干细胞因子对不同分化状态下神经干细胞迁移的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胶质瘤是一种常见的颅内恶性肿瘤,因其呈侵染性生长,使得手术切除辅以化疗、放疗的传统方法往往难以将其根治,致死率极高。近年来体内外的研究证明,胶质瘤细胞能够诱导神经干细胞(neural stem cells, NSCs)的迁移,为神经胶质瘤的治疗带来了希望。然而胶质瘤诱导NSCs迁移的细胞与分子机制并不明确,尤其是不同分化状态的NSCs与其迁移行为的关系还鲜有报道。本实验主要就该问题展开进一步的研究。
     本研究首先从新生远交群(Sprague Dawley, SD)大鼠侧脑室外侧壁的脑室下区(the subventricular zone, SVZ)中分离并纯化出NSCs,用含1%胎牛血清的H-DMEM进行诱导分化,并通过对细胞形态、生长特性及特异性抗原(nestin、GFAP和β-III-tubulin)表达对细胞进行了鉴定。结果表明,SVZ区域来源的NSCs呈nestin阳性,更换分化诱导液后能分化成神经元(β-III-tubulin+)和星形胶质细胞(GFAP+)。
     随后选取生长第4~5天的NSCs,更换含不同浓度干细胞因子(stem cell factor, SCF)的分化培养基对NSCs进行处理。通过延时动态视频(time-lapse video)跟踪观察NSCs分化0-48 h的不同阶段下对SCF的刺激做出应答时其迁移行为发生了哪些变化。含不同浓度SCF的分化诱导液对NSCs处理后结果表明,与对照组相比,5 ng/ml的SCF未能对分化0-12 h及36-48 h内的NSCs的迁移距离产生影响,但显著提高了分化12-36 h内NSCs的迁移距离。而25 ng/ml的SCF在分化0-36 h内的迁移距离显著高于对照组但未能对分化36-48 h内NSCs的迁移距离产生影响,并且仅在分化0-12 h内NSCs的迁移距离显著高于5 ng/ml的SCF。与此同时,与对照组相比,5 ng/ml的SCF显著提高了分化0-36 h内NSCs的迁移效率(forward migration index, FMI),但未能影响分化36-48 h内的FMI。而25 ng/ml的SCF在分化0-48 h内的迁移效率显著高于对照组,而且在分化的36-48 h内显著高于5 ng/ml的SCF实验组,但在分化0-36 h内两实验组无显著差异。这些现象表明,NSCs的迁移行为与其所处的分化状态有着紧密的内在联系。
     为了进一步验证前期的实验结果并为后期的体内等机理性研究做准备,我们选择了C17.2神经干细胞系,运用Boyden chamber及Dunn chamber来研究SCF诱导C17.2神经干细胞的趋化性迁移。Boyden chamber结果显示,下室加入SCF后迁移至膜下方的C17.2细胞数显著多于对照组。在C17.2分化24 h时其对SCF的应答最强,定向迁移的细胞数要明显多于未分化状态。而随着分化进程的深入,其迁移能力逐渐降低,到第7 d时已显著低于未分化状态。Dunn chamber结果显示,仅在外槽加入SCF的C17.2细胞迁移速率及迁移效率显著高于内外槽均加入SCF的细胞,单个细胞迁移轨迹分析表明仅在外槽加入SCF后细胞朝着浓度梯度方向迁移而内外槽均加入SCF后细胞的迁移则无规律。用LY294002阻断PI3K通路后,C17.2细胞向SCF迁移的速率显著降低,但并未影响其定向迁移能力。这些结果表明,SCF通过影响C17.2细胞的迁移速率及迁移效率来影响C17.2细胞的定向迁移,PI3K信号通路参与了此过程;而且不同分化阶段的C17.2细胞对SCF的响应能力不同,为进一步了解神经干细胞定向追踪胶质瘤提供了理论依据。
     Rac亚家族中Rac1的功能一直以来都是研究的热点。Rac1蛋白具有活性Rac1-GTP和非活性Rac1-GDP两种状态,当Rac1被激活后,可参与肌动蛋白应力纤维和粘附斑形成,促进细胞骨架结构重组,调节片状伪足与丝状伪足伸延,影响细胞的形体极化,增强细胞运动迁移。p21活化激酶(PAKs)是Rho GTPase的下游效应蛋白,可被活化的Rac1蛋白激活并可通过p21结合域(p21 activated kinase binding domain, PBD)与活化Rac1蛋白结合。为此我们利用RT-PCR方法,以大鼠骨髓间充质干细胞的总RNA为模板,克隆与活化Rac1相结合的PBD基因片段,经基因测序证实成功构建了pGEX-4T-1/PBD原核表达载体,并纯化了GST-PBD融合蛋白,为进一步研究神经干细胞不同分化状态及迁移过程中活化的Rac1表达奠定了基础。
     以上结果表明,SCF通过影响C17.2细胞的迁移速率及迁移效率来影响C17.2细胞的定向迁移,PI3K信号通路参与了此过程;此外不同分化状态的NSCs对SCF响应不同。以上结论进一步揭示了NSCs的分化状态与其迁移的内在联系,为解开NSCs分化和迁移机制之谜及临床移植治疗中枢神经系统疾病和损伤提供了实验依据。
Malignant gliomas remain virtually incurable because of its highly invasive nature, despite extensive surgical excision, radiation and chemotherapy. In vitro as well as in vivo studies demonstrate that neural stem cells (NSCs) display a strong tendency to migrate toward gliomas and surround invading tumor cells, thus highlighting the potential use of NSCs as delivery vehicles for therapeutic genes. However, the mechanisms and factors that regulate migration are not well understood. Gliomas release numerous chemokines and growth factors that are capable of stimulating the directed migration of exogenous and endogenous NSCs into the tumor microenvironment. Here, we focus on the effect of stem cell factor (SCF), one of the factors that are present at the injury sites, on the migration of differentiating NSCs.
