聚合物/磷(膦)酸锆纳米复合材料结构和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
α-磷酸锆(α-ZrP)是一类具有规整的层状结构的阳离子型化合物,由于具有高的离子交换容量、尺寸易控性、易插层易剥离性以及表面官能团的可操控和可设计性等特点,因而在聚合物改性方面有着不可估量的应用前景。本文正是在前人研究的基础上,以回流法制备α-ZrP晶体,进而用正丁胺改性以获得更大的层间距以利于聚合物分子链扩散插层,制备了豌豆淀粉/α-磷酸锆(PS/ZrP)和壳聚糖/α-磷酸锆(CS/ZrP)纳米复合材料,研究α-ZrP对纳米复合材料结构和性能的影响,重点研究了α-ZrP纳米粒子和聚合物基体间的界面作用强度及其对复合材料结构和性能的影响。利用a-ZrP的表面官能团可操控性,在其表面引入有机官能团(-COOH),成功合成有机膦酸锆(甘氨酸-N,N-双亚甲基膦酸锆,ZGDMP),进而制得豌豆淀粉/有机膦酸锆(PS/BA-ZGDMP)和壳聚糖/有机膦酸锆(CS/BA-ZGDMP)纳米复合材料,通过对比的方法研究引入的有机官能团对纳米粒子和聚合物基体间界面作用强度的影响和对复合材料的结构和性能的影响。
     具体研究工作如下:
     1、用流延法制备了甘油增塑的豌豆淀粉/α-磷酸锆(PS/ZrP)纳米复合材料,使用傅里叶红外(FT-IR)、X-射线衍射(XRD)、扫描电镜(SEM)、热重分析(TGA)等方法研究α-ZrP对复合材料结构和性能的研究。结果表明,PS和ZrP之间形成强的氢键作用,提高了PS和ZrP之间的界面粘结性和相容性。
     2、用回流法成功合成具有较大层间距和极性官能团(-COOH)的有机膦酸锆(甘氨酸-N,N--双亚甲基膦酸锆,ZGDMP),进而用正丁胺修饰,使其层间距扩大到1.76nm。用流延法制备了甘油增塑的豌豆淀粉/有机膦酸锆(PS/BA-ZGDMP)纳米复合材料。与PS/ZrP体系相比,PS/BA-ZGDMP体系表现出两个重要的特点:(ⅰ)复合材料的拉伸强度最大可以增大到12.14MPa,明显高于PS/ZrP体系的9.44MPa;(ⅱ)吸湿性能降低到59.1%,低于PS/ZrP体系的63.1%。这些性能的改善可归因于引入的极性有机官能团,其与极性淀粉分子间形成范德华力和更强的氢键作用,增强了PS和BA-ZGDMP间的界面粘结性和界面作用进而改善复合材料的性能。
     3、用流延法制备了壳聚糖/α-磷酸锆(CS/ZrP)纳米复合材料,其中壳聚糖作为基体,α-ZrP作为纳米填料,研究a-ZrP对复合材料结构和性能的影响。傅里叶红外变换光谱(FT-IR)测试表明CS和a-ZrP之间形成强的相互作用。X-射线衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)的结果表明,α-ZrP均匀分散到壳聚糖基体中,并形成了中等剥离程度的结构。Pukanszky模型中用界面作用参数B值来衡量壳聚糖基体和α-ZrP填料之间的界面作用大小,结果表明,当a-ZrP含量为2 wt%时,复合材料最有最大B值(3.2)表明具有最强的界面作用。
     4、成功制备具有极性官能团(-COOH)的有机膦酸锆(甘氨酸-N,N-双亚甲基膦酸锆,ZGDMP),并用傅里叶红外变换光谱(FT-IR)、X-射线衍射(XRD)和扫描电镜(SEM)对其进行表征。使用正丁胺修饰(BA-ZGDMP),其层间距扩大到1.76nm。用流延法制备了壳聚糖/有机膦酸锆(CS/BA-ZGDMP)纳米复合材料。红外光谱表明,CS和BA-ZGDMP间形成强的相互作用。与纯壳聚糖相比,当BA-ZGDMP的添加量为1.0wt%时,复合材料的拉伸强度和断裂伸长率分别提高了35.1%和15.6%。并且,BA-ZGDMP的加入也提高了复合材料的耐水性能。
a-Zirconium phosphate (a-ZrP) is a kind of cationic compounds. In addition to the layered structure, a-ZrP has a number of additional advantages, including a much higher ion exchange capacity, ease of dimensional control, ease of intercalation/exfoliation, and controllable/designable surface functionality. Thus, a-ZrP has a prospect of incalculable in the improvement of polymer. properties. Based on the previous studies, a-ZrP has been synthesized using the refluxed method and further modified by the n-butylamine to obtain the enlarger interlayer space. Then pea starch/a-zirconium phosphate (PS/ZrP) and chitosan/a-zirconium phosphate (CS/ZrP) nanocomposites have been prepared. The thesis focuses on the interfacial interaction between polymer matrix and nano-particles. The structure and properties of nanocomposites have also been discussed. And then a new type of layer zirconium phosphonate (zirconium glycine-N, N-dimethylphosphonate, abbreviated as ZGDMP), with the functional group-COOH has been synthesized. And pea starch/zirconium phosphonate (PS/BA-ZGDMP) and chitosan/zirconium phosphonate (CS/BA-ZGDMP) nanocomposites have been prepared. The interfacial interaction on the structure and properties has been discussed through the comparision.
     The main contents and results in this thesis are as follows:
     1. Glycerol-plasticized pea starch/a-zirconium phosphate (PS/ZrP) nanocomposite films with different loading levels of a-zirconium phosphate (a-ZrP) were prepared by a casting and solvent evaporation method. The effects of the a-zirconium phosphate on the structure and properties of the PS/ZrP films were characterized by Fourier transform infrared (FT-IR) spectroscopy, wide-angle X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and tensile testing. The results indicated that hydrogen bonds formed between pea starches (PS) and a-ZrP, which improved interface adhesion and the compatibility between PS and a-ZrP.
