R_2O-CaO-SiO_2-F系统微晶玻璃的结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文系统地叙述了微晶玻璃,尤其是R2O-CaO-SiO2-F系统微晶玻璃的研究现状、制备技术及其应用。通过在实验中改变R2O-CaO-SiO2-F系统微晶玻璃的基础组分,运用DTA、XRD、SEM等测试手段,结合微晶玻璃的抗折强度及热膨胀系数,研究其组成、热处理制度与结构、性能之间的相互联系和影响规律。并通过实验确立比较合理的组分以及热处理制度,制备具有优良性及合理晶相组成的微晶玻璃材料。
     首先,研究了微晶玻璃中氧化钾、氧化铝、氧化钙及氟含量的变化对微晶玻璃结构和性能的影响。研究表明:在氧化钾的含量变化范围内,随着K2O引入量的增加,玻璃转变点温度降低,而最大析晶峰温度升高。当K2O引入量为5wt%左右时,微晶玻璃的主晶相为颗粒状的氟化钙和柱状的硬硅钙石,晶体含量为15%。当氧化钾含量由6wt%增加到8wt%时,微晶玻璃主要析出放射状A-硅碱钙石或硅碱钙石,次晶相为少量的氟化钙,晶体含量增大到40%。
     在微晶玻璃中氧化钙的引入量由10.8 wt%增加至16.8 wt%,R2O-CaO-SiO2-F系统中析出的晶相由硅碱钙石逐渐转变为硬硅钙石、硅酸钙及方石英等多种晶相。且过高的钙含量也会造成粗大晶粒的出现。这样的微观结构会导致样品力学性能的降低。其抗折强度由85MPa降低到72MPa左右。
     微晶玻璃中氟引入量的调整范围在3.4 wt%到6.4 wt%之间。适当的增加氟的含量,可以通过提高析晶量起到提高样品力学性能作用。但过高的氟含量也会使其析晶速率过快。这样的微观结构同样会导致样品力学性能的降低,使其抗折强度由86MPa降低到66MPa左右。
     随着微晶玻璃中氧化铝的引入量由2.5 wt%增加到4.5 wt%,氧化铝都以四配位参与到硅氧网络结构当中;当氧化铝含量小于3.5wt%时,微晶玻璃的主晶相为A-硅碱钙石,当氧化铝含量大于3.5wt%时微晶玻璃的主晶相转变为颗粒状的氟化钙和柱状的硬硅钙石。且随氧化铝引入量的升高,微晶玻璃中晶体的衍射强度整体下降,玻璃的软化点也随之上升。
     综上所述,较为合适的组成为SiO2 64mol%,CaO 10.8mol%,K2O 5mol%, Na2O 8.4mol%,CaF2 10.5mol%,Al2O3 1.3mol%.其次,进一步通过试验及热动力学理论分析,深入研究热处理制度对微晶玻璃析晶和所析出晶体间的转变关系。研究结果表明:由于硅碱钙石或A-硅碱钙石的热力学驱动力相比硬硅钙石具有优势,高温下前者的析晶速率更高。而由于硅碱钙石或A-硅碱钙石相对硬硅钙石析晶活化能上的劣势,低温下前者的析出需要克服更大的势垒,因此低温下前者的析晶速率要比后者低。但由于硅碱钙石或A-硅碱钙石热力学驱动力上的优势,在合适的低温延时热处理下硬硅钙石将会转变为硅碱钙石或A-硅碱钙石。虽然R2O-CaO-SiO2-F系统微晶玻璃中各种晶相间关系复杂,但通过热力学计算及分析我们仍可以得到其晶相转变的规律。
In this paper, the research background, classification, preparative technology and application of glass-ceramics (especially about a glass-ceramics consisting of the R2O-CaO-SiO2-F system) were systematically reviewed. The influence of heat treatment and composition on structure and properties of the glass-ceramics based on R2O-CaO-SiO2-F system were investigated. The relationships among composition, heat treatment, crystallization and properties were studied to attain some results about reasonable composition and heat treatments and high-performance glass-ceramic substrate.
     Firstly, the influence of K2O, CaO, F and Al2O3 content on crystallization and properties of glass-ceramics was investigated. The results showed that the increase of K2O addition resuled in the reduction of the glass transition temperature and the enhancement of the crystallization temperature. Moreover, the crystalline phase was granular CaF? and cylindrical cuspidate and the crystalline were 15% with 5wt% K2O. However, the crystalline phase were transformed to bulk radial A-canasite and CaF2 and the crystallinity were up to 40% when the addition of K2O increased from 6wt% to 8wt%.