     In this study, we isolated and purified NSCs from the subventricular zone (SVZ) of newborn SD rats and induced these cells to differentiate with 1% fatal calf serum (FCS). These NSCs were characterized by morphology, antigen expression (nestin, GFAP andβ-III-tubulin) and differentiation potential and results showed that the majority of cells are immunopositive for nestin, indicating that they are undifferentiated neural progenitors. After the withdrawal of FGF-2, cells differentiate into GFAP containing astrocytes,β-III-tubulin-positive neurons.
     NSCs from SVZ were cultured for 4 days or 5 days, and then changed to the medium with 1% FCS for differentiation. SCF at 5 ng/ml or 25 ng/ml was added to the differentiating cells. The migratory capability of NSCs at different differentiation states was analyzed by time-lapse video analysis. Our results indicated that treatment with SCF at 5 ng/ml didn’t influence the migration distance during the differentiation period of 0~12 h and 36~48 h, but significantly increased it in the phase of the differentiation of 12~36 h. In response to 25 ng/ml of SCF, the migration distance of the differentiating NSCs increased significantly in 0-36 h rather than the later period (36-48 h). In contrast, the forward migration index (FMI) of NSCs was improved by 25 ng/ml SCF through the whole differentiation period. These results suggest a close relationship between the migration behavior and the differentiation states of NSCs.
     Then we investigated SCF-induced migration of C17.2 cells using Boyden chamber and Dunn chamber. Results of Boyden Chamber showed that cells of 24-h differentiation displayed the strongest tropism toward SCF compared with undifferentiated C17.2 cells. After 24 h of differentiation, the migratory responsiveness decreased over time. On the 7th day, less C17.2 cells migrated to SCF than did normal cells that were at an undifferentiated state. The Dunn Chamber results indicated both the migration speed and the forward migration index (FMI) of cells exposed to SCF were significantly greater than those of cells exposed to a uniform concentration of SCF. Cells displayed a directed migratory behavior towards the source of SCF, while they migrated randomly under conditions of uniform SCF distribution. The addition of LY294002, a specific inhibitor of PI3K, significantly altered the pattern of migration of C17.2 cells in response to SCF gradient. The migration speed was significantly decreased compared with untreated cells, while cells remained their directional response to the SCF gradient. These results illustrate that SCF induces the directional migration of C17.2 cells via the increase in the migration efficiency and the migration speed of these cells through activation of PI3K/Akt signaling pathway.
     Rac1 is a molecular switch that has an inactive GDP-bound and an active GTP-bound state. After activation, Rac1 can participate in the formation of actin stress and adhesion plaque, promote the reform of cytoskeleton, regulate the extension of lamellipodia and filopodia, influence the polarization of cell, and enhance cell migration. p21-activated kinases (PAKs) are the downstream effector proteins of Rho GTPase. Binding of Rac-GTP leads to PAK autophosphorylation and activation of the ability to phosphorylate exogenous substrates on serine and/or threonine residues. Rac activates PAK through binding to the p21-binding domain (PBD). The gene fragment of PBD was amplified by RT-PCR and cloned into the pGEX-4T-1 prokaryotic expression vector, DNA sequencing confirmed that the expression vector of pGEX-4T-1/ PBD was constructed successfully and fusion protein was expressed effectively in Escherichia coli, with about 95 % of the GST-PBD fusion protein. This study lays the basis for the research on the relationship between the Rac1 activity and the differentiation states of NSCs.
     Taken together, these results illustrate that SCF induces the directional migration of NSCs via the increase in the migration efficiency and the migration speed of these cells through activation of PI3K/Akt, contributing to better understanding of the migration and differentiation mechanisms of NSCs, and thus helping design the therapeutic strategies to treat central nervous system (CNS) diseases.
引文
1. Reynolds, B.A. and S. Weiss, Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science, 1992. 255(5052): 1707-10.
    2. Richards, L.J., T.J. Kilpatrick, and P.F. Bartlett, De novo generation of neuronal cells from the adult mouse brain. Proc Natl Acad Sci U S A, 1992. 89(18): 8591-5.
    3. McKay, R., Stem cells in the central nervous system. Science, 1997. 276(5309): 66-71.
    4. Gage, F.H., Mammalian neural stem cells. Science, 2000. 287(5457): 1433-8.
    5. Rao, M.S., Multipotent and restricted precursors in the central nervous system. Anat Rec, 1999. 257(4): 137-48.
    6. Luskin, M.B., Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron, 1993. 11(1): 173-89.
    7. Aboody, K.S., A. Brown, N.G. Rainov, K.A. Bower, S. Liu, W. Yang, et al., Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci U S A, 2000. 97(23): 12846-51.
    8. Zhang, S.C., B. Ge, and I.D. Duncan, Adult brain retains the potential to generate oligodendroglial progenitors with extensive myelination capacity. Proc Natl Acad Sci U S A, 1999. 96(7): 4089-94.
    9. Savitz, S.L., S. Malhotra, G. Gupta, and D.M. Rosenbaum, Cell transplants offer promise for stroke recovery. J Cardiovasc Nurs, 2003. 18(1): 57-61.