     2. A new type of layered zirconium glycine-N, N-dimethylphosphonate (abbreviated as ZGDMP), with enlarged interlayer d-spacing and the functional group-COOH, was prepared. ZGDMP was successfully intercalated by n-butylamine which further increased the d-spacing to 1.76 nm. The modified ZGDMP (hereafter BA-ZGDMP) was used as nanofiller in a glycerol-plasticized thermoplastic pea starch (PS) matrix. Compared with previous studies on a-ZrP-reinforced pea starch matrix, the present system of BA-ZGDMP reinforced pea starch (PS/BA-ZGDMP) presents two significant points:(i) the tensile strength was enhanced to 12.14 MPa, which was remarkably higher than that of the PS/ZrP system (9.44 MPa); and (ii) the moisture uptake in PS/BA-ZGDMP was reduced to 59.1%, which was lower than that of the PS/ZrP system (63.1%). These results can be attributed to the introduction of the polar carboxylate ions (-COO), which resulted in Van der Waals force as well as stronger hydrogen bonding, and stronger interfacial adhesion and interaction between the polar BA-ZGDMP and the polar starch matrix.
     3. The objective of this work is to prepare nanocomposite films of chitosan/a-zirconium phosphate (CS/ZrP) by casting process, using a-zirconium phosphate (a-ZrP) as nanofillers and chitosan as matrix. The effects of a-zirconium phosphate on the structure and properties of the nanocomposites were investigated. FT-IR revealed that a strong interaction between a-ZrP and chitosan formed during the film-forming process. The results from scanning electron microscope (SEM) and transmission electron microscope (TEM) indicated that a-ZrP uniformly dispersed and formed moderate exfoliated a-ZrP nanoplateletes in chitosan matrix. The parameter B calculated from tensile yield stress according to Pukanszky model was used to value the interfacial interaction between chitosan matrix and a-ZrP. The film with loading of 2 wt%α-ZrP had the highest B value (3.2), indicating the strongest interfacial interaction. 4. A new type of layer zirconium phosphonate (zirconium glycine-N, N-dimethylphosphonate, abbreviated as ZGDMP), with the functional group-COOH, has been successfully prepared and characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). In order to confirm the effect of the functional group-COOH on the structure and properties of composites, then a series of chitosan/zirconium phosphonate modified by n-butylamine (BA-ZGDMP) nanocomposite films were prepared by casting process. FTIR spectra suggested that strong interactions existed between BA-ZGDMP and chitosan matrix. Compared with neat CS film, the tensile strength (σb) and the elongation at break (εb) of the nanocomposite film were greatly improved by 35.1% and 15.6%, respectively, only with 1.0 wt% BA-ZGDMP loading. In addition, the BA-ZGDMP also improved the water resistance of the nanocomposites.
引文
[1]胡源,宋磊等.阻燃聚合物纳米复合材料.北京,化学工业出版社,2008,2.
    [2]武卫莉,李海平.聚合物纳米复合材料的研究进展.纳米科技,2009,6,71-75.
    [3]曹茂盛,曹传宝,徐甲强等.纳米材料学.哈尔滨.哈尔滨工程大学出版社,2002.
    [4]吴翔.纳米材料(连载三).江南航天科技,2002,3,60-63.
    [5]施利毅.纳米材料.上海,华东理工大学出版社,2007,5-8.
    [6]Calvert P. Materials science-Rough guide to the nanoworld.Nature,1996,383,300-301.
    [7]张立德,牟季美.纳米材料和纳米结构.北京,科学出版社,2001.
    [8]徐国财,张立德.纳米复合材料.北京,化学工业出版社,2002.
    [9]马访中,李文刚,马敬红,梁伯润.PS/PA6聚合物纳米合金的制备.塑料,2004,33,77-80.
    [10]何春霞,顾红艳.聚合物/无机纳米粒子复合材料的研究进展.合成树脂及塑料,2007,24,69-72.
    [11]江盛玲,华幼卿,华晔.纳米SiO2填充LLDPE复合材料耐热性的研究.塑料工业,2004,32,48-51.
    [12]江盛玲,华幼卿.纳米二氧化硅填充线性低密度聚乙烯的等温结晶动力学.北京化工大学学报,2004,31,49-52.
    [13]车剑飞,肖迎红.纳米粒子改性硼酚醛树脂的研究.塑料工业,2001,29,15-16.
    [14]Xian G, Zhang Z, Friedrich K. Tribological properties of micro-and nanoparticles-filled poly (etherimide) composites. J Appl Polym Sci,2006,101,1678-1686.
    [15]王东红,石玉,纳米SiC/PA 66复合材料的研究.化工新型材料.2004,32,11-12.
    [16]徐伟平,黄锐.纳米级CaCO3填充HDPE复合材料的研究.中国塑料,1998,12,31-34.
    [17]王旭,黄锐.PP/纳米级CaCO3复合材料性能研究.中国塑料,1999,13,22-25.
    [18]罗忠富,黄锐,卢艾.纳米CaCO3增强增韧HDPE复合材料研究.中国塑料,2000,14,25-29.
    [19]张学琴,毋伟,曾晓飞等.纳米CaCO3复合微粒对ABS性能的影响.高分子材料科学与工程,2006,107-110.
    [20]林志丹,黄珍珍,麦堪成.纳米CaCO3/PP的等温结晶动力学.高分子材料科学与工程,2005,236-239.
    [21]葛世荣,张德坤,李凌.纳米Al2O3和Fe2O3填充尼龙1010的摩擦磨损行为.摩擦学学报,2004,24,25-28.
    [22]M. Stanley Whittingham, Allan J. Jancobson. Intercalation Chemistry. London: Academic Press, 1982.
    [23]Akane O, Masaya K. Synthesis and characterization of a nylon 6-clay hybrid. Polym Prepr, 1987,28,447-448.
    [24]Giannelis E P. Polymer layered silicate nanocomposites. Adv Mater,1996,8,29-35.
    [25]Wang M S, Pinnavaia T. J. Clay-polymer nanocomposites formed from acidic derivatives of montmorillonite and an epoxy resin. Chem Mater,1994,6:468-474.
    [26]Wong A, Vasudevan S, Vaia R A, Giannelis E P, Zax D B. Dynamics in a confined polymer electrolyte:a 7Li and 2H NMR study. J Am Chem Soc,1995,117,7568-7569.
    [27]漆宗能,李强,赵竹第等.中国发明专利,CN 1138593A,1996.
    [28]漆宗能,王胜杰,李强等.中国发明专利,CN 1163288A,1997.
    [29]Clearfield A, Stynes J A. The preparation of crystalline zirconium phosphate and some observations on it ion exchange behavior. J Inorg Nucl Chem,1964,26,117-129.
    [30]Herman H S, Jihong Y, Ian D W. Zirconium phosphate of variable dimension templated by ethylene diamine:crystal structure of 1-D[enH2][Zr(HPO4)3] and 2-D[enH2]0.5[Zr(PO4)(HPO4)], J Solid State Chem,1998,140,46-55.