     With the CaO content was added from10.8 wt% to 16.8 wt%, the crystalline phases were disordered. The canasite transited to others Crystalline phases. Excess CaO acted as speed up the rate of crystallization, caused coarse crystallite and low flexure strength. And as the F content was added from 3.4 wt% to 6.4 wt%, the canasite or A-canasite crystalline phase was promoted. With appropriate F content, the flexure strength of sample was perfect. However excess F acted as speed up the rate of crystallization, caused coarse crystallite and low flexure strength.
     The addition of Al2O3 would strengthen the glass network. Moreover, the crystal phases became CaF2 and canasite if the mass fraction of alumina was 2.5%. However, the crystal phases were transferred into CaF2and xonotlite when the mass fraction of alumina was 3.5% and 4%. When the mass fraction of alumina increased up to 4.5%, the CaF2, A-canasite and xonotlite were precipitated.
     Secondly, we investigated the influence of heat treatment on the phase transition, study the processes of phase transition and try to explain the result by analysis of thermodynamic theory further. The result shows that the growth rate of canasite or A-canasite (frankamenite) was higher than xonotlite at high temperature for the vantage of thermodynamic drive force. The kinetic analysis indicated that the precipitation of canasite or frankamenite needs to overcome more activation energy of particles diffusing then xonotlite. So Therefore, the precipitation of xonotlite litter is earlier than canasite or frankamenite at low temperature. The phase transition between xonotlite and canasite or frankamenite does correspond agreed with the thermodynamic theoretical expectations. Which demonstrate that although the phase evolution is was a complex procedure in canasite-based glass-ceramic, we can still get some its general principle through theoretical analysis.
引文
[1]程金树,李宏,汤李缨,何峰.《微晶玻璃》[M].化学工业出版社,2006年
    [2]西北轻工业学院主编.《玻璃工艺学》[M].中国轻工业出版社,1982年
    [3]P.W.麦克米伦著.《微晶玻璃》[M].王仞千 译.中国建筑工业出版社,1988年
    [4]Wolfram Holand, George Beall. 《Glass-Ceramic Technology》 [M].Published by the American Ceramic Society,2002.
    [5]W.福格尔著.《玻璃化学》[M].谢于深译.轻工业出版社,1988刘彻东.中国的青年刊物:个性特色为本[J].中国出版,1998(5):38-39.
    [6]P.F. James. Nucleation in glass-forming systems-a review[J]. ADVANCES IN CERAMICS 1982, vol.4:49-65.
    [7]George H.Beall. Alkali metal calcium fluorosilicate Glass-ceramic articles. United States Patent. Appl.No:308,143[P]. Filed:Oct.5,1981
    [8]Linda R. Pinckney. Brightly colored canasite glass-ceramics. United States Patent. Appl.No:646,430[P]. Filed:Jan.25,1991
    [9]Chiristine C. Wolcott. Canasite-Apatite canasite glass-ceramics. United States Patent. Appl.No:114,759[P]. Filed:Sep.1,1993
    [10]Naruporn Kanchanarat. Early stages of crystallization in canasite-based glass ceramics[J]. Journal of the American Ceramic Society, November,2005, v 88, n 11:3198-3204
    [11]CA. Miller, Crystallization of Canasite/Frankamenite-Based Glass Ceramics[J]. Chem. Mater.2004,16(26):36-43.
    [12]Chiragov, M. I.; Mamedov, Kh. S.; Belov, N. V. Dokl. Acad. Nauk[J], USSR 1969,185:96.
    [13]R.K.Rastsvetaeva, K.A.Rozenberg. Crystal Structure of F-Canasite. Doklady Chemistry[J], 2003,Vol.391, Nos.1-2:177-180
    [14]Beall George H. Chain silicate glass-ceramics [J]. Journal of Non-Crystalline Solids, Mar 2, 1991, v 129, n 1-3:163-173
    [15]Likitvanichkul,Lacourse.W.C. Effect of fluorine content on crystallization of canasite glass-ceramics[J]. Journal of Materials Science, Dec 15,1995, v 30, n 24:6151-6155
    [16]Zhang Nai-Zheng, Anusavice Kenneth J. Effect of alumina on the strength, fracture toughness, and crystal structure of fluorcanasite glass-ceramics[J]. Journal of the American Ceramic Society, Sep,1999, v 82, n 9:2509-2513
    [17]Pinckney Linda R., Beall George H, Andrus Ronald L. Strong sintered miserite glass-ceramics[J]. Journal of the American Ceramic Society, Sep,1999, v 82, n 9:2523-2528
    [18]Johnson Anthony, Shareef Mohammed Y, Walsh Jennifer M, Hatton Paul V, Van Noort Richard, Hill Robert G. The effect of casting conditions on the biaxial flexural strength of glass-ceramic materials[J]. Dental Materials, November,1998, v 14, n 6:412-416
    [19]C.A. Miller. "Crystallization of Canasite/Frankamenite Based Glass-Ceramics for Bone Tissue Repair and Augmentation" [D]; Ph.D. Thesis.2002,Engineering Materials Department.University of Sheffield.
