工业生产空间分布及水污染控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济快速增长,工业用水的污染在中国一直是一个严重而普遍存在的问题,产生这一问题的原因,按照现阶段分析,有很大程度上来自很多地区的经济发展战略上仍然依赖于快速工业化,忽视了生产的空间分布和区域水资源环境承载能力的关系。作为一个中小区域,柳州市是一个比较明显而具有代表性的个案,具有研究的现实意义。
     为了对柳州市产业空间分布与水污染控制进行研究,本文首先展示了一个专业的系统WPC-ESi(简称ES),这一系统能分析某一个城市的工业污水污染和该城市工业企业经济活动之间的关系。这个系统包括一个核心——决策模型,其次还整合了另外的四个相关相近的副系统。本文先使用该系统对整个柳州市未来五年的总体水污染排放控制压力进行预测,得到了相对可信度较高的预测结果,该结果量化的显示了柳州市未来五年的水污染控制压力将逐步提高。
     得到污染总量预测结果以后,本文提出了一个工厂一级水平的集成方法,并使用该方法来评价柳州市过去三年和估测柳州市未来五年的工业生产空间分布与用水污染压力空间分布。该方法基于对离散事件的模拟,能很好将新增的工业项目的规模大小,位置选择(指工业区位理论与产业集群理论),与可能的新增工业产值进行区域整合。然后再根据整合结果,对向区域中河流所排放的COD(化学需氧量)进行分别估算。为了在恢复水环境功能的同时又得到最大的工业产值,本文所制定的水污染控制策略的目标是将所进行的污水排放控制在区域内的每一条河流的承载能力内。结果得到了未来五年柳州市新增产业产值的空间分布和由此带来的水污染控制压力的空间分布,以及因此给当地各个河段带来的污染负荷压力,同时这一结果也显示了在经济快速增长情况下,会一定加重柳州市区域水污染控制压力。
     综合以上,本文结果能为柳州市管理者提供各种决策的依据,以保证柳州市经济的合理发展以其可持续性,增强其产业竞争力,促使经济环境和谐发展。本文在最后,在确保水污染控制的前提下,建议柳州市加强其产业集群建设,以提高当地产业空间分布合理性,增强产业集群竞争力。
With fast economic growth, industrial water pollution has been a serious problem ubiquitously in China. More threatening is that lots of economic developing regions still strategically depend on fast industrialization, neglecting the relationship between production's spatial distribution and regional water environmental carrying capacity. As a small region, Liuzhou City is the objective case.
     To research regional industrial production's spatial distribution and water pollution control of Liuzhou. This study at first presents an expert system called WPC-ES (ES), which can analyze relationships between industrial water pollution and economic activities of industrial enterprises of a city. The system includes a decision model as its core, which integrates another four closely related subsystems. This system was used to estimate the pressure of water pollution control of Liuzhou City in future, results of which quantitatively showed that the pressure of water pollution control has a increasing trend in next 5 years.
     And then, this paper propose a plant-level aggregation method to estimate the spatial distribution of industrial productions and its water pollution pressure of Liuzhou in the future five years. Based on discrete event simulation, newly added industrial projects' sizes, location choices (refer to industrial location theory), and production values are regionally aggregated. COD (Chemical Oxygen Demand) emission into every river reach in the region is calculated respectively. In order to recover the water environmental function, the strategy aims at controlling emission within the carrying capacity of each river reach. The results include the spatial distribution of industrial production values and water pollutions' load in Liuzhou City, and the diversified uncertain bounds of river reaches' COD adoptions, which will aggravate the water pollution.
     The resultes of this paper can assist Liuzhou's decision maker to support their strategies, which can ensure the rationality and sustainment of Liuzhou's development. In addition, based on the prediction of industry spatial distribution of Liuzhou City, the paper in the end proposed some strategies to strengthening Liuzhou's industrial cluster, which aim to improve the rationality of the spatial distribution of local industry, and to make its industrial clusters and industrial spatial distribution more competitive.
引文
[1]王诩亭,井文涌,何强编.环境学导论[M].清华大学出版社,1985.
    [2]金相灿,湖泊富营养化控制和管理技术[M].化学工业出版社,2001.
    [3]朱党生,王超等.水资源保护规划理论及技术[M].中国水利水电出版社,2001.
    [4]付国伟,程声通.水污染控制系统规划[M].清华大学出版社,1985.
    [5]Macleod CJA, Scholefield D, Haygarth PM. Integration for sustainable catchment management.[J] Sci Total Environ 2007; 373:591-602.
    [6]Brouwer R, Hofkes M, Linderhof V. General equilibrium modelling of the direct and indirect economic impacts of water quality improvements in the Netherlands at national and river basin scale[J]. Ecol Econ 2008; 66:127-40.