    [31]田修营,何文,张旭东,周伟家,闫顺璞,韩秀秀,孙夏.磷酸锆及其衍生物的结构进展和应用前景.山东陶瓷,2009,32,15-18.
    [32]牛丽明.晶态层状有机-无机混合磷酸锆的制备及插层研究.硕士学位论文.重庆.西南师范大学.2005.9.
    [33]耿利娜,相明辉,李娜,李克安.层状无机化合物-磷酸锆的研究和应用进展.化学进展.2004,16,717-727.
    [34]Troup J M. Clearfield A. Mechanism of ion exchange in zirconium phosphates.20. Refinement of the crystal structure of a-zirconium phosphate. Inorg Chem,1977,16,3311-3314.
    [35]张家慧.α-磷酸锆的可控合成及其聚苯胺复合材料的制备与性能研究.硕士学位论文.北 京.北京化工大学.2007.2.
    [36]Poojary D M, Shpeizer B, Clearfield A. J Chem Soc. Dalton. Trans.1995:111-113
    [37]王锦航.磷酸锆晶体的合成及XRPD法解析晶体结构初探.硕士论文.大连.中国科学院研究生院.2004.2.
    [38]Benhamza H, Barboux P, Baohauss A. Sol-gel synthesis of Zr(HPO4)2·H2O. J Mater Chem,, 1991,1,681-684.
    [39]Alberti G, Torracca E. Crystalline insoluble salts of polybasic metals-Ⅱ. Synthesis of crystalline zirconium or titanium phosphate by direct precipitation. J Inorg Nucl Chem,1968,30,317-318.
    [40]杜以波,李峰,何静,Evans D G.段雪,王作新.层状化合物α-磷酸锆的制备和表征.无机化学学报.1998,14,79-83.
    [41]Miura N, Yamazoe N. Proton condutors. Cambridge. Cambridge University Press.1992,527.
    [42]Casciola M. Comprehensive supramolecular chemistry. Oxford. UK, Elsevier,1996,7,12, 355-378.
    [43]Clearfield A, Costantino U. Comprehensive supramolecular chemistry. Oxford, UK: Elsevier, 1996,7,4,107-150.
    [44]李峰,卫敏,何静,杜以波,孙鹏,Evans D G,段雪.磷酸锆类层柱催化剂的制备、表征及其催化甲醇氧化羰基化反应性能.催化学报,1999,20,510-514.
    [45]唐颐,徐金锁,高滋.氧化铬层柱磷酸锆的制备及催化性能.催化学报.1998,19,354-359.
    [46]Clearfield A, Thakur D S. The acidity of zirconium phosphate in relation to their zirconium phosphates of varying crystallinity. J Catal,1981,69,230-233.
    [47]赫南,唐颐,王文瀚,华伟明,乐英红,高滋.大比表面负载氧化铁的氧化硅层柱磷酸锆制备和催化性能研究.2000,58,1259-1263.
    [48]Segawa K, Kurusu Y, Nakajima Y, Kinoshita M. Characterization of crystalline zirconium phosphates and their isomerization activities. J Catal,1985,94,491-500.
    [49]Cheung H C, Clearfield A. The oxidative dehydrogenation of cyclohexene catalyzed by ZrCu(PO4)2. J Catal,1986,98,335-342.
    [50]Alberti G, Cavalaglio S, Marmottini F, Megyeri J, Szirtes L. Preparation of a composite y-zirconium phosphate-silica with large specific surface and its first characterisation as acid catalyst. Appl Catal A: Gen.2001,218,219-228.
    [51]Al-Qallaf F A H, Hodson L F, Johnstone RAW, Liu J Y, Lu L, Whittaker D. Heterogeneous liquid phase catalysis by metal (IV) phosphates of cyclic ether formation and a reverse Prins reaction. J Mol Catal,2000,152,187-200.
    [52]Curini M, Epifano F, Marcotullio M C, Rosati O, Costantino U. Heterogeneous catalysis in trimethylsilylation of alcohols and phenols by zirconium sulfophenyl phosphonate. Synthetic Commun,1999,29,541-546.
    [53]Karlsson M, Andersson C, Hjortkjaer J. Hydroformylation of propene and 1-hexene catalysed by a a-zirconium phosphate supported rhodium-phosphine complex. J Mol Catal,2001,166, 337-343.
    [54]Curini M, Epifano F, Marcotullio M C, Rosati 0, Tsadjout A. Potassium exchanged layered zirconium phosphate as base catalyst in knoevenagel condensation. Synthetic Commun,2002, 32,355-362.
    [55]Dragone R, Galli P, Massucci M A, Trombetta M. Preparation and characterisation of histidine-and iron-histidine-α-zirconium phosphate intercalation compounds. Catalytic behaviour of the iron derivatives in oxidation reactions with H2O2. J Mater Chem,2003,13,834-840.
    [56]Giannoccaro P, Doronzo S, Ferragina C. Heterogeneous Catalysis and Fine Chemicals, Vol Ⅳ. Amsterdam: Elsevier,1997,633.
    [57]Nino M E, Giraldo S A, Paez-Mozo E A. Olefin oxidation with dioxygen catalyzed by porphyrins and phthalocyanines intercalated in a-zirconium phosphate. J Mol Catal A-Chem, 2001,175,139-151.
    [58]Kumar C V, Chaudhan A. Proteins immobilized at the galleries of layered a-zirconium phosphate: structure and activity studies. J Am Chem Soc,2000,122,830-837.
    [59]Danjo M, Hayashi A, Nakayama H, Kinmia Y. Structure and organic gas-adsorption properties of some polyamine intercalated a-zirconium phosphates. Bull Chem Soc Jpn,1999,72, 2079-2084.
    [60]Alberti G Recent development in Ion exchange. London. Elsevier Applied Science.1987.233.
    [61]Dyer A, Shaheen T, Zanmin M. Ion exchange of strontium and caesium into amorphous zirconium phosphates. J Mater Chem,1997,7,1895-1899.
    [62]Johnson J W, Jacobsen A J, Butler WM, Rosenthal S E, Brody J F, Lewandowski J T. Molecular recognition of alcohols by layered compounds with alternating organic and inorganic layers. J Am.Chem Soc,1989,111,381-383.
    [63]Fogg A M, Dunn J S, Shyu S G, Cary D R, O'Hare D. Selective Ion-Exchange Intercalation of Isomeric Dicarboxylate Anions into the Layered Double Hydroxide [LiAl2(OH)6]Cl·H2O. Chem Mater,1998,10,351-355.