    10. Storch, A. and J. Schwarz, Neural stem cells and Parkinson's disease. J Neurol, 2002. 249 Suppl 3: III/30-2.
    11. Renfranz, P.J., M.G. Cunningham, and R.D. McKay, Region-specific differentiation of the hippocampal stem cell line HiB5 upon implantation into the developing mammalian brain. Cell, 1991. 66(4): 713-29.
    12. Gage, F.H., P.W. Coates, T.D. Palmer, H.G. Kuhn, L.J. Fisher, J.O. Suhonen, et al., Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proc Natl Acad Sci U S A, 1995. 92(25): 11879-83.
    13. Thored, P., A. Arvidsson, E. Cacci, H. Ahlenius, T. Kallur, V. Darsalia, et al., Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells, 2006. 24(3): 739-47.
    14. Zhang, Z.G., L. Zhang, W. Tsang, H. Soltanian-Zadeh, D. Morris, R. Zhang, et al., Correlation of VEGF and angiopoietin expression with disruption of blood-brain barrier and angiogenesis after focal cerebral ischemia. J Cereb Blood Flow Metab, 2002. 22(4): 379-92.
    15. Ehtesham, M., X. Yuan, P. Kabos, N.H. Chung, G. Liu, Y. Akasaki, et al., Glioma tropic neural stem cells consist of astrocytic precursors and their migratory capacity is mediated by CXCR4. Neoplasia, 2004. 6(3): 287-93.
    16. Imitola, J., K. Raddassi, K.I. Park, F.J. Mueller, M. Nieto, Y.D. Teng, et al., Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci U S A, 2004. 101(52): 18117-22.
    17. Heese, O., A. Disko, D. Zirkel, M. Westphal, and K. Lamszus, Neural stem cell migration toward gliomas in vitro. Neuro Oncol, 2005. 7(4): 476-84.
    18. Schmidt, N.O., W. Przylecki, W. Yang, M. Ziu, Y. Teng, S.U. Kim, et al., Brain tumor tropism of transplanted human neural stem cells is induced by vascular endothelial growth factor. Neoplasia, 2005. 7(6): 623-9.
    19. Ziu, M., N.O. Schmidt, T.G. Cargioli, K.S. Aboody, P.M. Black, and R.S. Carroll, Glioma-produced extracellular matrix influences brain tumor tropism of human neural stem cells. J Neurooncol, 2006. 79(2): 125-33.
    20. Robin, A.M., Z.G. Zhang, L. Wang, R.L. Zhang, M. Katakowski, L. Zhang, et al., Stromal cell-derived factor 1alpha mediates neural progenitor cell motilityafter focal cerebral ischemia. J Cereb Blood Flow Metab, 2006. 26(1): 125-34.
    21. Erlandsson, A., J. Larsson, and K. Forsberg-Nilsson, Stem cell factor is a chemoattractant and a survival factor for CNS stem cells. Exp Cell Res, 2004. 301(2): 201-10.
    22. Bantubungi, K., D. Blum, L. Cuvelier, S. Wislet-Gendebien, B. Rogister, E. Brouillet, et al., Stem cell factor and mesenchymal and neural stem cell transplantation in a rat model of Huntington's disease. Mol Cell Neurosci, 2008. 37(3): 454-70.
    23. Brekke, C., S.C. Williams, J. Price, F. Thorsen, and M. Modo, Cellular multiparametric MRI of neural stem cell therapy in a rat glioma model. Neuroimage, 2007. 37(3): 769-82.
    24. Jaffe, A.B. and A. Hall, Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol, 2005. 21: 247-69.
    25. Wang, L. and Y. Zheng, Cell type-specific functions of Rho GTPases revealed by gene targeting in mice. Trends Cell Biol, 2007. 17(2): 58-64.
    26. Kendall, S.E., J. Najbauer, H.F. Johnston, M.Z. Metz, S. Li, M. Bowers, et al., Neural stem cell targeting of glioma is dependent on phosphoinositide 3-kinase signaling. Stem Cells, 2008. 26(6): 1575-86.
    1. Gage, F.H., Mammalian neural stem cells. Science, 2000. 287(5457): 1433-8.
    2. Luskin, M.B., Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron, 1993. 11(1): 173-89.
    3. McKay, R., Stem cells in the central nervous system. Science, 1997. 276(5309):66-71.
    4. Santarelli, L., M. Saxe, C. Gross, A. Surget, F. Battaglia, S. Dulawa, et al., Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science, 2003. 301(5634): 805-9.
    5. Schaffer, D.V. and F.H. Gage, Neurogenesis and neuroadaptation. Neuromolecular Med, 2004. 5(1): 1-9.
    6. Marshall, C.A., S.O. Suzuki, and J.E. Goldman, Gliogenic and neurogenic progenitors of the subventricular zone: who are they, where did they come from, and where are they going? Glia, 2003. 43(1): 52-61.
    7. Zhang, H., L. Vutskits, M.S. Pepper, and J.Z. Kiss, VEGF is a chemoattractant for FGF-2-stimulated neural progenitors. J Cell Biol, 2003. 163(6): 1375-84.
    8. Lim, D.A., A.D. Tramontin, J.M. Trevejo, D.G. Herrera, J.M. Garcia-Verdugo, and A. Alvarez-Buylla, Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron, 2000. 28(3): 713-26.
    9. Okano, H., Making and repairing the mammalian brain: Introduction. Semin Cell Dev Biol, 2003. 14(3): 159.
    10. Okano, H., Adult neural stem cells and central nervous system repair. Ernst Schering Res Found Workshop, 2006(60): 215-28.
