Webb R, Han S et al. Common variants within MECP2 confer risk of systemic lupus erythematosus[J]. PLoS One,2008,3:e1727.
    [62]. Richardson, BC Strahler, JR Pivirotto, et al. Phenotypic and functional similarities between 5-azacytidine-treated T cells and a T cell subset in patients with active systemic lupus erythematosus[J]. Arthritis Rheum,1992,35:647-662.
    [63]. Oelke, K Lu, Q Richardson, et al. Overexpression of CD70 and overstimulation of IgG synthesis by lupus T cells and T cells treated with DNA methylation inhibitors[J]. Arthritis Rheum,2004,50:1850-1860.
    [64]. Kaplan, MJ Lu, Q Wu, et al. Demethylation of promoter regulatory elements contributes to perforin overexpression in CD4+lupus T cells[J]. J Immunol.,2004,172:3652-3661.
    [65]. Lu, Q Wu, A Tesmer, et al. Demethylation of CD40LG on the inactive X in T cells from women with lupus[J]. J Immunol.2007,179(9):6352-6358.
    [66]. Elena Sa'nchez,Anna-Karin Abelson, JoseM.SabioMiguel A. Gonza'lez-Gay,et al.Association of a CD24 Gene Polymorphism With Susceptibility to Systemic Lupus Erythematosus[J].Arthritis & Rheumatism,2007,56(9):3080-3086.
    [67]. Zhang Li,Liang Zai Fu,Zhang Shi Fa,et al.Expression of CD43 gene on peripheral blood monouclear cells in patients with SLE[J].China J Lepr Skin Dis.Jun,2005,21(6):432-433.
    [68]. A.Komatsuda, H.Wakui, K.Iwamoto,et al. Up-regulation of TRAIL mRNA expression in peripheral blood mononuclear cells from patients with active systemic lupus erythematosus[J]. Clinical Immunology,2007,125:26-29.
    [69]. Y. H. Lee, F. Ota, X. Kim-Howard, et al.APRIL polymorphism and systemic lupus erythematosus (SLE) Susceptibility[J]. Nath Rheumatology,2007,46:1274-1276.
    [70]. T.Koyama, H.Tsukamoto, K.Masumoto, et al.A novel polymorphism of the human APRIL gene is associated with systemic lupus erythematosus[J].Rheumatology,2003,42; 980-985.
    [71]. A.Kawasaki, N.Tsuchiya, J.Ohashi,et al. Role of APRIL (TNFSF13) polymorphisms in the susceptibility to systemic lupus erythematosus in Japanese[J].Rheumatology, 2007,46:776-782.
    [72]. S.Ahmed,K.Ihara,S.Kanemitsu,et al. Association of CTLA but not CD28 gene polymorphisms with systemic lupus erythematosus in the Japanese population[J].Rheumatology, 2001,40:662-667.
    [73]. Marta Barreto, Euge'nia Santos, Ricardo Ferreira, et al.Evidence for CTLA4 as a susceptibility gene for systemic lupus erythematosus [J]. European Journal of Human Genetics,2004,12:620-626.
    [74]. Young Ho Lee, John B. Harley,Swapan K. CTLA-4 polymorphisms and systemic lupus erythematosus (SLE):a meta-analysis[J]. Nath Hum Genet,2005,16:361-367.
    [75]. Joanne Heward, Caroline Gordon, Amit Allahabadiaet, et al.The A-G polymorphism in exon 1 of the CTLA-4 gene is not associated with systemic lupus erythematosus[J]. Ann Rheum Dis,1999,58:193-195.
    [76]. D. S. C. Graham, M. Akil and T. J. Vyse.Association of polymorphisms across the tyrosine kinase gene,TYK2 in UK SLE families[J]. Rheumatology,2007,46:927-930.
    [77]. Castiblanco J, Anaya JM. The I kappaBL gene polymorphism influences risk of acquiring systemic lupus erythematosus and Sjogren's syndrome[J]. Hum Immunol.,2008,69(1):45-51.