    [64]张蕤,胡源,汪世龙.原位插层聚合法制备聚丙烯酰胺/α-磷酸锆纳米复合材料及其结构表征.高等化学学报.2005,2173-2175.
    [65]Kaschak D M, Johnson S A, Hooks D E, Kim H N, Ward M D, Mallouk T E. Chemistry on the edge:a microscopic analysis of the intercalation, exfoliation, edge functionalization, and monolayer surface tiling reactions of a-zirconium phosphate. J Am Chem Soc,1998,120, 10887-10894.
    [66]Bestaoui N, Spurr N A, Clearfield A. Intercalation of polyether amines into a-zirconium phosphate. J Mater Chem,2006,16,759-764.
    [67]Clearfield A, Bortun A I, Bortun L N, Garcia J R. Direct hydrothermal synthesis of zirconium phosphate and zirconium arsenate with a novel basic layered structure in alkaline media. Inorg Chem Commun,1998,1,206-208.
    [68]Konar S, Zon J, Prosvirin A V, Dunbar K R, Clearfield A. Synthesis and characterization of four metal-organophosphonates with one-, two-, and three-dimensional Structures. Inorg Chem, 2007,46,5229-5236.
    [69]Sun L, O'Reilly J Y, Konga D, Su J Y, Boo W J, Sue H-J, Clearfield A. The effect of guest molecular architecture and host crystallinity upon the mechanism of the intercalation reaction. J Colloid Interface Sci,2009,333,503-509.
    [70]Boo W J, Sun L, Liu J, Clearfield A, Sue H-J. Effective intercalation and exfoliation of nanoplatelets in epoxy via creation of porous pathways. J Phys Chem C,2007,111, 10377-10381.
    [71]Sun L, Liu J, Kirurmakki S R, Schwerdtfeger E D. Howell R J, Al-Bahily K, Miller S A, Clearfield A, Sue H-J. Polypropylene nanocomposites based on designed synthetic nanoplatelets. Chem Mater,2009,21,1154-1161.
    [72]Clearfield A. Tindwa R M. Mechanism of ion-exchange in zirconium-phosphates 21.. interaction of amines by a-zirconium phosphate. J Inorg Nucl Chem,1979,41,871-878.
    [73]Sue H-J, Gam K T, N Bestaoui, Spurr N, Clearfield A. Epoxy Nanocomposites based on the synthetic a-zirconium phosphate layer structure. Chem Mater,2004,16,242-249.
    [74]Boo W J, Sun L Y, Liu J, Moghbelli E, Cleafield A, Sue H J, Pham H, Verghese N. Effect of nanoplatelet dispersion on mechanical behavior of polymer nanocomposites. J Polym Sci: Part B,2007,45,1459-1469.
    [75]Sun L, Boo W J, Sue H-J, Clearfield A. Preparation of a-zirconium phosphate nanoplatelets with wide variations in aspect ratios. New J Chem,2007,31,39-43.
    [76]Boo W-J, Sun L, Warren G L, Moghbelli E, Pham H, Clearfield A, Sue H-J. Effect of nanoplatelet aspect ratio on mechanical properties of epoxy nanocomposites. Polymer,2007,48, 1075-1082.
    [77]Sun L, Boo W J, Sun D, Clearfield A, Sue H-J. Preparation of exfoliated epoxy/a-Zirconium phosphate nanocomposites containing high aspect ratio nanoplatelets. Chem Mater,2007,19, 1749-1754.
    [78]Sun L, Boo W J, Browning R L, Sue H-J, Clearfield A. Effect of Crystallinity on the intercalation of monoamine in α-zirconium phosphate layer structure. Chem Mater,2005,17, 5606-5609.
    [79]Sun L, Boo W-J, Clearfield A, Sue H-J. Pham H Q. Barrier properties of model epoxy nanocomposites. J Membr Sci,2008,318,129-136.
    [80]Zhang R, Hu Y, Li B, Chen Z, Fan W. Studies on the preparation and structure of polyacrylamide/a-zirconium phosphate nanocomposites. J Mater Sci,2007,42,5641-5646.
    [81]Wang D Y, Liu X Q, Wang J S, Wang Y Z, Stec A A, Hull T R. Preparation and characterisation of a novel fire retardant PET/α-zirconium phosphate nanocomposite. Polym Degrad Stabil, 2009,94,544-549.
    [1]Ishiaku U S, Pang K W, Lee W S, Mohd I Z A. Mechanical properties and enzymic degradation of thermoplastic and granular, sago starch filled poly(ε-caprolactone). Eur Polym J,2002,38, 393-401.
    [2]Jansson A, Jarnstrom L, Ratto P, Thuvander F. Physical and swelling properties of spray-dried powders made from starch and poly (vinyl alcohol). Starch-Starke,2006,58,632-641.
    [3]Ma X F, Yu J G The plastcizers containing amide groups for thermoplastic starch. Carbohyd Polym,2004,57,197-203.
    [4]Nakamura E M, Cordi L, Almeida G S G, Duran N, Mei L H I. Study and development of LDPE/starch partially biodegradable compounds. J Mater Process Tech,2005,162-163,236-241.
    [5]Pracella M, Pazzagli F, Galeski A. Reactive compatibilization and properties of recycled poly (ethylene terephthalate)/polyethylene blends. Polym Bull,2002,48,67-74.
    [6]Yu L, Dean K, Li L. Polymer blends and composites from renewable resources. Prog Polym Sci, 2006,31,576-602.
    [7]Funke U, Bergthaller W, Lindhauer M G Processing and characterization of biodegradable products based on starch. Polym Degrad Stabil,1998,59,293-296.
    [8]Hulleman S H D, Janssen F H P, Feil H. Polymer,1998,39,2043-2048.
    [9]Lu Y, Tighzerta L, Dole P, Erre D. Preparation and properties of starch thermoplastics modified with waterborne polyurethane from renewable resources. Polymer,2005,46,9863-9870.
    [10]Cheetham N W H, Tao L. Variation in crystalline type with amylasebcontent in maize starch granules: An X-ray powder diffraction study. Carbohyd Polym,1998,36,277-284.
    [11]Svensson E, Eliasson A C. Crystalline changes in native wheat and potato starches at intermediate water levels during gelatinization. Carbohyd Polym,1995,26,171-176.
    [12]Zhang S D, Zhang Y R, Zhu J, Wang X L, Yang K K, Wang Y Z. Modified corn starches with improved comprehensive properties for preparing thermoplastics. Starch/Starke,2007,59, 258-268.
    [13]Fringant C, Desbrieres J, Rinaudo M. Physical properties of acetylated starch-based materials: Relation with their molecular characteristics. Polymer,1996,37,2663-2673.