    11. Alvarez-Buylla, A., J.M. Garcia-Verdugo, and A.D. Tramontin, A unified hypothesis on the lineage of neural stem cells. Nat Rev Neurosci, 2001. 2(4): 287-93.
    12. Okano, H., Neural stem cells: progression of basic research and perspective for clinical application. Keio J Med, 2002. 51(3): 115-28.
    13. Van der Kooy, D. and S. Weiss, Why stem cells? Science, 2000. 287(5457): 1439-41.
    14. Reynolds, B.A. and S. Weiss, Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science, 1992. 255(5052): 1707-10.
    15. Taupin, P., Adult neurogenesis in the mammalian central nervous system: functionality and potential clinical interest. Med Sci Monit, 2005. 11(7):RA247-252.
    16. Lois, C. and A. Alvarez-Buylla, Long-distance neuronal migration in the adult mammalian brain. Science, 1994. 264(5162): 1145-8.
    17. Carleton, A., L.T. Petreanu, R. Lansford, A. Alvarez-Buylla, and P.M. Lledo, Becoming a new neuron in the adult olfactory bulb. Nat Neurosci, 2003. 6(5): 507-18.
    18. Abrous, D.N., M. Koehl, and M. Le Moal, Adult neurogenesis: from precursors to network and physiology. Physiol Rev, 2005. 85(2): 523-69.
    19. Hagg, T., Molecular regulation of adult CNS neurogenesis: an integrated view. Trends Neurosci, 2005. 28(11): 589-95.
    20. Magavi, S.S., B.R. Leavitt, and J.D. Macklis, Induction of neurogenesis in the neocortex of adult mice. Nature, 2000. 405(6789): 951-5.
    21. Arvidsson, A., T. Collin, D. Kirik, Z. Kokaia, and O. Lindvall, Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med, 2002. 8(9): 963-70.
    22. Chen, J., S.S. Magavi, and J.D. Macklis, Neurogenesis of corticospinal motor neurons extending spinal projections in adult mice. Proc Natl Acad Sci U S A, 2004. 101(46): 16357-62.
    23. Ekanayake, S. and R.S. Tuan, Chondrogenesis of neural crest cells: effect of poly-L-lysine and bone extract. Differentiation, 1994. 58(1): 19-27.
    24. Kleinman, H.K. and G.R. Martin, Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol, 2005. 15(5): 378-86.
    1. Tysnes, B.B. and R. Mahesparan, Biological mechanisms of glioma invasion and potential therapeutic targets. J Neurooncol, 2001. 53(2): 129-47.
    2. Mueller, M.M., T. Werbowetski, and R.F. Del Maestro, Soluble factors involved in glioma invasion. Acta Neurochir (Wien), 2003. 145(11): 999-1008.
    3. Aboody, K.S., A. Brown, N.G. Rainov, K.A. Bower, S. Liu, W. Yang, et al., Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci U S A, 2000. 97(23): 12846-51.
    4. Flax, J.D., S. Aurora, C. Yang, C. Simonin, A.M. Wills, L.L. Billinghurst, et al., Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nat Biotechnol, 1998. 16(11): 1033-9.
    5. Arnhold, S., M. Hilgers, D. Lenartz, I. Semkova, S. Kochanek, J. Voges, et al., Neural precursor cells as carriers for a gene therapeutical approach in tumor therapy. Cell Transplant, 2003. 12(8): 827-37.
    6. Brown, A.B., W. Yang, N.O. Schmidt, R. Carroll, K.K. Leishear, N.G. Rainov, et al., Intravascular delivery of neural stem cell lines to target intracranial and extracranial tumors of neural and non-neural origin. Hum Gene Ther, 2003. 14(18): 1777-85.
    7. Allport, J.R., V.R. Shinde Patil, and R. Weissleder, Murine neuronal progenitor cells are preferentially recruited to tumor vasculature via alpha4-integrin and SDF-1alpha-dependent mechanisms. Cancer Biol Ther, 2004. 3(9): 838-44.
    8. Brekke, C., S.C. Williams, J. Price, F. Thorsen, and M. Modo, Cellular multiparametric MRI of neural stem cell therapy in a rat glioma model. Neuroimage, 2007. 37(3): 769-82.
    9. Ehtesham, M., X. Yuan, P. Kabos, N.H. Chung, G. Liu, Y. Akasaki, et al., Glioma tropic neural stem cells consist of astrocytic precursors and their migratory capacity is mediated by CXCR4. Neoplasia, 2004. 6(3): 287-93.
    10. Imitola, J., K. Raddassi, K.I. Park, F.J. Mueller, M. Nieto, Y.D. Teng, et al.,Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci U S A, 2004. 101(52): 18117-22.
    11. Heese, O., A. Disko, D. Zirkel, M. Westphal, and K. Lamszus, Neural stem cell migration toward gliomas in vitro. Neuro Oncol, 2005. 7(4): 476-84.
    12. Schmidt, N.O., W. Przylecki, W. Yang, M. Ziu, Y. Teng, S.U. Kim, et al., Brain tumor tropism of transplanted human neural stem cells is induced by vascular endothelial growth factor. Neoplasia, 2005. 7(6): 623-9.
    13. Ziu, M., N.O. Schmidt, T.G. Cargioli, K.S. Aboody, P.M. Black, and R.S. Carroll, Glioma-produced extracellular matrix influences brain tumor tropism of human neural stem cells. J Neurooncol, 2006. 79(2): 125-33.
    14. Aarum, J., K. Sandberg, S.L. Haeberlein, and M.A. Persson, Migration and differentiation of neural precursor cells can be directed by microglia. Proc Natl Acad Sci U S A, 2003. 100(26): 15983-8.
