基于掺铒光纤激光器的混沌保密通信方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的主要研究工作是分析环形掺铒光纤激光器系统的动力学特征,并利用环形掺铒光纤激光器系统的混沌同步实现了光学信号的混沌保密传输。首先简要介绍了混沌和光学系统混沌的发展概况,对掺铒光纤激光器系统的混沌同步及其在保密通信中的应用作了概括介绍。其次在单环掺铒光纤激光器系统动力学方程的基础上实现了调制系统系数和附加延迟反馈光路两种增加系统自由度的方法,重点分析了基于附加延迟反馈回路的混沌系统的同步方法,数值仿真表明得到了比较理想的同步效果。然后根据双环掺铒光纤激光器系统的动力学方程提出了两种新的同步方法,即非线性反馈参数调制法和单环系统驱动双环系统的广义混沌同步法。利用辅助分析法得到了实现混沌超混沌同步的参数条件。最后结合单环和双环掺铒光纤激光器系统的混沌同步方法,实现了模拟信号和数字信号的保密传输。模拟信号采用信息掩盖法,而数字信号采用调制发射系统参数法。为了满足实际光学系统的设计要求,分析了系统对参数变化的敏感性,结果表明系统有一定的冗余性,在混沌保密通信方面有巨大的潜在应用价值。
The progress of communication technology is the deveplement of the national economy. Now almost all the carrier wave of opticommunication is the sine wave with special parameters or other special signal. Any company or person can produce the equipment of opticommunication to realize the aim of transmitting information, only if they know the communication protocols. But in the national defence, the transmitting mode is easy to be leaked out. The theory of chaos has no use in the latter half of 20 century when it is discovered and researched. But since American scientists Pecora and Carroll discovered the chaotic synchronization in 1990, the chaotic system became a potential carrier waver for the secure communication. Because of the potential application values and especially the successful invention of the single mode fiber which can operate on the low decay wavelength, the research of the chaos/superchaos and the chaotic synchronization on the erbium-doped fiber laser provide the foundation of favorable theory and experiment for the applications on the optical secure communication.
     Firstly, the characteristic of the nonlinear chaotic system is put forward. And then the methods of researching nonlinear chaotic system are provided. A method of changing the single ring erbium-doped fiber laser to chaotic system is proposed, and the nonlinear characteristic is discussed. We research the chaotic/superchaotic synchronization of single ring and dual-ring erbium-doped fiber lasers. At last, we research the applications on the chaotic secure communication of the single ring and the dual ring erbium-doped fiber lasers. The thesis can be divided four parts.
     1. The conception of chaos is proposed. In the past decades years, the conception of chaos has many descriptions. Here we explain the Li-Yorke Conception and the rigorous mathematical definition, which indicate the basic characteristic of chaos. Then we show the definition of chaos and enumerate the chaotic methods. There have been many chaotic methods, which have the same aim. The signals output from the driving system are injected into the response system to obtain the chaotic synchronization between the systems. All these results supply the important theoretical evidence for the chaotic synchronization on the optical laser systems, which is universal. Finally, we show the research course on characteristics of the optical laser systems. We also retrospect the research of nonlinear and chaotic synchronization of the CO_2 laser, He-Ne laser, Nd:YVO_4 laser, Nd:YAG laser and the erbium-doped fiber laser.
     2. With the erbium-doped fiber laser system, we first discussed the chaos method of modulating pump parameter. And propose a new chaos method-optical delay feedback injection, which is effective and reliable. The dynamic characteristic has infinite degrees of freedom, which increase the system's complexity. Based on the dynamics, we discuss the nonlinear characteristic. The numerical analysis indicates that the system has complicated nonlinear and chaotic characteristic, and it also may appear the superchaotic phenomenon under the certain parameters. Finally we research the superchaotic synchronization on the two single-ring erbium-doped fiber laser systems. In the master-slave scheme, the whole system can achieve the synchronization if the signal's amplitude is small enough. But in the coupling scheme, the transmitter system and the receiver system is controlled each other, which can achieve the synchronization with the parameter varies in a wide field. The successful simulations of these two schemes provide the perfect theoretical foundation for the chaotic secure communication on the single-ring erbium-doped fiber laser systems.
     3. Firstly, we review the dynamical characteristics on the dual-ring erbium-doped fiber laser system, and provide the bifurcation and Lyapunov exponent in the first time, which indicate that the system can be superchaos with specific parameters. Based on the parameter-modulating method and the general synchronization method, we propose the nonlinear feedback parameter-modulating methods and the general synchronization method on the single-ring system driving the dual-ring system. In this method, the decay rate is modulated by the difference of master system and slave system, and we obtain the synchronization between these two systems, on the suitable parameters. On the further research, we discover that the synchronization has phase-vagueness. But the phase-vagueness can be canceled automatically by designing the circuit in the laser synchronization system, and obtain the identical synchronization. In order to strengthen the security on the chaos correspondence we propose for the first time the general synchronization of single-ring system driving the dual-ring system, and confirm the condition of general synchronization by the Maximal Condition Lyapunov Exponent. To indicating the process of general synchronization, we make the numerical simulation by the assistant system method. We obtain the relationship between output laser signals of the driving system and the response system, which prove that the different systems can also be synchronized. All these results provide the new roads for identical synchronization of many laser systems.