    [20]C.A.Miller, T.Kokubo, I.M.Reaney, P.V. Hatton, and P.F.James, Formation of Apatite Layers on Modified Canasite Glass-Ceramics in Simulated Body Fliud[J]. J. Biomed. Mater. Res.,2002, 59:473-80.
    [21]Naruporn Kanchanarat, Microstructure and mechanical properties of fluorcanasite glass-ceramics for biomedical applications[J]. Journal of Materials Science,2008, Volume 43: 759-765.
    [22]Oguma Masaomi, Chyung Kenneth, Donaldson Yates, Hasselman D. P. H.. EFFECT OF CRYSTALLIZATION ON THERMAL SHOCK BEHAVIOR OF A CHAIN-SILICATE CANASITE GLASS-CERAMIC[J]. Journal of the American Ceramic Society,1987, v 70, n 1:c. 2-c.3
    [23]Linda R.Pinckney, George H. Beall. Microstructural Evolution in Some Silicate Glass-Ceramics:A Review[J]. J. Am. Ceram. Soc.,2008,91[3]:773-779.
    [24]干福熹主编.《现代玻璃科学技术》(上册)[M].上海科学技术出版社,1988年.
    [25]于岩,阮玉忠.根据X射线图谱确定硅微粉的析晶度的研究[J].陶瓷学报,2004.(1):25-30.
    [26]Zhang Nai-Zheng, Anusavice Kenneth J. Effect of alumina on the strength, fracture toughness, and crystal structure of fluorcanasite glass-ceramics [J]. Journal of the American Ceramic Society, Sep,1999, v 82, n 9:2509-2513
    [27]干福熹著.《玻璃的光学和光谱性质》[M].上海科学技术出版社,1991年.
    [28]Robie R.A., Waldbaum D. R.. Thermodynamic properties of minerals and related substances at 298.15K and one atmosphere pressure and at higher temperature[J]. U.S. Geol. Surv.1968, Bull. 1256.
    [29]Yves Tardy, R M Garrels. A method of estimating the Gibbs energies of formation of layer silicates[J]. Geochimica et Cosmochimica.1974, Vol.38:1101-1116.
    [30]#12
    [31]伊赫桑·巴伦著程乃良译.《纯热物质化学数据手册》[M].科学出版社出版,2003年.
    [32]W.M. Latimer. Methods of estimating the entropies of solid compounds[J]. J. Am. Chem. Sot., 1951,73:1480.
    [33]HUANG GUO-SHENG Thermochemistry of inorganic compounds. Part 1.Estimation of entroples of AxBy types of solids[J]. Thermochimica Acta,1988,136:133-137
    [34]D. R. Uhlmann. Crystal growth in glass-forming systems:a ten-year perspective[J]. ADVANCES IN CERAMICS 1982, vol.4:80-124.
    [35]V. A. Zhabrev, S. I. Sviridov. Ion Diffusion in Oxide Glasses and Melts:I. Bibliography[J]. Glass Physics and Chemistry,2003, Vol.29, No.2:140-159.
    [36]Schmelzer, Jurn W.P.. Crystal nucleation and growth in glass-forming melts:Experiment and theory[J]. Journal of Non-Crystalline Solids, Jan 15,2008, v 354, n 2-9:p 269-278
    [37]Ma, Xin-Pei; Li, Guang-Xin; Yang, Jian-Feng; Jin, Zhi-Hao. Two types of phase separation and crystal nucleation-growth mechanisms for machinable glass ceramic[J]. Materials Science Forum, v 544-545, Eco-Materials Processing and Design Ⅷ-ISEPD-8, Proceedings of the 8th International Symposium on Eco-Materials Processing and Design,2007, p 929-932
    [38]C.W. Stokes a, R. van Noort a, R.J. Hand b. Investigation of the chemical solubility of mixed-alkalifluorcanasite forming glasses[J]. Journal of Non-Crystalline Solids,2006,352: 142-149.
    [39]G H. Beall. Design and Properties of Glass-Ceramics [J]. Ann. Rev. Mater.Sci.1992,22: 91-119.
    [40]S. D. Stookey. Catalyzed Crystallization of Glass in Theory and Practice [J]. Ind. Eng. Chem., 1959,51:805-809.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700