    [7]Correlje A, Francois D, Verbeke T. Integrating water management and principles of policy:towards an EU framework?[J] Clean Prod 2007;15:1499-506.
    [8]van der Veeren RJHM, Lorenz CM. Integrated economic-ecological analysis and evaluation of management strategies on nutrient abatement in the Rhine basin[J]. Environ Manag 2002; 66: 361-76.
    [9]Webber M, Barnett J, Wang M, Finlayson B, Dickinson D. The Yellow River in transition[J]. Environ Sci Policy 2008; 11(5):422-9.
    [10]Skinner MW, Alun EJ, Richard GK. Social and environmental regulation in rural China:bringing the changing role of local government into focus[J]. Geoforum2003; 34:267-81.
    [11]Thun E. Keeping up with the Jones':Decentralization, policy imitation, and industrial development in China[J]. World Dev 2004; 32(8):1289-308.
    [12]Henderson DJ, Tochkov K, Badunenko O. A drive up the capital coast? Contributions to post-reform growth across Chinese provinces[J]. Macroecon 2007; 29:569-4.
    [13]张建云.非点源污染模型研究.水科学进展[J],2002,(9),Vol.13,N0.5:547-551.
    [14]王宁等.应用GSI与USLE的结合进行松花湖流域非点源污染物量化研究,21世纪水资源管理学术会议,重庆,2000.9
    [15]周密,王东华等编著.环境容量[M].东北师范大学出版社,1987.
    [16]张玉清著.河流功能区水污染物容量总量控制的原理和方法[M].中国环境科学出版社,2001.
    [17]贾振邦,赵智杰,吕殿录等.柴河水库流域主要重金属平衡估算及水环境容量研究[J].环境保护科学,1996,vol.22,No.2:49-52.
    [18]钟成华,幸治国,蒋良维等.长江、嘉陵江重庆段水环境容量研究[J].重庆环境科 学,1994,(6),vol.16,No.3:43-49.
    [19]陈燕华,李彦武,牟海省.长江九江段水环境容量研究[J].环境科学研究,1994, Vol.7,N0.1:24-29.
    [20]杨文龙,杨常亮.滇池水环境容量模型研究及容量计算结果[J].云南环境科学,2002,(9),Vol.21,No.3:20-23.
    [21]曾光明,杨春平,袁兴中.城市开发区区域水环境容量的计算及管理[J].环境与开发,1994,Vol.9,No.4:354-357.
    [22]周孝德,郭瑾龙,程文等.水环境容量计算方法研究[J].西安理工大学学报,1999,Vol.15,No.3:1-6.
    [23]李红鹰,张黎雳,冯丹.松花江哈尔滨江段功能区水环境容量及可达性分析[J].黑龙江环境通报,2000,Vol.24,No.2:35-37.
    [24]罗旭升.大王滩水库水环境容量分析计算[J].广西水利水电,2001,(4),37-39.
    [25]W.金士博著.水环境数学模型[M].中国建筑工业出版社,1986.
    [26]周勇,刘凡.湖泊水环境预测的原理与方法[J].长江流域资源与环境,1999,(3),Vol.8,No.3:305-311.
    [27]毛荣生,夏军,王真荣.武汉墨水湖BOD/DO数学模型及参数识别[J].环境科学,Vol.16,No.4:26-31.
    [28]李新贤.新疆主要湖泊、水库的质综合特征评价模型式及灰色预测分析[J].新疆环境保护,1995,Vol.17,No.1:19-22.
    [29]金腊华,徐峰俊编.水环境数值模拟与可视化技术[M].北学工业出版社,2004.
    [30]刘瑞民,王学军,王翠红.湖泊水质参数空间最优估计精度分析明[J].环境科学,2001,(9),Vol.22,No.5:91-94.
    [31]陈飞星.湖泊(水库)网箱养鱼水质模型研究明[J].环境科学学报,1999,(3),Vol.19,No.2:132-136.
    [32]锥文生,徐高洪.系统滤波模型在滇池水质预测中的应用[J].水文,1997,(2):14-21.
    [33]Streeter, H.W., Phelps, E.B.,1925. Study of the pollution and natural purification of the Ohio River[J]. U.S. Public Health Service, Washington, DC, Bulletin NO.146..
    [34]Lam, D., Swayne, D.,2001. Issues of EIS software design:some lessons learned in the past decade[J]. Environmental Modeling & Software 16,419-425.
    [35]Knight, J.D.,1997. The role of decision support systems in integrated crop protection agriculture[J]. Ecosystems and Environment 64 (2),157-163.