     4. We show the modulation scheme for chaotic secure communication. The signal-masking scheme can transmit the analog signals and the numerical signals, but the amplitude cannot be too great. The shift-keying scheme is suitable for the numerical signals. The signal with great amplitude is feat for the wide-frequency modulation. And then numerically analyze the method for chaotic secure communication on the single-ring erbium-doped fiber laser system. In the single-ring erbium-doped fiber laser system, the analog signal is mixed with the chaotic carrier wave by message-masking scheme. With the sine wave message, the message can be demodulated successfully. When the message is digital signal, we modulate the parameters of the driving system by the digital signal, and also the message can be demodulated. But the speed is low because of the transient time, and it can become higher with the application of new materials. In the scheme of chaotic secure communication on the dual-ring erbium-doped fiber lasers, we realized the analog and digital signals effectively transmitted with the general synchronization method and message-masking scheme. Because the driving signal and the message signal are transmitted respectively, the whole systems are more steady and the demodulated message is more accurater. Finally, we analized the robustness of the chaotic secure communication on these two kinds of erbium-doped fiber laser systems, and we find that the system has good robustness and is transplantable.
     The numerical research of the chaotic/superchaotic synchronization and the chaotic secure communication on the erbium-doped fiber lasers must supply the theoretical and experimental foundation for its application on the optical secure communication.
引文
[1] T. Y. Li and J. A. Yorke, Period three implies chaos, Smer. Math Monthoy, (1975)82, 985.
    [2] 刘秉正,彭建华编著,非线性动力学,北京,高等教育出版社,2004。
    [3] Digonnet M, Rare Earth Doped Fiber Lasers and Amplifiers, New York, Marcel Dekker,1993.
    [4] 陆同兴编著,非线性物理概论,合肥,中国科学技术大学出版社,2002。
    [5] 胡岗,萧井华,郑式刚等,混沌控制,上海科技教育出版社1999
    [6] 沈柯,光学中的混沌,东北师范大学出版社,1999。
    [7] 方锦清,非线性系统中混沌控制方法、同步原理及其应用前景 (二),物理学进展,(1996)16:137。
    [8] Kohda T Tsuneda. A Pseudonoise sequences by chaotic nonlinear mapsand their correlation properties [J]. EICE trans.. Commun, (1993)8, 0855.
    [9] E. N. Lorenz, Deterministic nonperiodic flow. J Atmos Sci. (1963)20, 130.
    [10] D. Ruelle and F. Takens, On the Nature, of Turbulence, Commun. Math. Phys., (1971)20, 167.
    [11] R. May, Simple mathematical models with very complicated dynamics[J]. Nature, (1976)261,459.
    [12] M. J. Feigenbamm, Quantitative universality for a class of nonlinear transformations J. Stat. Phys., (1978)19, 25.
    [13] H. Haken, Analogy between higher instabilities in fluids and lasers. Phys. Let. A, (1975)53, 77.
    [14] L. W. Casperson, IEEE J. Quantum Electron. (1978)14, 756.
    [15] T. Yamada and Graham, Chaos in a Laser System under a Modulated External Field, Phys. Rev. Let., (1980)45, 1322.
    [16] K. Ikeda, Multiple-valued stationary state and its instability of thetransmitted light by a ring cavity system, Opts. Comm. (1979)30, 257.
    [17] F.T.Arecohi, R.Meucci, G.Puccioni. and J.Tredicce, Experimental Evidence of Subharmonic Bifurcations, Multistability, and Turbulence in a Q-Switched Gas Laser, Phys.Rev. Let., (1982)49, 1217.
    [18] C.O.Weiss, A.Godlafsson, A.Olafssion, Routes to chaotic emission in a cw He-Ne laser, Phys.Rev.A (1983)28, 892.
    [19] R.S.Gioggia and N.B.Abraham, Routes to Chaotic Output from a Single-Mode, dc-Excited Laser, Phys.Rev.Let., (1983)51,650.
    [20] C.O.Weiss, W.Klische, F.S.Ering and M.Cooper, Instabilities and chaos of a single mode NH_3 ring laser, Opt.Comm., (1985)52,405.
    [21] P. Gttnter, E. Voit, M. Z. Zha and J. Albers, Self-pulsation and optical chaos in self-pumped photorefractive BaTiO3, Opt.Comm., (1985)55,210.
    [22] W. Krolikowski, M. Belic, M. Cronin-Golomb, A. Bledowski, Chaos in photorefractive four -wave mixing with single grating and single interaction region, J.Opt.Soc.Am.B, (1990)7, 1204.
    [23] G.E. James and E.M.Horoll, Intermittency and chaos in intracavity doubled lasers. Phys. Rev. A, (1990)41, 2778.
    [24] M.Belic and Ljuboje, Chaos in phase conjugation: physical vs numerical instabilities, Opt. and Quant.Electron, (1992)24, 745.
    [25] L. A. Luginto and M.Milani, Disappearance of laser instabilities in a Gaussian cavity mode, Opt.Comm., (1983)46, 57.
    [26] L. A. Luginto and M.Milani, J. Opt. Soc. Am. B, (1985)2, 15.
    [27] L. A. Luginto, F, Prati, L. M. Narducci, P. Ru, and J. R. Tredicce, D. K. Bandy, Role of transverse effects in laser instabilities, Phys.Rev.A, (1988)37, 3847.
    [28] L. A. Lugiato, F. Prati, L. M. Narducci and G. -L. Oppo, Spontaneous breaking of the cylindrical symmetry in lasers, Opt.Comm., (1989)69, 387.