    [14]Fringant C, Rinaudo M, Foray M F, Bardet M. Preparation of mixed esters of starch or use of an external plasticizer: Two different ways to change the properties of starch acetate films. Carbohyd Polym,1998,35,97-106.
    [15]Morikawa K, Nishinari K. Rheological and DSC studies of gelatinization of chemically modified starch heated at various temperatures. Carbohyd Polym,2000,43,241-247.
    [16]Chatakanonda P, Varavinit S, Chinachoti P. Effect of crosslinking on thermal and microscopic transitions of rice starch. Food Sci Technol,2000,33,276-284.
    [17]Dumoulin Y, Alex S, Szabo P, Cartilier L, Mateescu M A. Cross-linking amylose as matrix for drug controlled release. X-ray and FTIR structural analysis. Carbohyd Polym,1998,37, 361-370.
    [18]Arvanitoyannis I, Biliaderis C G, Ogawa H, Kawasaki, N. Biodegradable films made from low-density polyethylene (LDPE), rice starch and potato starch for food packaging applications: Part 1. Carbohyd Polym,1998,36,89-104.
    [19]Averous L, Moro L, Dole P, Fringant C. Properties of thermoplastic blends: starch-polycaprolactone. Polymer,2000,41,4157-4167.
    [20]Averous L, Fringant C. Association between plasticized starch and polyesters:processing and performance of injected biodegradable systems. Polym Eng Sci,2001,40,727-734.
    [21]Psomiadou E, Arvanitoyannis I, Biliaderis C G, Ogawa H, Kawasaki, N. Biodegradable films made from low density polyethylene (LDPE), wheat starch and soluble starch for food packaging applications. Part 2. Carbohyd Polym,1997,33,227-242.
    [22]Sem A, Bhattacharya M. Residual stress and density gradient in injection molded starch/synthetic polymer blends. Polymer,2000,41,9177-9190.
    [23]Sharma N, Chang L P, Chu Y L, Ismail H, Ishiaku U S, Ishaki Z A M. A study on the effect of pro-oxidant on the thermo-oxidative degradation behaviour of sago starch filled polyethylene. Polym Degrad Stabil, 2001,71,381-393.
    [24]Wu Q X, Zhang L N. Structure and properties of casting films blended with starch and waterborne polyurethane. J Appl Polym Sci,2001,79(11),2006-2013.
    [25]Arvanitoyannis I, Nakayama A, Aiba S-I. Edible films made from hydroxypropyl starch and gelatin and plasticized by polyols and water. Carbohyd Polym,1998,36,105-119.
    [26]Carvalho A J F, Curvelo A A S, Agnelli J A M. A first insight on composites of thermoplastic starch and kaolin. Carbohyd Polym,2001,45,189-194.
    [27]Fishman M L, Coffin D R, Konstance R P, Onwulata C I. Extrusion of pectin/starch blends plasticized with glycerol. Carbohyd Polym,2000,41,317-325.
    [28]Xu Y X, Kim K M, Hanna M A, Nag D. Chitosan-starch composite film: preparation and characterization. Ind Crop Prod,2005,21,185-192.
    [29]Giannelis E P. Polymer layered silicate nanocomposites. Adv Mater,1996,8,29-35.
    [30]Sanchez C, Soler-Illia G J A A, Ribot F, Lalot T, Mayer C R, Cabuil V. Designed hybrid organic-inorganic nanocomposites from functional nanobuilding blocks. Chem Mater,2001,13, 3061-3083.
    [31]Tsai T Y, Li C H, Chang C H, Cheng W H, Hwang C L, Wu R J. Preparation of exfoliated polyester/clay nanocomposites. Adv Mater,2005,17,1769-1773.
    [32]Wilhelm H-M, Sierakowski M R, Souza G P, Wypych F. Starch films reinforced with mineral clay. Carbohyd Polym,2003,52,101-110.
    [33]Clearfield A, Berman J R. On the mechanism of ion exchange in zirconium phosphates—ⅩⅩⅩⅣ. Determination of the surface areas of a-Zr(HPO4)2·H2O by surface exchange. J Inorg Nucl Chem,1981,43,2141-2142.
    [34]Clearfield A, Duax W L, Garces J M, Medina A S. On the mechanism of ion exchange in crystalline zirconium phosphates-IV potassium ion exchange of a-zirconium phosphate. J Inorg Nucl Chem,1972,34,329-337.
    [35]Sun L, Boo W J, Browning R L, Sue H-J, Clearfield, A. Effect of crystallinity on the intercalation of monoamine in a-zirconium phosphate layer structure. Chem Mater,2005,17, 5606-5609.
    [36]Costamagna P, Yang C, Bocarsly A B, Srinivasan S. Nation 115/zirconium phosphate composite membranes for operation of PEMFCs above 100 C. Electrochim Acta,2002,47, 1023-1033.
    [37]Vaivars G, Furlani M, Mellander B-E, Granqvist C G Proton-conducting zirconium phosphate/poly(vinyl acetate)/glycerine gel electrolytes. J Solid State Electrochem,2003,7, 724-728.
    [38]Yang C, Srinivasan S, Bocarsly A B, Tulyani S, Benziger J B. A comparison of physical properties and fuel cell performance of Nafion and zirconium phosphate/Nafion composite membranes. J Membrane Sci,2004,237,145-161.
    [39]Sue H-J, Gam K T. Epoxy nanocomposites based on the synthetic a-zirconium phosphate layer structure. Chem Mater,2004,16,242-249.
    [40]Sue H-J, Gam K T, Bestaoui N, Clearfield A, Miyamoto M, Miyatake N. Fracture behavior of a-zirconium phosphate-based epoxy nanocomposites. Acta Mater,2004,52,2239-2250.
    [41]Clearfield A, Stynes J A. The preparation of crystalline zirconium phosphate and some observations on its ion exchange behaviour. J Inorg Nucl Chem,1964,26,117-129.
    [42]Mathew S H, Brahmakumar M, Emilia Abraham T. Microstructural imaging and characterization of the mechanical, chemical, thermal, and swelling properties of starch-chitosan blend films. Biopolymers,2006,82,176-187.
    [43]Zhang H, Xu J S, Tang Y, Gao Z. Studies on synthesis and properties of layered zirconium phosphate. Cheml J of Chinese U,1997,18,172-176.
    [44]Sun L, Boo W J, Sun D, Clearfield A, Sue H-J. Preparation of exfoliated epoxy/a-zirconium phosphate nanocomposites containing high aspect ratio nanoplatelets. Chem Mater,2007,19, 1749-1754.