    [78]. S A. J. Szalai, G. S. Alarcon, J. Calvo-Alen,et al. Systemic lupus erythematosus in a multiethnic US Cohort (LUMINA). XXX:association between C-reactive protein (CRP) gene polymorphisms and vascular events Reveille for the LUMINA Study Group[J]. Rheumatology,2005,44:864-868.
    [79]. MBL DS Cunninghame Graham, TJ Vyse, PR Fortin, et al. Association of LY9 in UK and Canadian SLE families[J].Genes and Immunity,2008,9:93-102.
    [80]. Qian Wang, Dongqing Ye, Jing Yin, et al. Programmed cell death 1 genotypes are associated with susceptibility to systemic lupus erythematosus among Chinese[J].Arch Dermatol Res,2008,300:91-93.
    [81]. E.K.-P.Kong,W.-P.Chong,W.H.-S.Wong, et al. p21 gene polymorphisms in systemic lupus erythematosus[J].Rheumatology,2007,46:220-226.
    [82]. L.-J. Tsai, S.-H. Hsiao, L.-M. Tsai, et al.The sodium-dependent glucose cotransporter SLC5A11 as an autoimmune modifier gene in SLE[J].Clin Exp Med,2008,8:179-185.
    [83]. H. S. Cheong, S. O. Lee, C.-B. Choil, et al. MERTK polymorphisms associated with risk of haematological disorders among Korean SLE patients[J].Rheumatology,2007,46:209-214.
    [84]. RongChen, AlexAMorgan, JoelDudley,et al. FitSNPs:highly differentially expressed genes are more likely to have variants associated with disease[J]. Genome Biology,2008,9:R170.
    [85]. Guadalupe Limaa, Elena Soto-Vegaa, Yemil Atisha-Fregosoa,et al. MCP-1, RANTES, and SDF-1 polymorphisms in Mexican patients with systemic lupus erythematosus[J].Human Immunology,2007,68:980-985.
    [86]. Jeng-Ting Tsao, Chia-Chen Kuo, Shih-Chang Lin.The analysis of CIS, SOCS1, SOSC2 and SOCS3 transcript levels in peripheral blood mononuclear cells of systemic lupus erythematosus and rheumatoid arthritis patients[J]. Clin Exp Med,2008,8:179-185.
    [87]. Chen AM, Liu QP, Cui XY, et al. Study on the polymorphism of killer cell immunoglobulin like receptor (KIR) gene with systemic lupus erythematosus of North population in China[J]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi,2008,24(8):811-813.
    [88]. R Takahashi, A Tsutsumi, K Ohtani, Y Muraki, et al.Association of mannose binding lectin (MBL) gene polymorphism and serum MBL concentration with characteristics and progression of systemic lupus erythematosus [J]. Ann Rheum Dis,.2005,64:311-314.
    [89]. Qiu Jie ying.Analysis on detection of the level of MBL in patients with SLE[J].Chin J of Clinical Rational Drug Use,2009,2(8):11-12.
    [90]. Anna Hellquist, Marco Zucchelli, Katja Kivinen, et al.The human GIMAP5 gene has a common polyadenylation polymorphism increasing risk to systemic lupus erythematosus[J].J Med Genet,2007,44:314-321.
    [91]. Lee YH, Rho YH, Choi SJ et al. The PTPN22 C1858T functional polymorphism and autoimmune diseases-a meta-analysis[J]. Rheumatology,2007,46:49-56.
    [92]. Sharon A. Chung a, Lindsey A. Criswel. PTPN22:Its role in SLE and autoimmunity[J]. Autoimmunity,2007; 40(8):582-590.
    [93]. Zhu Li,Tu Yating,Feng Aiping,et al. Study on the coorelation of HSP90 gene and its correlation to IL-6 in patients with systemic lupus erythematosus[J].China J Lepr Skin Dis, 2006,22(1):5-7.