    [29] L. A. Lugiato, G. L. Tredicce, L. M. Narducci, and M. A. Pernigo, Instabilities and spatial complexity in a laser, J. Opt. Soc. Am. B, (1990) 7, 1019.
    [30] D.J.Gauthier, Science,279(1998)456.
    [31] N. F. Rulkov, M. M. Sushchik, L. S. Tsimring, and H. D. I. Abarbanel Generalized Synchronization of chaos in directionally coupled chaotic Systems, Phys. Rev. E(1995)51,980.
    [32] 方锦清,驾驭混沌与发展高科技,原子能出版社,2002年第一版,45。
    [33] Pecora L M, Carroll T L, Synchronization in chaotic system. Physical Review Letters, (1990) 64, 821.
    [34] Pecora L M and Carroll T L, Driving systems with chaotic signals, (1991)44, 2374.
    [35] Carroll T L and Pecora L M. Synchronization chaotic circuits, IEEE Trans. Circuits Syst., (1991)CAS-38,453.
    [36] B. A. Huberman et al., Dynamics of adaptive systems, IEEE Trans Circuits Syst, (1990) 37, 547.
    [37] Kocarev L and Parlitz U, General approach for chaotic synchronization with application s to communication. Phys. Rev. Lett, (1995)74, 5208.
    [38] K. Pyragas, Comtinuous control of chaos by self-controlling feedback, Physical LetterA, (1992) 170, 421.
    [39] 戴栋,马西奎,基于间歇性参数自适应控制的混沌同步,物理学报,(2001)50,1237。
    [40]. Nikolai F. Rulkov, Mikhail M. Sushchik, Lev. S. Tsimring, Henry D. I. Abarbanel, etc. Generalized synchronization of chaos in directionally coupled chaotic system, Phys. Rev. E, (1995), 51,980.
    [41] 文锦清,驾驭混沌与发展高科技,原子能出版社, 2002年第一版, 45-46。
    [42] Yu Zhang, Ming Dai, Yiman Hua, Wansun Ni, and Gonghuan Du, Digital communication by active-passive decomposition synchronization, in hyperchaotic systems, Phys. Rev. E, (1998) 58, 3022.
    [43] Masayoshi Inoue, Takashi Kawazoe, Yutaka Nishi, Masakazu Nagadome, Generalized synchronization and partial synchronization in coupled maps, Phys. Lett. A, (1998)249, 69.
    [44] V. I. Nekorkin, V. B. Kazantsev, M. G. Velarde, Synchronization in two-layer bistable coupled map lattices, Physica D, (2001) 151, 1.
    [45] Pyragas K. Predictable chaos in slightly perturbed unpredictable chaotic systems [J]. Rhys Lett A, (1993)181,203.
    [46] 贺明峰,穆云明,赵立中,基于参数自适应控制的混沌同步,物理学报,(2000)49,830。
    [47] Martin J. Bunner and Wolfram Just, Synchronization of time-delay systems, Phys. Rev. E, (1998)58, 4072.
    [48] 赖建文、周世平、李国辉等,间歇驱动混沌同步法,物理学报,(2001)50,0021。
    [49] Henry D. I. Abarbanel, Nikolai F. Rulkov, and Nikhail M. Sushchik, Generalized synchronization of chaos: The auxiliary system approach, Phys. Rev. E, (1996)53, 4528.
    [50] Tao Yang and Leon O. Chua, Generalized synchronization of chaos via linear transformations, International Journal of Bifurcation and Chaos, (1999)9, 215.
    [51] Xiao-song Yang, Guanrong Chen, Some observer-based criteria for discretetime generalized chaos synchronization, Chaos, Solitons & Fractals, (2002)13, 1303.
    [52] H. G. Winful and L. Rahman, Phys. Rev. Let., (1990)65, 1575.
    [53] T. Sugawara, M. Tachikawa, T. Tsukamom, and T. Shnnizu, Phys. Rev. Lett., (1994)72,3502.
    [54] Colet P, Roy R, Digital communication with synchronization chaotic laser, Optical Letters, (1994) 19, 2056..
    [55] Mirasso. C. R, Colet P., and Garcia-Fernandez P., Synchronization of chaotic semiconductor lasers: application to encoded communications IEEE Photonics Technology Letters. (1996)8,299.
    [56] A. UChida, M. Shinozuka, T. Ogawa, and F. Kannari, Experiments on chaos synchronization in two separate microchip lasers, Opt. Lett. (1999)24, 890.
    [57] Citation S. Coen and M. Haelterman, Competition between modulational instability and switching in optical bistability, Opt. Lett., (1999)24, 80.
    [58] A. Uchida, T. Ogawa, M. Shinozuka, and F. Kannari, Accuracy of chaos synchronization in Nd: YVO4 microchip lasers, (2000)62, 1960.
    [59] Luo L G, Tee T J, Chu P L, Chaotic behavior in erbium-doped fiber-ring lasers, Journal of the Optical Society of America B, (1998) 15, 972.
    [60] Luo L G, Chu P L, Optical secure communications with chaotic erbiumdoped fiber lasers, Journal of the Optical Society of America B, (1998)15, 2524.
    [61] Luo L G,. Chu P L, Whitbread T, et al., Experimental observation of synchronization of chaos in erbium-doped . fiber lasers, Optics Communications, (2000) 176, 213.
    [62] Henry D. I. Abarbanel and Matthew B. Kennel Synchronizing HighDimensional Chaotic Optical Ring Dynamics, Phys. Rev. Let., (1998)80, 3153.