    15. Tran, P.B. and R.J. Miller, Chemokine receptors: signposts to brain development and disease. Nat Rev Neurosci, 2003. 4(6): 444-55.
    16. Ehtesham, M., J.A. Winston, P. Kabos, and R.C. Thompson, CXCR4 expression mediates glioma cell invasiveness. Oncogene, 2006. 25(19): 2801-6.
    17. Widera, D., W. Holtkamp, F. Entschladen, B. Niggemann, K. Zanker, B. Kaltschmidt, et al., MCP-1 induces migration of adult neural stem cells. Eur J Cell Biol, 2004. 83(8): 381-7.
    18. Erlandsson, A., J. Larsson, and K. Forsberg-Nilsson, Stem cell factor is a chemoattractant and a survival factor for CNS stem cells. Exp Cell Res, 2004. 301(2): 201-10.
    19. Sun, L., J. Lee, and H.A. Fine, Neuronally expressed stem cell factor induces neural stem cell migration to areas of brain injury. J Clin Invest, 2004. 113(9): 1364-74.
    20. Serfozo, P., M.S. Schlarman, C. Pierret, B.L. Maria, and M.D. Kirk, Selective migration of neuralized embryonic stem cells to stem cell factor and mediaconditioned by glioma cell lines. Cancer Cell Int, 2006. 6: 1.
    21. Boockvar, J.A., D. Kapitonov, G. Kapoor, J. Schouten, G.J. Counelis, O. Bogler, et al., Constitutive EGFR signaling confers a motile phenotype to neural stem cells. Mol Cell Neurosci, 2003. 24(4): 1116-30.
    22. Kokaia, Z. and O. Lindvall, Neurogenesis after ischaemic brain insults. Curr Opin Neurobiol, 2003. 13(1): 127-32.
    23. Barkho, B.Z., A.E. Munoz, X. Li, L. Li, L.A. Cunningham, and X. Zhao, Endogenous matrix metalloproteinase (MMP)-3 and MMP-9 promote the differentiation and migration of adult neural progenitor cells in response to chemokines. Stem Cells, 2008. 26(12): 3139-49.
    24. Belmadani, A., P.B. Tran, D. Ren, and R.J. Miller, Chemokines regulate the migration of neural progenitors to sites of neuroinflammation. J Neurosci, 2006. 26(12): 3182-91.
    25. Yamashita, T., M. Ninomiya, P. Hernandez Acosta, J.M. Garcia-Verdugo, T. Sunabori, M. Sakaguchi, et al., Subventricular zone-derived neuroblasts migrate and differentiate into mature neurons in the post-stroke adult striatum. J Neurosci, 2006. 26(24): 6627-36.
    26. Robin, A.M., Z.G. Zhang, L. Wang, R.L. Zhang, M. Katakowski, L. Zhang, et al., Stromal cell-derived factor 1alpha mediates neural progenitor cell motility after focal cerebral ischemia. J Cereb Blood Flow Metab, 2006. 26(1): p. 125-34.
    27. Bantubungi, K., D. Blum, L. Cuvelier, S. Wislet-Gendebien, B. Rogister, E. Brouillet, et al., Stem cell factor and mesenchymal and neural stem cell transplantation in a rat model of Huntington's disease. Mol Cell Neurosci, 2008. 37(3): 454-70.
    1. Snyder, E.Y. and J.D. Macklis, Multipotent neural progenitor or stem-like cells may be uniquely suited for therapy for some neurodegenerative conditions. Clin Neurosci, 1995. 3(5): 310-6.
    2. Tang, Y., K. Shah, S.M. Messerli, E. Snyder, X. Breakefield, and R. Weissleder, In vivo tracking of neural progenitor cell migration to glioblastomas. Hum Gene Ther, 2003. 14(13): 1247-54.
    3. Shah, K., E. Bureau, D.E. Kim, K. Yang, Y. Tang, R. Weissleder, et al., Glioma therapy and real-time imaging of neural precursor cell migration and tumor regression. Ann Neurol, 2005. 57(1): 34-41.
    4. Gage, F.H., Mammalian neural stem cells. Science, 2000. 287(5457): 1433-8.
    5. Ehtesham, M., P. Kabos, M.A. Gutierrez, N.H. Chung, T.S. Griffith, K.L. Black, et al., Induction of glioblastoma apoptosis using neural stem cell-mediated delivery of tumor necrosis factor-related apoptosis-inducing ligand. Cancer Res, 2002. 62(24): 7170-4.
    6. Hofstetter, C.P., N.A. Holmstrom, J.A. Lilja, P. Schweinhardt, J. Hao, C. Spenger, et al., Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome. Nat Neurosci, 2005. 8(3): 346-53.
    7. Iwanami, A., S. Kaneko, M. Nakamura, Y. Kanemura, H. Mori, S. Kobayashi,et al., Transplantation of human neural stem cells for spinal cord injury in primates. J Neurosci Res, 2005. 80(2): 182-90.
    8. Ryder, E.F., E.Y. Snyder, and C.L. Cepko, Establishment and characterization of multipotent neural cell lines using retrovirus vector-mediated oncogene transfer. J Neurobiol, 1990. 21(2): 356-75.
    9. Snyder, E.Y., D.L. Deitcher, C. Walsh, S. Arnold-Aldea, E.A. Hartwieg, and C.L. Cepko, Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell, 1992. 68(1): 33-51.
    10. Liu, W.G., X.J. Wang, G.Q. Lu, B. Li, G. Wang, and S.D. Chen, Dopaminergic regeneration by neurturin-overexpressing c17.2 neural stem cells in a rat model of Parkinson's disease. Mol Neurodegener, 2007. 2: 19.