    [45]Yoshimura M, Takaya T, Nishinari K. Rheological studies on mixtures of corn starch and konjac-glucomannan. Carbohyd Polym,1998,35,71-79.
    [46]Mathew A P, Dufresne A. Morphological investigation of nanocomposites from sorbitol plasticized starch and tunicin whiskers. Biomacromolecules,2002,3,609-617.
    [47]Piyaporn K, Duangdao A, Duanghathai P, Kawee S. Preparation of cassava starch/montmorillonite composite film. Carbohyd Polym,2007,67,155-163.
    [48]Magaraphan R, Lilayuthalert W, Sirivat A, Schwank J W. Preparation, structure, properties and thermal behaviour of rigid-rod polyimide/montmorillonite nanocomposites. Compos Sci Technol, 2001,61,1253-1264.
    [1]Lan T, Kaviratna P D, Pinnavaia T J. Mechanism of clay tactoid exfoliation in epoxy-clay nanocomposites. Chem Mater,1995,7,2144-2150.
    [2]Shi H, Lan T, Pinnavaia T J. Interfacial effects on the reinforcement properties of polymer-organoclay nanocomposites. Chem Mater,1996,8,1584-1587.
    [3]Yano K, Usuki A, Okada A, Kurauchi T, Kamigaito O. Synthesis and properties of polyimide-clay hybrid. J Polym Sci Pol Chem,1993,31,2493-2498.
    [4]Zhu J, Start P, Mauritz K A, Wilkie C A. Thermal stability and flame retardancy of poly(methyl methacrylate)-clay nanocomposites. Polym Degrad Stabil,2002,77,253-258.
    [5]Alexandre M, Dubois P. Polymer-layered silicate nanocomposites:preparation, properties and uses of a new class of materials. Mater Sci Eng,2000,28,1-63.
    [6]Giannelis E P. Polymer layered silicate nanocomposites. Adv Mater,1996,8,29-35.
    [7]Ray S S, Okamoto M. Polymer/layered silicate nanocomposites:a review from preparation to processing. Prog Polym Sci,2003,28,1539-1641.
    [8]Yang Y, Liu C, Wu H. Preparation and properties of poly(vinyl alcohol)/exfoliated a-zirconium phosphate nanocomposite films. Polym Test,2009,28,371-377.
    [9]Wu H, Liu C, Chen J, Chang P R, Chen Y, Anderson D P. Structure and properties of starch/a-zirconium phosphate nanocomposite films. Carbohyd Polym,2009,77,358-364.
    [10]Boo W J, Sun L, Liu J, Clearfield A, Sue, H J. Effective intercalation and exfoliation of nanoplatelets in epoxy via creation of porous pathways. J Phys Chem C,2007,111, 10377-10381.
    [11]Pukanszky B, Tudos F, Jancar J, Kolaric J. The possible mechanisms of polymer-filler interaction in polypropylene-CaCO3 composites. J Mater Sci Lett,1989,8,1040-1042.
    [12]Moedritzer K, Irani R R. The direct synthesis of a-aminomethylphosphonic acids. Mannich-type reactions with orthophosphorous acid. J Org Chem,1966,31,1603-1607.
    [13]Mathew S, Brahmakumar M, Abraham T E. Microstructural imaging and characterization of the mechanical, chemical, thermal, and swelling properties of starch-chitosan blend films. Biopolymers,2006,82,176-187.
    [14]Goheen S M, Wool R P. Degradation of polyethylene-starch blends in soil. J Appl Polym Sci, 1991,42,2691-2701.
    [15]Mano J F, Koniarova D, Reis R L. Thermal properties of thermoplastic starch/synthetic polymer blends with potential biomedical applicability. J Mater Sci Mater M,2003,14,127-135.
    [16]Zeng R, Fu X, Sui Y, Yang X, Sun M, Chen J. Synthesis, characterization and intercalation property of layered zirconium benzylamino-N,N-dimethylphosphonate phosphate materials. J Organomet Chem,2008,693,2666-2672.
    [17]Yoshimura M, Takaya T, Nishinari K. Rheological studies on mixtures of corn starch and konjac-glucomannan. Carbohyd Polym,1998,35,71-79.
    [18]Liang J Z, Li R K Y. Effect of filler content and surface treatment on the tensile properties of glass-bead-filled polypropylene composites. Polym Int,2000,49,170-174.
    [19]Maiti S N, Sharma K K. Studies on polypropylene composites filled with talc particles part I mechanical properties. J Mater Sci,1992,27,4605-4613.
    [20]Metin D, Tihminlioglu F, Balkose D, Ulku S. The effect of interfacial interactions on the mechanical properties of polypropylene/natural zeolite composites. Compos Part A Appl S,2004, 35,23-32.
    [21]Demjen Z, Pukanszky B, Nagy J. Evaluation of interfacial interaction in polypropylene/surface treated CaCO3 composites. Compos Part A Appl S,1998,29,323-329.
    [22]Peniche-Covas C, Arguelles-Monal W, Roman J S. A kinetic study of the thermal degradation of chitosan and a mercaptan derivative of chitosan. Polym Degrad Stabil,1993,39,21-28.
    [23]Doyle C D. Estimating thermal stability of experimental polymers by empirical thermaogravimetric analysis, Anal Chem,1961,33,77-79.
    [24]Tsai T Y, Wu Y J, Hsu F J. Synthesis and properties of epoxy/layered zirconium phosphonate (Zr-P) nanocomposites. J Phys Chem Solids,2008,69,1379-1382.
    [25]Sreedhar B, Sairam M, Chattopadhyay D K, Rathnam P A S, Rao D V M. Thermal, mechanical, and surface characterization of starch-poly(vinyl alcohol) blends and borax-crosslinked films. J Appl Polym Sci,2005,96,1313-1322.
    [26]Huang M F, Yu J G, Ma X F. Studies on the properties of montmorillonite-reinforced thermoplastic starch composites. Polymer,2004,45,7017-7023.
    [1]Kylm J, Jukka V S. Synthesis and characterization of a biodegradable thermoplastic poly(ester-urethane) elastomer. Macromolecules,1997,30,2876-2882.
    [2]Chabba S, Matthews G F, Netravali A N. 'Green' composites using cross-linked soy flour and flax yarns. Green Chem,2005,7,576-581.
    [3]Kobayashi S, Uyama H. Biomacromolecules and bio-related macromolecules. Macromol Chem Phys,2003,204,235-256.
    [4]Majeti N V, Kumar R. A review of chitin and chitosan applications. React Funct Polym,2000; 46, 1-27.