    [63] John R. Terry, K. Scott Thornburg, Jr.,, David J. DeShazer, Gregory D. Van Wiggeren, Shiqun Zhu, Peter Ashwin, and Rajarshi Roy, Synchronization of chaos in an array of three lasers Phys. Rev. E, (1999)59, 4036.
    [64] Wang Rong, and Shen Ke, Synchronization of chaotic erbium-doped fiber dual-ring lasers by using the method of another chaotic system to drive them, Physical Review E, (2001) 65, 0162071.
    [65] Uchida A, Kinugawa S, Yoshimori S Synchronization of chaos in two microchip lasers by using incoherent feedback method, Chaos, Solitons and Fractals (2003)17, 363.
    [66] 颜森林,量子阱激光器混沌相位控制同步以及编码研究,物理学报,(2005)54,1098。
    [67] 范文华,田小建,于永力,陈菊芳,罗红娥,基于反馈参数调制的掺铒光纤激光器混沌同步,物理学报,(2006)55,5105。
    [68] 刘秉正.非线性动力学与混沌基础[M],长春:东北师范大学出版社,1994:2-300.
    [69] 王金兰,陈光旨,时空混沌系统的主动—间隙耦合同步.物理学报,(1999)48,1605.
    [70] 禹思敏、林清华、丘水生 四维系统中多涡卷混沌与超混沌吸引子的仿真研究,物理学报(2003)52,0025.
    [71] 陈菊芳,程丽,刘颖,彭建华 延迟变量反馈法控制离散混沌系统的电路实验,物理学报,(2003)52,0018.
    [72] C. Massimo and T. Claudio, Approximate Identity Neural Networks for Analog synthesis of Nonlinear Dynamical Systems, IEEE Trans.Circuits Syst. (1994)41, 141.
    [73] 吴景棠编著,非线性电路原理,北京:国防出版社,(1990):199-27。
    [74] 黄润生,混沌及其应用[M],武汉:武汉大学出版社,(2000):2-215。
    [75] 郝柏林著,从抛物线谈起——混沌动力学引论,上海:上海科技教育出版社,(1993),119-130。
    [76] 李如生,非平衡态热力学和耗散结构,清华大学出版社,1986。
    [77] 张晓明,彭建华,张入元,非线性系统频率特性及其利用,物理学报,(2002)51,2467。
    [78] Kaneko K. Collapse of Tori and Genesis of Chaos in Dissipative System[J]. Ph D Thesis, (1983)34, 45.
    [79] Chua L. O., The genesis of Chua's circuit, Int. J. Electron. Commun., (1992)46, 250.
    [80] 张洪钧,光学混沌,上海科技教育出版社,上海,1995。
    [81] Michael bass 主编,胡先志等译,光纤通信—通信用光纤、器件和系统,人民邮电出版社,北京,(2004):150-152。
    [82] 马军山,光纤通信原理与技术,人民邮电出版社,北京,(2004):160-161。
    [83] O. Svelto, Principle of Lasers, 3rd ed. (Plenum, New York, (1989): 214.
    [84] L. G. LUO, P. L. Chu, Optical bistability in a coupled fiber ring resonator system with nonlinear absorptive medium, Opt. Comm., (1996)129, 224.
    [85] F. Sanchez, M. Leflohic, et al., Quasi-periodic Route to Chaos in Erbiumdoped Fiber Laser, IEEE Joumalof Quantum Electronics, (1995)31, 481.
    [86] Abarbanel H D I, Kennel M B, Buhl M, et al., Chaotic dynamics in erbiumdoped fiber ring lasers, Physical Review A, (1999)60, 2360.
    [87] 王荣,沈柯 延时线性反馈法控制双环掺铒光纤激光器混沌,物理学报,(2001)50,1024。
    [88] R. Wang and K. Shen, Synchronization of chaotic systems modulated by another chaotic system inan erbium-doped fiber dual-ring laser system, IEEE IEEE Journal of Quantum Electronics, (2001)37, 960.
    [89] Wang. Rong, Shen Ke, Inverse synchronization of chaotic systems in an erbium-doped fiber dual-ring laser using the mutual coupling method, Chinese Physics, (2001) 10, 0711.
    [90] Zhang Sheng-hai, Shen Ke, Generalized synchronization of chaos in erbium-doped dual-ring lasers, Chinese Physics, (2002)11, 0894.
    [91] Sungchul Kim, Byoungho Lee, and Dong Hwan Kim, Experiments on chaos synchronization in two Separate erbium-doped fiber lasers, IEEE Photonics Technology Letters, (2001)13, 290.
    [92] Zhang Sheng-hai, Shen Ke, Synchronization of chaotic erbium-doped fiber lasers and its application in secure communication, Chinese Physics. (2004)13, 1215.
    [93] Zhang S H, Shen K Controlling hyperchaos in erbium-doped fiber laser, Chinese Physics, (2003)12, 0149.
    [94] Y. Imai, H. Murakawa, T. Imoto, Chaosysnchronization characteristics in erbium-doped fiber laser systems, Optics communications, (2003)217, 415.
    [95] Fan Wenhua, Tian Xiaojian, Chen Jufang, Zheng Fan, Yu Yongli, Gao Bo, and Luo Hong'e, The dynamics of erbium-doped fiber laser with optical delay feedback and the chaotic synchronization, Chinese Physics, 2007, Vol, 16, In press.