    [94]. Hou C, Zhang Y. Expression of reversion-inducing cysteine-rich protein with Kazal motifs in peripheral blood mononuclear cells from patients with systemic lupus erythematosus:links to disease activity, damage accrual and matrix metalloproteinase 9 secretion. [J].J Int Med Res.,2008,36(4):704-13.
    [95]. Liu Yang,Zheng Min,Yin Wen hao,et al. Detection of serum HGF and MMP-9 and its Clinical Significance in Patients with Systemic Lupus Erythematosus[J].Chin J Dermatol, 2004,37(12):703-705.
    [96]. D.J.Birmingham, K.F.Gavit,S.M.McCarty,et al. Consumption of erythrocyte CR1(CD35) is associated with protection against systemic lupus erythematosus renal flare[J]. Clinical and Experimental Immunology,2006,143:274-280.
    [97]. Feng xiao xin,Lin dong zhou,Hong xiao ping.Level of Transforming Growth Factor b1 in patients with Systemic Lupus Erythematosus and its Clinical Significance[J].Hebei Medicine,2007,13(5):521-523.
    [98]. Horwitz DA,Gray JD,Ohtsuka K,et al.The immunoregulatory effects of NK cells:the role of TGF-b and implications for autoimmunity[J].Immunology today,1997,11(11):538-542.
    [99]. Youinou P.The multi-faceted role of transforming growth factor-beta in systemic lupus erythematosus[J].Lupus,1999,8(8):87-88.
    [100].沈小雁,薛峰,陈晓鸿,等。系统性红斑狼疮患者外周血单一核细胞Toll样受体4及2mRNA表达的研究[J]。中华皮肤科杂志,2004,37:572-574。
    [101]. Papadimitraki ED,choulahi C,Koutala E,et al.Expansion of toll-like receptor 9-expressing B cells in active lupus erythemaosus:implications for the induction and maintenance of the autoimmune process[J].Arthritis Rheum,2006,54:3602-3611.
    [102]. Berghofer B,Frommer T,Haley G,et al. TLR7 ligands induce higher IFN-alpha production in females[J].J Immunol,2006,177:2088-2096.
    [103]. Edward K. Wright Jr., Stephen H. Page, Sheila A. Barber, et al. Prepl/Pbx2 Complexes Regulate CCL2 Expression Through the-2578 Guanine Polymorphism[J].Genes Immun,2008,9(5):419-430.
    [104]. Luo Rong, Li Zhuocheng, Li Yanwu. Study on the Function of the Related Gene I FITI in Systemic Lupus Erythematosus[J].J of Radioimmunology,2009,22(1):58-61.
    [105]. Jacobaon NG, Szabo S J, Weber RM, et al. Interlukine-12 signaling in T helper typel(Th1) cells involves tyrosine phosphorylation of signal transducer and activator of transcription STAT3 and STAT4[J].J Exp Med,1995,181:1755.
    [106]. Harley J B,Alarc6n-Riquelme ME,et al. Genome wide association scan in women with systemic lupus erythematosus ident ifies susceptibility variants in IGAM,PXK,KIAA1542 and other loci[J]. Nat Genet,2008,40(2):204-210
    [107].孙莉,沈南,王元等。FCGR2A基因多态性与系统性红斑狼疮相关性研究[J]。临床免疫学杂志,2004,8(1):1-3
    [108]. Salomon B,Bluestone JA.. Complexities of CD28/B7:CTLA-4 costimulatory pathways in autoimmunity and transplantation[J].Annu Rev Immunol,2001,19(1):225-252.
    [109]. Feng xiao xin,Lin dong zhou,Hong xiao ping.Level of Transforming Growth Factor b1 in patients with Systemic Lupus Erythematosus and its Clinical Significance[J].Hebei Medicine,2007,13(5):521-523.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700