    11. Magge, S.N., S.Z. Malik, N.C. Royo, H.I. Chen, L. Yu, E.Y. Snyder, et al., Role of monocyte chemoattractant protein-1 (MCP-1/CCL2) in migration of neural progenitor cells toward glial tumors. J Neurosci Res, 2009. 87(7): 1547-55.
    12. Robertson, S.D., H.J. Matthies, and A. Galli, A closer look at amphetamine-induced reverse transport and trafficking of the dopamine and norepinephrine transporters. Mol Neurobiol, 2009. 39(2): 73-80.
    13. Wang, X.J., W.G. Liu, Y.H. Zhang, G.Q. Lu, and S.D. Chen, Effect of transplantation of c17.2 cells transfected with interleukin-10 gene on intracerebral immune response in rat model of Parkinson's disease. Neurosci Lett, 2007. 423(2): 95-9.
    14. Zhang, H., L. Vutskits, M.S. Pepper, and J.Z. Kiss, VEGF is a chemoattractant for FGF-2-stimulated neural progenitors. J Cell Biol, 2003. 163(6): 1375-84.
    15. Giese, A., R. Bjerkvig, M.E. Berens, and M. Westphal, Cost of migration: invasion of malignant gliomas and implications for treatment. J Clin Oncol, 2003. 21(8): 1624-36.
    16. Aboody, K.S., A. Brown, N.G. Rainov, K.A. Bower, S. Liu, W. Yang, et al., Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci U S A, 2000. 97(23):12846-51.
    17. Riess, P., C. Zhang, K.E. Saatman, H.L. Laurer, L.G. Longhi, R. Raghupathi, et al., Transplanted neural stem cells survive, differentiate, and improve neurological motor function after experimental traumatic brain injury. Neurosurgery, 2002. 51(4): 1043-52; discussion 1052-4.
    18. Bantubungi, K., D. Blum, L. Cuvelier, S. Wislet-Gendebien, B. Rogister, E. Brouillet, et al., Stem cell factor and mesenchymal and neural stem cell transplantation in a rat model of Huntington's disease. Mol Cell Neurosci, 2008. 37(3): 454-70.
    19. Erlandsson, A., J. Larsson, and K. Forsberg-Nilsson, Stem cell factor is a chemoattractant and a survival factor for CNS stem cells. Exp Cell Res, 2004. 301(2): 201-10.
    20. Linnekin, D., Early signaling pathways activated by c-Kit in hematopoietic cells. Int J Biochem Cell Biol, 1999. 31(10): 1053-74.
    21. Wandzioch, E., C.E. Edling, R.H. Palmer, L. Carlsson, and B. Hallberg, Activation of the MAP kinase pathway by c-Kit is PI-3 kinase dependent in hematopoietic progenitor/stem cell lines. Blood, 2004. 104(1): 51-7.
    1. Wettschureck, N. and S. Offermanns, Rho/Rho-kinase mediated signaling in physiology and pathophysiology. J Mol Med, 2002. 80(10): 629-38.
    2. Ishizaki, T., M. Naito, K. Fujisawa, M. Maekawa, N. Watanabe, Y. Saito, et al., p160ROCK, a Rho-associated coiled-coil forming protein kinase, works downstream of Rho and induces focal adhesions. FEBS Lett, 1997. 404(2-3): 118-24.
    3. Benard, V., B.P. Bohl, and G.M. Bokoch, Characterization of rac and cdc42 activation in chemoattractant-stimulated human neutrophils using a novel assay for active GTPases. J Biol Chem, 1999. 274(19): 13198-204.
    4. Jaffer, Z.M. and J. Chernoff, p21-activated kinases: three more join the Pak. Int J Biochem Cell Biol, 2002. 34(7): 713-7.
    5. Santos Da Silva, J., V. Schubert, and C.G. Dotti, RhoA, Rac1, and cdc42 intracellular distribution shift during hippocampal neuron development. Mol Cell Neurosci, 2004. 27(1): 1-7.
    6. Hall, A., Rho GTPases and the actin cytoskeleton. Science, 1998. 279(5350): 509-14.
    7. Shi, S., Y. Hayashi, J.A. Esteban, and R. Malinow, Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell, 2001. 105(3): 331-43.
    8. Malinow, R., Z.F. Mainen, and Y. Hayashi, LTP mechanisms: from silence to four-lane traffic. Curr Opin Neurobiol, 2000. 10(3): 352-7.
    9. Threadgill, R., K. Bobb, and A. Ghosh, Regulation of dendritic growth and remodeling by Rho, Rac, and Cdc42. Neuron, 1997. 19(3): 625-34.
    10. Nakayama, A.Y., M.B. Harms, and L. Luo, Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons. J Neurosci, 2000. 20(14): 5329-38.
    11. Jaffe, A.B. and A. Hall, Rho GTPases: biochemistry and biology. Annu RevCell Dev Biol, 2005. 21: 247-69.
    12. Wang, L. and Y. Zheng, Cell type-specific functions of Rho GTPases revealed by gene targeting in mice. Trends Cell Biol, 2007. 17(2): 58-64.
    13. Nishiya, N., W.B. Kiosses, J. Han, and M.H. Ginsberg, An alpha4 integrin-paxillin-Arf-GAP complex restricts Rac activation to the leading edge of migrating cells. Nat Cell Biol, 2005. 7(4): 343-52.