    [96] 黄志坚,孙军强,黄德修,掺铒光纤激光器自脉冲行为的研究,光学学报,(1998)18,767。
    [97] L. G. Luo, T. J. Tee, P. L. Chu, Biatability of erbium-doped fiber laser, Optics communications, (1998)146, 151.
    [98] L. G. Luo, R. F. Peng, R L. Chu, Optical biatability in a passive erbium-doped fiber ring resonator, Optics communications, (1998)156, 275.
    [99] L. G. Luo, P. L. Chu, Self-pulsation and bistability in a cw pumped erbiumdoped fiber resonator sYstem, Opt. Comm., (1997)135, 116.
    [100] F. T. Arecchi, G. Giacomelli, A. Lapucci, and R. Meucci, Dynamics of a CO2 laser with delayed feedback: The short-delay regime, Physical Review A, (1991) 43, 4997.
    [101] 张胜海,杨华,钱兴中,一种控制掺铒光纤激光器超混沌的方法—非线性延时反馈参数调制法,物理学报,(2004)53,3706.
    [102] J. H. Peng, E. J. Ding, M. Ding and W. Yang, Synchronizing Hyperchaos with a Scalar TransmittedSignal, Phys. Rev. Lett. (1996)76, 904.
    [103] Arecchi F T, Gadomski W and Meucci R, Phys. Rev. A, (1986)34, 1617.
    [104] Papri Saha, Santo Banerjee, A. Roy Chowdhury, Some aspects of synchronization and chaos in a coupled laser system, Chaos, Solitons & Fractals, (2002)14, 1083.
    [105] 程丽,张入元,彭建华,用单一驱动变量同步混沌与超混沌的一种方法,物理学报,(2003)52,0536.
    [105] G. M. VanTartwijk, G. P. Agrawal, Prog. Quantum Electron., (1998)22, 43.
    [106] L. Kocarev, U. Parlitz, Generalized synchronization, predic tability, and equivalence of unidirectionally coupled dynamical systems, Physical Review Letters, (1996)76, 1816.
    [107] Shuguang Guan, Kun Li and C. H. Lai, Chaotic synchronization through coupling strategies, Chaos, (2006)16, 023107.
    [108] Broward F K The structure of the turbulent mixing layer, Physica D, (1986)18, 33.
    [109] K M Cuomo, A V Oppenheim, Circuit implementation of synchronized chaos with applications to communication, Phys. Rev. Lett. (1993)71, 65.
    [110] Stocanorski T., Kocarev L. and Parlitz V., Digital coding via chaotic systems, IEEE Trans. Circuits Syst. (1997) 44, 562.
    [111] Chil-Min Kim, Sunghwan Rim, and Won-Ho Kye, Sequential Synchronization of chaotic systems with an application to communication, Phy Rev Lett, (2002)88, 014103.
    [112] Chun-Chieh Wang, Juhng-Perng Su, A new adaptive variable structure control for chaotic synchronization and secure communication, Chaos Solitons & Fractals, (2004)20, 967.
    [113] Shyam Sundar and Ali A.Minai, Synchronization of Randomly Multiplexed Chaotic Systems with Application to Communication, Physical Review Letters, (2000)85, 5456.
    [114] Kanako Suzuki and Yoh Imai, Decryption characteristics in message modulation type chaos secure communication system using optical fiber ring resonators, Optics Communications, (2006) 259, 88.
    [115] Lewis C T, Abarbanel H D I, Kennel M B, et al., Synchronization of chaotic oscillations in doped fiber ring lasers, Physical Review E, (2000)63, 016215.
    [116] Shaw L B, Schwartz I B, Rogers E A and Roy R, Synchronization and time shifts of dynamical patterns for mutually delay-coupled fiber ring lasers, Chaos (2006) 16, 015111.
    [117] Ricardo F., Romon J.O., Gualberto S. R, A chaos-based communications cheme via robust asymptotive chaotic maps, Phy. Rev. Lett., (2000)85:66-69.
    [118] J. P. Goedgebuer, L. Larger, and H. Porte, Optical cryptosystem based on synchronization of hyperchaos generated by a delayed-feedback tunable laser diode, Physical Review Letters, (1998)80, 2249.
    [119] Zhigang Li, Daolin Xu, A secure communication scheme using projective chaos synchronization, Chaos Solitons &Fractals, (2004)22, 477.
    [120] Kyo Inoue and Takaaki Mukai, Signal-masked optical communication utilizing amplified spontaneous emission of an optical amplifier, Optics Communications, (2001) 197, 53.
    [121] Geza Kolumban, Michael Peter Kennedy, Leon O.Chua. The role of synchronization in digital communications, Using chaos part Ⅱ: chaotic modulation and chaotic synchronization, IEEE Transactions on Circuits and Systems-I (1998)45,1129.
    [122] Grass G.., Mascolo S. A., System Theory Approach for Designing Cryptosystems Based on Hyperchaos, IEEE Trans.on Circ. And Syst. I, (1999)46, 1135.
    [123] Kevin M. Cuomo, Alan V., Oppenheim, Steven H. Strogatz. Synchronization of Lorenz-based Chaotic Circuits with Applications to Communications. IEEE Trans. Circuits Syst, (1993)40, 626.
    [124] 颜森林,双环掺铒光纤激光器混沌键控保密通信系统理论模型和数值模拟,电子与信息学报,(2005)27,703。
    [125] 颜森林,激光混沌同步和解码以及优化,物理学报,(2004)53,1704。
    [126] 赵耿等.混沌保密通信的最新进展,科技进展:(自然杂志),(2001)23,97.