    [5]Wang S F, Shen L, Tong Y J, Chen L, Phang I Y, Lim P Q, Liu T X. Biopolymer chitosan/montmorillonite nanocomposites:preparation and characterization. Polym Degrad Stabil,2005,90,123-131.
    [6]Xu Y X, Kim K M, Hanna M A, Nag D. Chitosan-starch composite film: preparation and characterization. Ind Crop Prod,2005,21,185-192.
    [7]Shaffer M S P, Windle A H. Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites. Adv Mater,1999,11,937-941.
    [8]Liu T, Phang I Y, Shen L, Chow S Y, Zhang W D. Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites. Macromolecules,2004,37, 7214-7222.
    [9]Park J H, Jana S C. The relationship between nano-and micro-structures and mechanical properties in PMMA-epoxy-nanoclay composites. Polymer,2003,44,2091-2100.
    [10]Yang H, Zhang Q, Guo M, Wang C, Du R, Fu Q. Study on the phase structures and toughening mechanism in PP/EPDM/SiO2 ternary composites. Polymer,2006,47,2106-2115.
    [11]Wang S F, Shen L, Zhang W D, Tong Y J. Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromolecules,2005,6,3067-3072.
    [12]Xu Y, Ren X, Hannal M A. Chitosan/clay nanocomposite film preparation and characterization. J Appl Polym Sci,2006,99,1684-1691.
    [13]Wang S, Chen L, Tong Y. Structure-property relationship in chitosan-based biopolymer/ montmorillonite nanocomposites. J Polm Sci Paty A: Polm Chem,2006,44,686-696.
    [14]Darder M, Colilla M, Ruiz-Hitzky E. Biopolymer-clay nanocomposites based on chitosan intercalated in montmorillonite. Chem Mater,2003,15,3774-3780.
    [15]Wu H, Liu C, Chen J, Chang P R, Chen Y, Anderson D P. Structure and properties of starch/a-zirconium phosphate nanocomposite films. Carbohyd Polym,2009,77,358-364.
    [16]Yang Y, Liu C, Wu H. Preparation and properties of poly(vinyl alcohol)/exfoliated a-zirconium, phosphate nanocomposite films. Polym Test,2009,371-377.
    [17]Sue H J, Gam K T. Epoxy nanocomposites based on the synthetic a-zirconium phosphate layer structure. Chem Mater,2004,16,242-249.
    [18]Sue H J, Gam K T, Bestaoui N, Clearfield A, Miyamoto M, Miyatake N. Fracture behavior of a-zirconium phosphate-based epoxy nanocomposites. Acta Materialia,2004,52,2239-2250.
    [19]Clearfield A, Berman J R. On the mechanism of ion exchange in zirconium phosphates-XXXIV. Determination of the surface areas of a-Zr(HPO4)2-H2O by surface exchange. J Inorg Nucl Chem, 1981,43,2141-2142.
    [20]Clearfield A, Duax WL, Garces JM, Medina AS. On the mechanism of ion exchange in crystalline zirconium phosphates-Ⅳ potassium ion exchange of a-zirconium phosphate. J Inorg Nucl Chem,1972,34,329-337.
    [21]Sun L, Boo W J, Browning R L, Sue H J, Clearfield A. Effect of crystallinity on the intercalation of monoamine in a-zirconium phosphate layer structure. Chem Mater,2005,17, 5606-5609.
    [22]Costamagna P, Yang C, Bocarsly A B, Srinivasan S. Nafion 115/zirconium phosphate composite membranes for operation of PEMFCs above 100 ℃. Electrochim Acta,2002,47, 1023-1033.
    [23]Vaivars G, Furlani M, Mellander B E, Granqvist C G Proton-conducting zirconium phosphate/poly(vinyl acetate)/glycerine gel electrolytes. J Solid State Electrochem,2003,7, 724-728.
    [24]Yang C, Srinivasan S, Bocarsly A B, Tulyani S, Benziger J B. A comparison of physical properties and fuel cell performance of Nafion and zirconium phosphate/Nafion composite membranes. J Membrane Sci,2004,237,145-161.
    [25]Clearfield A, Stynes J A. The preparation of crystalline zirconium phosphate and some observations on its ion exchange behaviour. J Inorg Nucl Chem,1964,26,117-129.
    [26]Zhang H, Xu J S, Tang Y, Gao Z. Studies on synthesis and properties of layered zirconium phosphate. Cheml J of Chinese U,1997,18,172-176.
    [27]Nunthanid J, Puttipipatkhachorn S, Yamamoto K, Peck G E. Physical properties and molecular behavior of chitosan films. Drug Dev Ind Pharm 2001,27,143-157.
    [28]Puttipipatkhachorna S, Nunthanid J, Yamamoto K, Peck G E. Drug physical state and drug-polymer interaction on drug release from chitosan matrix films. J Control Release,2001, 75,143-153.
    [29]Wang T, Turhan M, Gunasekaran S. Selected properties of pH-sensitive, biodegradable chitosan-poly(vinyl alcohol) hydrogel. Polym Int,2004,53,911-918.
    [30]Pearson F G, Marchessault R H, Liang C Y. Infrared spectra of crystalline polysaccharides. V. Chitin. J Polym Sci,1960,43,101-116.
    [31]Monvisade P, Siriphannon P. Chitosan intercalated montmorillonite:Preparation, characterization and cationic dye adsorption. Appl Clay Sci,2009,42,427-431.
    [32]Wang L, Wang A. Adsorption characteristics of Congo Red onto the chitosan/montmorillonite nanocomposite. J Hazard Mater,2007,147,979-985.
    [33]Sun L, Boo W J, Sun D, Clearfield A, Sue H J. Preparation of exfoliated epoxy/α-zirconium phosphate nanocomposites containing high aspect ratio nanoplatelets. Chem Mater,2007,19, 1749-1754.
    [34]Tang C, Xiang L, Su J, Wang K, Yang C, Zhang Q, Fu Q. Largely improved tensile properties of chitosan film via unique synergistic reinforcing effect of carbon nanotube and clay. J Phys Chem B,2008,112,3876-3881.
    [35]Boo W J, Sun L Y, Liu J, Moghbelli E, Cleafield A, Sue H J, Pham H, Verghese N. Effect of nanoplatelet dispersion on mechanical behavior of polymer nanocomposites. J Polym Sci: Part B, 2007,45,1459-1469.
    [36]Qu X, Wirsen A, Albertsson A C. Effect of lactic/glycolic acid side chains on the thermal degradation kinetics of chitosan derivatives. Polymer,2000,41,4841-4847.