    [36]Seder, I., Weinkauf, R.N.,2000. Knowledge-based databases and intelligent decision support for environmental management in urban systems[J]. Computers, Environment and Urban Systems 24 (3),223-250.
    [37]Alberto, C., Eliot, L., Simona, M.,1999. Decision support systems for environmental impact assessment of transport infrastructures[J]. Transportation Research, Part D:Transport and Environment 4(1),1-11.
    [38]Rodr! iguez-Molina, J., Garcia-Mart! inez, R.,1998. Hydrotrack:a graphical software system for the simulation of pollutant discharges in water[J]. Environmental Modelling & Software 13, 211-223.
    [39]aggio, R., Agre, G., Dichev, C., et al.,1999. A cost-effective programmable environment for developing environmental decision support systems[J]. Environmental Modeling & Software 14, 367-382.
    [40]Davis, J.R., Farley, T.F.,1997. CMSS:policy analysis software for catchment managers[J]. Environmental Modelling & Software 12(2-3),197-210.
    [41]USBR (United States Bureau of Reclamation),1988[J]. Colorado River Simulation System Documentation. USBR, Denver.
    [42]Butner, R.S.,1999. A heuristic design advisor for incorporating pollution prevention concepts in chemical process design[J]. Clean Products and Processes 1 (3),164-169.
    [43]Al-Homoud, A.S., Al-Masri, GA.,1999. CSEES:an expert system for analysis and design of cut slopes and embankments[J]. Environmental Geology 35 (1),75-89.
    [44]de Andrade, C.de.L.T., Allen, R.G.,1999. SPRINKMOD-pressure and discharge simulation model for pressurized irrigation systems.1. Model development and description[J]. Irrigation Science 18 (3),141-148.
    [45]阮晓红,宋世霞,张英.非点源污染模型化方法的研究进展及其应用.人民黄河[J],2002,(11),Vol.24,N0.11:25-29.
    [46]周慧平,许有鹏,葛小平.GIS支持下非点源污染模型应用分析.水土保持通报[J].2003,(3),Vol.23,No.3:60-63.
    [47]高荣松等编著.环境影响评价原理和方法[M].四川科学技术出版社,1989.
    [48]黄淑贞编译.环境预测和评价[M].原子能出版社,1986.
    [49]刘瑞民,王学军RS、GIS在内陆湖泊水质研究中的应用[J].环境科学与技术,2001,(1),1-4.
    [50]Gene, G., Krueger, A.,1995. Economic growth and the environment[J]. Quarterly Journal of Economics 5,353-377.
    [51]Rizzoli, A.E., Davis, J.R., Abel, D.J.,1998. Model and data integration and re-use in environmental decision support system[J]. Decision Support System 24,127-144.
    [52]Macleod CJA, Scholefield D, Haygarth PM. Integration for sustainable catchment management[J]. Sci Total Environ 2007; 373:591-602.
    [53]Brouwer R, Hofkes M, Linderhof V. General equilibrium modelling of the direct and indirect economic impacts of water quality improvements in the Netherlands at national and river basin scale[J]. Ecol Econ 2008; 66:127-40.
    [54]Correlje A, Francois D, Verbeke T. Integrating water management and principles of policy:towards an EU framework? [J] Clean Prod 2007;15:1499-506.
    [55]van der Veeren RJHM, Lorenz CM. Integrated economic-ecological analysis and evaluation of management strategies on nutrient abatement in the Rhine basin. [J] Environ Manag 2002; 66: 361-76.
    [56]Webber M, Barnett J, Wang M, Finlayson B, Dickinson D. The Yellow River in transition[J]. Environ Sci Policy 2008; 11(5):422-9.
    [57]Skinner MW, Alun EJ, Richard GK. Social and environmental regulation in rural China:bringing the changing role of local government into focus[J]. Geoforum2003; 34:267-81.
    [58]Thun E. Keeping up with the Jones':Decentralization, policy imitation, and industrial development in China[J]. World Dev 2004; 32(8):1289-308.
    [59]Henderson DJ, Tochkov K, Badunenko O. A drive up the capital coast? Contributions to post-reform growth across Chinese provinces[J]. Macroecon 2007; 29:569-4.
    [60]Brouwer R, Schenau S, Van der Veeren R. Integrated river basin accounting and the European Water Framework Directive[J]. Stat J UN ECE 2005; 22(2):111-31.
    [61]Ligtenberg A, Wachowicz M, Bregt AK, Beulens A, Kettenis DL. A design and application of a multi-agent system for simulation of multi-actor spatial planning[J] Environ Manag 2004; 72:43-55.