    [127] Z. P. Jiang. A note on chaotic secure communication systems. IEEE Trans. Circuits and Systems-I, (2002)49, 92.
    [128] L. KoCarev, K. S. Halle, et al, Int. J. Bif. and Chaos, (1992)2, 709.
    [129] Wiggeren G. D. Van, Roy R., Optical communication with chaotic waveforms, Physical Review Letters, (1998)81, 3547.
    [130] VanWiggeren (G. D. and Roy R., Communication with chaotic lasers, Science, (1998)279, 1198.
    [131] 杨涛,戴晓明,邵惠鹤,基于间歇耦合和广义混沌同步的数字信号传输方案,电子与信息学报,(2002)24,1602。
    [132] Fan Zhang and Pak L. Chu, Effect of coupling strength on chaos synchronization generated by erbium-doped fiber ring laser, Optics Communications, (2004)237, 213.
    [133] Yu Zhang, Ming Dai, Yiman Hua, Wansun Ni, and Gonghuan Du, Digital communication by active-passive decomposition synchronization in hyperchaotic systems, Phys. Rev. E, (1998)58, 3022.
    [134] 刘剑波,张树京,宋文涛,混沌通信技术研究,通信技术,(2001)1,42.
    [135] 倪皖荪,华一满,邓浩等,混沌通讯,物理学进展,(1996)16,645.
    [136] 方锦清,非线性系统中混沌的控制与同步及其应用前景 (一),物理学进展,(1996)16,1.
    [137] 王玫,一种新的混沌同步及其保密通信方式[J].通信学报,(1998)19,47.
    [138] Liao. T. L., Huang N. S., An observer-based approach for chaotic synchronization with applications to secure communications. IEEE Transactions on Circuits and Systems, (1999) 46, 1144.
    [139] Panas A. L., Yanag T., et al. Experimental results of impulsive syncharonization between two Chua s circuits, Int J Bifurcation Chaos, (1998)8, 639.
    [140] Kohda T Tsuneda, A Pseudonoise sequences by chaotic nonlinear maps and their correlation properties, EICE Trans Commun,(1993)E76,B, 0855.
    [141] Yang T., Wu C. W., Cryptography based on chaotic systems, IEEE Trangs. CAS-I, (1997)44, 469.
    [142] Wu C. W., Chua L. O., A simple way to synchronize chaotic Systems with applications to secure communication systems, Int J. Bifurcation Chaos,(1993)3, 1619.
    [143] Palmore J, Computer Arithmetic.Chaos and Fractal, Physics D,(1990)42, 99.
    [144] Grassi G., Mascolo S., A system theory approach for designing cryptosystems based on hyperchaos. IEEE Trans Circuits and System, (1999)46, 1135.
    [145] Mascolo S., Grassi G., Observers for hyperchaos synchronization with application to secure communications. Proceedings of the 1998 IEEE. ICCAT, (1998),1016.
    [146] Brucoli M, Camimeo Grassi G. A, Method for the synchronization of hyperchaotic circuits. Int J Bifucatin Chaos,(1996)6,1673.
    [147] F. T. Arecchi, R. Meucci, G. Puccioni, and J. Tredicce. Experimental evidence of subharmonic bifurcations, multistability, and turbulence in a Q-switched gas laser, Phys.Rev.Lett., (1982)49,1217.
    [148] Ramon Corbalan, Jordi Cortit, Alexander N.Pisarchik, Viacheslv N.Chizhevsky, and Ramon Vilaseca, Investigation of a CO_2 laser response to loss perturbation near period doubling, Phys.Rev.A (1995)51,663.
    [149] V. N. Chizhevsky, and Ramon Corbalan, Experimental observation of perturbation-induced intermittency in the dynamics of a loss modulated CO_2 laser. Phys. Rev. E (1996)54, 4576.
    [150] Hiroshi kakiuchida and Hunji Ohtsubo, Characteristics of a semiconductor laser with external feedback, IEEE Journal of Quantum Electronics (1994)30, 2086.
    [151] V. Kovanis, A. Gavrielides, T. B. Simpson, and J. M. Liu, Instabilities and chaos in optically injected semiconductor lasers, Appl.Phys.Lett. (1995) 67, 2780.
    [152] K.S.Halle, C.W.Wu, M.Itoh, and L.O.Chua, Int.J.Bifurcation Chaos (1993)3, 469.
    [153] U.Parlitz, L.O.Chua, L.Kocarev, K.S.Halle, and A.Shang, Int.J.Bifurcation Chaos, (1992)2,973.
    [154] T.L.Carroll and L.M.Pecora, Physica,D (1993)67, 126.
    [155] R.Roy and K.Scott Thornburg, Experimental synchronization of chaotic lasers, Phys.Rev.Lett., (1994)72, 2009.
    [156] A.M.Fraser and H.L.Swinney, Independent coordinates for strange attractors from mutual information, Phys.Rev.A, (1986)33,1134.
    [157] D.W. Peterman, M.Ye, P.E.Wigen, High Frequency Synchronization of Chaos, Phys.Rev.Lett, (1995)74, 1740.
    [158] B.A.Huberman, E.Lumer, IEEE Trans.Circuits Syst. (1990)37, 547.
    [159] Zhang Xinying, Guan Xinping, and Li Huiguang, Adaptive synchronization with nonlinear input, Chinese Physics, (2005)14, 0279.