    14. Burbelo, P.D., D. Drechsel, and A. Hall, A conserved binding motif defines numerous candidate target proteins for both Cdc42 and Rac GTPases. J Biol Chem, 1995. 270(49): 29071-4.
    15. Etienne-Manneville, S. and A. Hall, Rho GTPases in cell biology. Nature, 2002. 420(6916): 629-35.
    1. Gage, F.H., Mammalian neural stem cells. Science, 2000. 287(5457): 1433-8.
    2. Kukekov, V.G., E.D. Laywell, O. Suslov, K. Davies, B. Scheffler, L.B. Thomas, et al., Multipotent stem/progenitor cells with similar properties arise from two neurogenic regions of adult human brain. Exp Neurol, 1999. 156(2): 333-44.
    3. Weigmann, A., D. Corbeil, A. Hellwig, and W.B. Huttner, Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc Natl Acad Sci U S A, 1997. 94(23): 12425-30.
    4. Levison, S.W. and J.E. Goldman, Multipotential and lineage restricted precursors coexist in the mammalian perinatal subventricular zone. J Neurosci Res, 1997. 48(2): 83-94.
    5. Doyle, K.L., M. Khan, and A.M. Cunningham, Expression of the intermediate filament protein nestin by sustentacular cells in mature olfactory neuroepithelium. J Comp Neurol, 2001. 437(2): 186-95.
    6. Sakakibara, S. and H. Okano, Expression of neural RNA-binding proteins in the postnatal CNS: implications of their roles in neuronal and glial cell development. J Neurosci, 1997. 17(21): 8300-12.
    7. Uchida, K., T. Momiyama, H. Okano, M. Yuzaki, A. Koizumi, Y. Mine, et al., Potential functional neural repair with grafted neural stem cells of early embryonic neuroepithelial origin. Neurosci Res, 2005. 52(3): 276-86.
    8. Palm, K., T. Salin-Nordstrom, M.F. Levesque, and T. Neuman, Fetal and adult human CNS stem cells have similar molecular characteristics and developmental potential. Brain Res Mol Brain Res, 2000. 78(1-2): 192-5.
    9. Pevny, L.H., S. Sockanathan, M. Placzek, and R. Lovell-Badge, A role for SOX1 in neural determination. Development, 1998. 125(10): 1967-78.
    10. Zappone, M.V., R. Galli, R. Catena, N. Meani, S. De Biasi, E. Mattei, et al., Sox2 regulatory sequences direct expression of a (beta)-geo transgene to telencephalic neural stem cells and precursors of the mouse embryo, revealing regionalization of gene expression in CNS stem cells. Development, 2000. 127(11): 2367-82.
    11. Cai, J., Y. Wu, T. Mirua, J.L. Pierce, M.T. Lucero, K.H. Albertine, et al., Properties of a fetal multipotent neural stem cell (NEP cell). Dev Biol, 2002. 251(2): 221-40.
    12. Parker, M.A., J.K. Anderson, D.A. Corliss, V.E. Abraria, R.L. Sidman, K.I. Park, et al., Expression profile of an operationally-defined neural stem cell clone. Exp Neurol, 2005. 194(2): 320-32.
    13. Temple, S., The development of neural stem cells. Nature, 2001. 414(6859): 112-7.
    14. Ma, W., W. Fitzgerald, Q.Y. Liu, T.J. O'Shaughnessy, D. Maric, H.J. Lin, et al., CNS stem and progenitor cell differentiation into functional neuronal circuits in three-dimensional collagen gels. Exp Neurol, 2004. 190(2): 276-88.
    15. Zlomanczuk, P., M. Mrugala, H.O. de la Iglesia, V. Ourednik, P.J. Quesenberry, E.Y. Snyder, et al., Transplanted clonal neural stem-like cells respond to remote photic stimulation following incorporation within the suprachiasmatic nucleus. Exp Neurol, 2002. 174(2): 162-8.
    16. Kim, D.E., D. Schellingerhout, K. Ishii, K. Shah, and R. Weissleder, Imaging of stem cell recruitment to ischemic infarcts in a murine model. Stroke, 2004. 35(4): 952-7.
    17. Aboody, K.S., A. Brown, N.G. Rainov, K.A. Bower, S. Liu, W. Yang, et al., Neural stem cells display extensive tropism for pathology in adult brain:evidence from intracranial gliomas. Proc Natl Acad Sci U S A, 2000. 97(23): 12846-51.
    18. Nakamizo, A., F. Marini, T. Amano, A. Khan, M. Studeny, J. Gumin, et al., Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res, 2005. 65(8): 3307-18.
    19. Xu, F. and J.H. Zhu, Stem cells tropism for malignant gliomas. Neurosci Bull, 2007. 23(6): 363-9.
    20. Yip, S., R. Sabetrasekh, R.L. Sidman, and E.Y. Snyder, Neural stem cells as novel cancer therapeutic vehicles. Eur J Cancer, 2006. 42(9): 1298-308.
    21. Serfozo, P., M.S. Schlarman, C. Pierret, B.L. Maria, and M.D. Kirk, Selective migration of neuralized embryonic stem cells to stem cell factor and media conditioned by glioma cell lines. Cancer Cell Int, 2006. 6: 1.
    22. Heese, O., A. Disko, D. Zirkel, M. Westphal, and K. Lamszus, Neural stem cell migration toward gliomas in vitro. Neuro Oncol, 2005. 7(4): 476-84.
    23. Widera, D., W. Holtkamp, F. Entschladen, B. Niggemann, K. Zanker, B. Kaltschmidt, et al., MCP-1 induces migration of adult neural stem cells. Eur J Cell Biol, 2004. 83(8): 381-7.