    [37]Wang Z F, Wang B, Qi N, Zhang H F, Zhang L Q. Influence of fillers on free volume and gas barrier properties in styrene-butadiene rubber studied by positrons. Polymer,2005,46,719-724.
    [38]Yu J G, Yang J W, Liu B X, Ma X F. Preparation and characterization of glycerol plasticized-pea starch/ZnO-carboxymethylcellulose sodium nanocomposites. Bioresource Technol,2009,100,2832-2841.
    [39]Metin D, Tihminlioglu F, Balkose D, Ulku S. The effect of interfacial interactions on the mechanical properties of polypropylene/natural zeolite composites. Compos Part A,2004,35, 23-32.
    [40]Pukanszky B, Tudos F. The possible mechanisms of polymer-filler interaction in polypropylene-CaCO3 composites. J Mater Sci Lett,1989,8,1040-1042.
    [41]Demjen Z, Pukanszky B, Nagy J. Evaluation of interfacial interaction in polypropylene/surface treated CaCO3 composites. Compos Part A,1998,29A,323-329.
    [42]Kristo E, Biliaderis C G. Physical properties of starch nanocrystal-reinforced pullulan films. Carbohyd Polym,2007,68,146-158.
    [1]Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng,2000,28,1-63.
    [2]Giannelis E P. Polymer layered silicate nanocomposites. Adv Mater,1996,8,29-35.
    [3]Ray S S, Okamoto M. Polymer/layered silicate nanocomposites:a review from preparation to processing. Prog Polym Sci,2003,28,1539-1641.
    [4]Lan T, Kaviratna P D, Pinnavaia T J. Mechanism of clay tactoid exfoliation in epoxy-clay nanocomposites. Chem Mater,1995,7,2144-2150.
    [5]Shi H, Lan T, Pinnavaia T J. Interfacial effects on the reinforcement properties of polymer-organoclay nanocomposites. Chem Mater,1996,8,1584-1587.
    [6]Yano K, Usuki A, Okada A, Kurauchi T, Kamigaito O. Synthesis and properties of polyimide-clay hybrid. J Polym Sci Pol Chem,1993,31,2493-2498.
    [7]Zhu J, Start P, Mauritz K A, Wilkie C A. Thermal stability and flame retardancy of poly(methyl methacrylate)-clay nanocomposites. Polym Degrad Stabil,2002,77,253-258.
    [8]Clearfield A, Stynes J A. The preparation of crystalline zirconium phosphate and some observations on it ion exchange behavior. J Inorg Nucl Chem,1964,26,117-129.
    [9]Wu H, Liu C, Chen J, Chang, PR, Chen Y, Anderson DP. Structure and properties of starch/a-zirconium phosphate nanocomposite films. Carbohyd Polym,2009,77,358-364.
    [10]Yang Y, Liu C, Wu H. Preparation and properties of poly(vinyl alcohol)/exfoliated a-zirconium phosphate nanocomposite films. Polym Test,2009,28,371-377.
    [11]Liu C, Yang Y. Effects of a-zirconium phosphate aspect ratio on the properties of polyvinyl alcohol nanocomposites. Polym Test,2009,28,801-807.
    [12]Wu H, Liu C, Chen J, Yang Y, Chen Y. Preparation and characterization of chitosan/a-zirconium phosphate nanocomposite films. Polymer International, DOI 10.1002/pi.2807.
    [13]Yang Y, Liu C, Chang P R, Chen Y, Anderson D P, Stumborg M. Properties and structural characterization of oxidized starch/PVA/a-zirconium phosphate composites, J Appl Polym Sci, 2010,115,1089-1097.
    [14]Demjen Z, Pukanszky B, Nagy J. Evaluation of interfacial interaction in polypropylene/surface treated CaCO3 composites. Composites Part A,1998,29A,323-329.
    [15]Han C D, Weghe T V D, Shete P, Haw J R. Effects of coupling agents on the rheological properties, processability, and mechanical properties of filled polypropylene. Polym Eng Sci, 1981,21,196-204.
    [16]Nakatsuka T, Kawasaki H, Itadani K, Yamashita S. Functional silane-modified calcium carbonate. J Appl Polym Sci,1979,24,1985-1995.
    [17]Ishida H, Miller J D. Substrate effects on the chemisorbed and physisorbed layers of methacryl silane-modified particulate minerals. Macromolecules,17,1984,1659-1666.
    [18]Moedritzer K, Irani R R. The direct synthesis of a-aminomethylphosphonic acids. Mannich-type reactions with orthophosphorous acid. J Org Chem,1966,31,1603-1607.
    [19]Nunthanid J, Puttipipatkhachorn S, Yamamoto K, Peck G E. Physical properties and molecular behavior of chitosan films. Drug Dev Ind Pharm,2001,27,143-157.
    [20]Xu Y X, Kim K M, Hanna M A, Nag D. Chitosan-starch composite film: preparation and characterization. Ind Crop Prod,2005,21,185-192.
    [21]Pearson F G, Marchessault R H, Liang C Y. Infrared spectra of crystalline polysaccharides.V. chitin. J Polym Sci,1960,43,101-116.
    [22]Kweon H Y, Um I C, Park Y H. Structural and thermal characteristics of Antheraea pernyi silk fibroin/chitosan blend film. Polymer,42,2001,6651-6656.
    [23]Nunthanid J, Puttipipatkhachorn S, Yamamoto K, Peck G E. Physical properties and molecular behavior of chitosan films. Drug Dev Ind Pharm,2001,27,143-157.
    [24]Zeng R, Fu X, Sui Y, Yang X, Sun M, Chen J. Synthesis, characterization and intercalation property of layered zirconium benzylamino-N, N-dimethylphosphonate phosphate materials. J Organomet Chem,2008,693,2666-2672.
    [25]Tang C, Xiang L, Su J, Wang K, Yang C, Zhang Q, Fu Q. Largely improved tensile properties of chitosan film via unique synergistic reinforcing effect of carbon nanotube and clay. J Phys Chem B,2008,112,3876-3881.
    [26]Boo W J, Sun L Y, Liu J, Moghbelli E, Cleafield A, Sue H J, Pham H, Verghese N. Effect of nanoplatelet dispersion on mechanical behavior of polymer nanocomposites. J Polym Sci Part B, 2007,45,1459-1469.
    [27]Qu X, Wirsen A, Albertsson A C. Effect of lactic/glycolic acid side chains on the thermal degradation kinetics of chitosan derivatives, Polymer,2000,41,4841-4847.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700