    [160] Wu Liang, and Zhu Shi-Qun, Communication using multi-mode laser system based on chaotic synchronization, Chinese Physics, (2003)12, 0300.
    [161] Fan Zhang, Chu P.L., Lai. R., Chen, G.R., Dual-wavelength chaos generation and synchronization in erbium-doped fiber lasers, IEEE Photonics Technology Letters, (2005)17, 549.
    [162] Handbook of Chaos Control, edited by H. G. Schuster (Wiley-VCH, Weinheim, (1999).
    [163] Juergen Kurths, S. Boccaletti, C. Grebogi, Y.-C. Lai, Introduction: Control and synchronization in chaotic dynamical systems,Chaos, (2003)13, 126.
    [164] Hugo L. D. de S. Cavalcante and J. R. Rios Leite, Intensity coupling and synchronization of chaotic lasers, Chaos, (2003) 13,209.
    [165] Kocarev, L., Maggio, G. M., Ogorzalek, M., Pecora, L. and Yao, K., Special Issue on Applications of Chaos in Modern Communication. Systems, IEEE Trans. on Circ.Sys.-I, (2002)48, 1385,.
    [166] P.A.Valle, S.Sivaprakasam, P.Rees, P.S.Sencer and K.A.Shore, Synchronization regimes in chaotic optical communication systems, IEEE Proc.-Optoelectron, (2003) 150, 191.
    [167] Cheng Juang, T. M. Hwang, J. Juang, and Wen-Wei Lin, A Synchronization Scheme Using Self-Pulsating Laser Diodes in Optical Chaotic Communication, IEEE Jornal of Quantum Electronics, (2000)36, 300.
    [168] Tilmann Heil, Josep Mulet, Ingo Fischer, Claudio R. Mirasso, Michael Peil, Pere Colet, and Wolfgang Elsaβer, ON/OFF phase shift keying for chaos-encrypted Communication using external-cavity semiconductor lasers, IEEE Journal of Quantum Electronics, (2002)38, 1162.
    [169] Junji Ohtsubo, Chaos Synchronization and Chaotic Signal Masking in Semiconductor Lasers With Optical Feedback, IEEE Journal of Quantum Electronics, (2002)38, 1141.
    [170] Y. Liu, H. F. Chen, J. M. Liu, P. Davis, and T. Aida, Communication Using Synchronization of Optical-Feedback-Induced Chaos in Semiconductor Lasers, IEEE Transactions on circuits and systems, (2001)48, 1484.
    [171] F. Rogister and A. Locquet, D. Pieroux, M. Sciamanna, O. Deparis, P. Megret, and M. Blondel, Secure communication scheme using chaotic laser diodes subject to incoherent optical feedback and incoherent optical injection, Optics Letters, (2001)26, 1486.
    [172] Bunner M. and Just W., Synchronization of time-delay systems. Phys. Rev. E, (1998)58, 4072.
    [173] Diekmann O. et al., Delay Equations. Springer, New York. 1995.
    [174] Kittel, A., Parisi, J., and Pyragas, K., Generalized synchronization of chaos in electronic circuit experiments. Physica D, (1998)112, 459.
    [175] Pyragas, K., Synchronization of coupled time-delay systems: Analytical estimations. Phys. Rev. E, (1998)58, 3067.
    [176] S. Tang and J. M. Liu,Chaos Synchronization in Semiconductor Lasers With Optoelectronic Feedback, IEEE Journal of Quantum Electronics, (2003)39, 708.
    [177] Kanako Suzuki and Yoh Imai, Periodic chaos synchronization in slave subsystems using optical fiber ring resonators, Optics Communications, (2004)241,507.
    [178] Yun Liu, Peter Davis, Yoshiro Takiguchi, Tahito Aida, Shigeru Saito, Jia-Ming Liu, Injection Locking and Synchronization of Periodic and Chaotic Signals in Semiconductor Lasers, IEEE Journal of Quantum Electronics, (2003)39, 269.
    [179] 颜森林,光纤混沌相位编码保密通信系统理论研究,物理学报,(2005)54,2000。
    [180] A. Winter, F.O. Ilday, O.D. Mucke, R. Ell, H. Schlarb, P. Schmuser and F.X. Kartner, Towards high-performance optical master oscillators for energy recovery linacs, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, (2006)557, 299.
    [181] P. Colet and R. Roy, Digital communication with synchronized chaotic lasers, Opt. Lett., (1994)19, 2056.
    [182] L. C. Gomez-Pavon and E. Marti-Panameno, Synchronous mode-locking in multichannel fiber laser systems, Optics Communications, (2001) 191, 323.
    [183] M. Lakshmanan, Nonlinear physics: Integrability, chaos and beyond, Journal of the Franklin Institute, (1997)334, 909.
    [184] Surinder Singh and R.S. Kaler, Analysis and minimization of cross phase modulation in semiconductor optical amplifiers for multichannel WDM optical communication systems, Optics Communications, (2007)274, 105.
    [185] P. Griggio, J. Hu, J. Wen, G.E. Tudury, J. Zweck, B.S. Marks, L. Yan, G.M. Carter and C.R. Menyuk, Characterizing pattern dependence in transmitters and receivers for modeling optical communication systems, Optics Communica-tions, (2007)272, 107.
    [186] Jinyu Mo, Yang Jingwen, Yi Dong, Wang Yixin and Lu Chao, Generation, detection and characterization of optical minimum shift keying data format, Optics Communications, (2007)270, 396.