    [62]Conway TM, Lathrop RG Alternative land use regulations and environmental impacts:assessing future land use in an urbanizing watershed[J]. Landsc Urban Plan 2005; 71:1-15.
    [63]张样伟,王敦春.城市河段污染控制灰色动态规划的应用[J].城市环境与城市生态,1994,Vol.7,No.3:37-42.
    [64]张凡.大夏河流域污染治理规划研究[J].甘肃环境研究与监测,1999,Vol.12,No.1:11-17.
    [65]D.A海思著,袁铭道,季民译.环境系统最优化[M].中国环境科学出版社,1987.
    [66]姜璐等编著.系统科学资本论[M].华夏出版社,1990.
    [67]胡运权主编.运筹学教程[M].清华大学出版社,2003.
    [68]国家环保局计划司《环境规划指南》编写组.环境规划指南[M].清华大学出版社,1994
    [69]熊德琪,陈守煌,任洁.水环境污染系统规划的模糊非线性规划模型[J].水利学报,1994,(12):22-30.
    [70]韩燕助,黄玉茹,秦元昭等.输入响应关系的建立及在地面水污染防治规划中的初步应用[J].河南师范大学学报(自然科学版),Vol.26,No.1:67-70.
    [71]杨文龙,杨常亮.滇池流域非点源污染控制区划研究明.云南环境科学,1996,(9),Vol.15,No.3:3-7.
    [72]张巍,王学军,李莹.在总量控制体系下实施点源与非点源排污交易的理论研究[J].环境科学学报,2001,(11),Vol.21,No.6:745-753.
    [73]郑成德,李志斌,湖泊水体富营养化评价的改性灰色局势决策法[J].湖泊科学, 1999,(3),Vol.11,No.1:75-80.
    [74]李本纲,陶澎.地理信息系统在环境模型研究中的应用[J].环境科学,1998,19(3):87-90.
    [75]张剑平,任福继.地理信息系统与MapInfo的应用[M].科学出版社,1999.
    [76]张超,陈丙咸,乌仔伦.地理信息系统[M].北京:高等教育出版社,1995.3.
    [77]马跃良,王云鹏,贾桂梅.珠江广州段水体污染的遥感监测应用研究[J].重庆环境科学,2002,(3),Vol.25,No.3:13-16.
    [78]黄金良,洪华生,张洛平.农业非点源污染模型GIS集成研究述评.
    [79]郭怀成,徐云麟,邹锐.不完备信息条件下流域环境系统规划方法研究团.环境科学学报,1999,(7),Vol.19,No.4:421-426.
    [80]沈清等编著.神经网络应用技术[M].国防科技大学出版社,1993.
    [81]张永良,刘培哲.水环境污染容量综合手册[M].清华大学出版社.
    [82]Mitchell MF. Technological change and the scale of production[J]. Rev Econ Dyn 2002; 5:477-88.
    [83]De Fabritiis G, Pammolli F, RiccaboniM. On size and growth of business firms[J]. Physica, A 2003; 324:38-44.
    [84]Miller EW. Manufacturing:a study of industrial location. University Park:Penn State University Press; 1977.
    [85]Kang SJ, Lee HSh. The determinants of location choice of South Korean FDI in China[J]. Japan World Econ 2007; 19:441-60.
    [86]Holl A. Manufacturing location and impacts of road transport infrastructure:empirical evidence from Spain[J]. Reg Sci Urban Econ 2004; 34:341-63.
    [87]Dam L, Scholtens B. Environmental regulation and MNEs location:does CSR matter? [J] Ecol Econ 2008;67(1):55-65.
    [88]Cheng Sh, Stough RR. Location decisions of Japanese new manufacturing plants in China:a discrete-choice analysis[J]. Ann Reg Sci 2006; 40:369-87.
    [89]Oum TH, Park JH. Multinational firms' location preference for regional distribution centers:focus on the Northeast Asian region[J]. Transport Res E-LOG 2004; 40:101-21.
    [90]Birol E, Karousakis K, Koundouri P. Using a choice experiment to account for preference heterogeneity in wetland attributes:the case of Cheimaditida wetland in Greece[J]. Ecol Econ 2006; 60:45-56.
    [91]Oketola AA, Osibanjo O. Estimating sectoral pollution load in Lagos by Industrial Pollution Projection System (IPPS) [J]. Sci Total Environ 2007; 377:125-41.
    [92]Hensher DA, Johnson LW. Applied discrete choice modelling[J]. New York:Taylor & Francis; 1981. p.49-52.
    [93]Duinker PN, Greig LA. Scenario analysis in environmental impact assessment:improving explorations of the future[J]. Environ Impact Asses Rev 2007; 27:206-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700