    [187] J.Vasseur, M. Hanna and J.M. Dudley, Stabilization of an actively modelocked fibre laser by multi-harmonic phase modulation, Optics Communica-tions, (2005)256, 394.
    [188] Lacra Pavel, Dynamics and stability in optical communication networks: a system theory framework, Automatica, (2004)40, 1361.
    [189] Chun-Liu Zhao, Bai-Ou Guan, Hwa-Yaw Tam, Weng-Hong Chung, Xinyong Dong, P. K. A. Wai and Xiaoyi Dong, Performance of optical automatic gain control EDFA with dual-oscillating Control lasers, Optics Communica-tions, (2003)224, 281.
    [190] Varghese Baby, Bing C Wang, Lei Xu, Ivan Glesk and Paul R. Prucnal, Highly scalable serial-parallel optical delay line, Optics Communications, (2003)218, 235.
    [191] Jean-Noel Maran, Sophie LaRochelle and Pascal Besnard, C-band multi-wavelength frequency-shifted erbium-doped fiber laser, Optics Communications, (2003)218, 81.
    [192] Ivan B. Djordjevic and Bane V. Vasic, Receiver Modeling for Optically Amplified Communication Systems, AEU-International Journal of Electronics and Communications, (2003)57, 381.
    [193] E. F. Manffra, I. L. Caldas and R.L. Viana, Stabilizing periodic orbits in a chaotic semiconductor laser, Chaos, Solitons & Fractals, (2003)15,327.
    [194] Herve Dedieu, Michael Peter Kennedy, Martin Hasler. Chaos shift keying: Modulation and Demodulation of a chaotic carrier using self-synchronizing Chua's circuits. IEEE CAS-Ⅱ, (1993)10, 634.
    [195] K. Makki, J. Broussard and N. Pissinou, On optical communications networks and wideband network architecture, Computer Communications, (2000) 23, 901.
    [196] I. Roudas, D. H. Richards, N. Antoniades, J. L. Jackel and R. E. Wagner, An Efficient Simulation Model of the erbium-doped fiber for the study of multiwavelength optical networks, Optical Fiber Technology, (1999)5,363.
    [197] Liang Feng, Xiang Jinglin, Chen Shaohua, Shi Jie, Exploring possibility of utilizing projective synchronization in underwater chaotic secure communication, Journal of Northwestern Polytechnical University, (2006)24, 10.
    [198] Yu, Yongguang, The synchronization for time-delay of linearly bidirectional coupled chaotic system, Chaos, Solitons and Fractals, (2007)33, 1197.
    [199] Landsman, Alexandra S., Schwartz, Ira B, Complete chaotic synchronization in mutually coupled time-delay systems, Physical Review E, (2007)75, 026201.
    [200] Yu, Hong-Jie, Peng, Jian-Hua, Synchronization of nonlinear coupled hyperchaotic Rossler systems and networks, Chinese Journal of. Computational Physics, (2006)23,626.
    [201] Li, Fang, Hu, Ai-Hua, Xu, Zhen-Yuan, Robust synchronization of uncertain chaotic systems, Chinese Physics, (2006)15,507.
    [202] Kim Dong Ik, Lee Dae-Sic, Park Young-Jai, Kim Gyu Ug, Chil-MinPhase synchronization of chaotic lasers, Optics Express, (2006) 14, 702.
    [203] Shabunin A., Astakhov, V., Kurths, J, Quantitative analysis of chaotic synchronization by means of coherence, Physical Review E, (2005)72, 1.
    [204] Koronovskii A. A., Popov P. V., Hramov A. E, Generalized chaotic synchronization in coupled Ginzburg-Landau equations, Journal of Experimental and Theoretical Physics, (2006)103,654.
    [205] Ren, Na, Zhang, Xu, Synchronization of chaotic erbium-doped fiber dual-ring lasers by driving parameter, Proceedings of SPIE The International Society for Optical Engineering, High-Power Lasers and Applications Ⅲ, (2005)5627, 342.
    [206] 颜森林;迟泽英;陈文建;掺铒光纤激光器反相位混沌同步及其编码,光学学报,(2004),24,29.
    [207] Roy, Rajarshi, Optical communication with chaotic waveforms, Conference Proceedings- Lasers and Electro-Optics Society Annual Meeting-LEOS, (1999)1,372.
    [208] Argyris, Apostolos, Syvridis, Dimitris, Performance of open-loop all-optical chaotic communication systems under strong injection condition, Journal of Lightwave Technology, (2004)22, 1272.
    [209] Stojanovski T, Kocarev L, Parlitz U, Harris R., Sporadic driving, of dynamical systems. Phys. Rev. E, (!997)55, 4035.
    [210] Palitz U, Kocarev L, St0janovski T, Junge L., Chaos synchronization using sporadic driving, Physica D, (1997) 109, 139。
    [211] 陈菊芳,张入元,彭建华,脉冲驱动离散混沌系统同步的实验与理论研究, 物理学报,(2003)52,1039.
    [212] 冯新焕,范万德,袁树忠,董孝义,同步泵浦锁模掺铒光纤激光器,光电子·激光,(2004)15,267。
    [213] Lingyun Xiong, Guiyun Kai, Lei Sun, Xinhuan Feng, et al., Dual wavelength erbium-doped fiber laser with a lateral pressure-tuned Hi-Bi fiber Bragg grating, Chinese Optics Letters, (2004)2, 686.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700