    24. Palumbo, R., B.G. Galvez, T. Pusterla, F. De Marchis, G. Cossu, K.B. Marcu, et al., Cells migrating to sites of tissue damage in response to the danger signal HMGB1 require NF-kappaB activation. J Cell Biol, 2007. 179(1): 33-40.
    25. Kendall, S.E., J. Najbauer, H.F. Johnston, M.Z. Metz, S. Li, M. Bowers, et al., Neural stem cell targeting of glioma is dependent on phosphoinositide 3-kinase signaling. Stem Cells, 2008. 26(6): 1575-86.
    26. Chicoine, M.R. and D.L. Silbergeld, Mitogens as motogens. J Neurooncol, 1997. 35(3): 249-57.
    27. Ziu, M., N.O. Schmidt, T.G. Cargioli, K.S. Aboody, P.M. Black, and R.S. Carroll, Glioma-produced extracellular matrix influences brain tumor tropism of human neural stem cells. J Neurooncol, 2006. 79(2): 125-33.
    28. Imitola, J., K. Raddassi, K.I. Park, F.J. Mueller, M. Nieto, Y.D. Teng, et al., Directed migration of neural stem cells to sites of CNS injury by the stromalcell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci U S A, 2004. 101(52): 18117-22.
    29. Allport, J.R., V.R. Shinde Patil, and R. Weissleder, Murine neuronal progenitor cells are preferentially recruited to tumor vasculature via alpha4-integrin and SDF-1alpha-dependent mechanisms. Cancer Biol Ther, 2004. 3(9): 838-44.
    30. Rubin, J.B., A.L. Kung, R.S. Klein, J.A. Chan, Y. Sun, K. Schmidt, et al., A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors. Proc Natl Acad Sci U S A, 2003. 100(23): 13513-8.
    31. Lee, B.C., T.H. Lee, S. Avraham, and H.K. Avraham, Involvement of the chemokine receptor CXCR4 and its ligand stromal cell-derived factor 1alpha in breast cancer cell migration through human brain microvascular endothelial cells. Mol Cancer Res, 2004. 2(6): 327-38.
    32. Liang, Z., T. Wu, H. Lou, X. Yu, R.S. Taichman, S.K. Lau, et al., Inhibition of breast cancer metastasis by selective synthetic polypeptide against CXCR4. Cancer Res, 2004. 64(12): 4302-8.
    33. Glass, R., M. Synowitz, G. Kronenberg, J.H. Walzlein, D.S. Markovic, L.P. Wang, et al., Glioblastoma-induced attraction of endogenous neural precursor cells is associated with improved survival. J Neurosci, 2005. 25(10): 2637-46.
    34. Barresi, V., N. Belluardo, S. Sipione, G. Mudo, E. Cattaneo, and D.F. Condorelli, Transplantation of prodrug-converting neural progenitor cells for brain tumor therapy. Cancer Gene Ther, 2003. 10(5): 396-402.
    35. Li, S., T. Tokuyama, J. Yamamoto, M. Koide, N. Yokota, and H. Namba, Bystander effect-mediated gene therapy of gliomas using genetically engineered neural stem cells. Cancer Gene Ther, 2005. 12(7): 600-7.
    36. Manome, Y., P.Y. Wen, Y. Dong, T. Tanaka, B.S. Mitchell, D.W. Kufe, et al., Viral vector transduction of the human deoxycytidine kinase cDNA sensitizes glioma cells to the cytotoxic effects of cytosine arabinoside in vitro and in vivo. Nat Med, 1996. 2(5): 567-73.
    37. Rooseboom, M., J.N. Commandeur, and N.P. Vermeulen, Enzyme-catalyzed activation of anticancer prodrugs. Pharmacol Rev, 2004. 56(1): 53-102.
    38. Lynch, W.P., A.H. Sharpe, and E.Y. Snyder, Neural stem cells as engraftable packaging lines can mediate gene delivery to microglia: evidence from studying retroviral env-related neurodegeneration. J Virol, 1999. 73(8): 6841-51.
    39. Herrlinger, U., C. Woiciechowski, M. Sena-Esteves, K.S. Aboody, A.H. Jacobs, N.G. Rainov, et al., Neural precursor cells for delivery of replication-conditional HSV-1 vectors to intracerebral gliomas. Mol Ther, 2000. 1(4): 347-57.
    40. Tyler, M.A., I.V. Ulasov, A.M. Sonabend, S. Nandi, Y. Han, S. Marler, et al., Neural stem cells target intracranial glioma to deliver an oncolytic adenovirus in vivo. Gene Ther, 2009. 16(2): 262-78.
    41. Faber, C., E. Terao, E. Morga, and P. Heuschling, Interleukin-4 enhances the in vitro precursor cell recruitment for tumor-specific T lymphocytes in patients with glioblastoma. J Immunother, 2000. 23(1): 11-6.
    42. Benedetti, S., B. Pirola, B. Pollo, L. Magrassi, M.G. Bruzzone, D. Rigamonti, et al., Gene therapy of experimental brain tumors using neural progenitor cells. Nat Med, 2000. 6(4): p. 447-50.
    43. Ehtesham, M., P. Kabos, A. Kabosova, T. Neuman, K.L. Black, and J.S. Yu, The use of interleukin 12-secreting neural stem cells for the treatment of intracranial glioma. Cancer Res, 2002. 62(20): 5657-63.
    44. Langowski, J.L., X. Zhang, L. Wu, J.D. Mattson, T. Chen, K. Smith, et al., IL-23 promotes tumour incidence and growth. Nature, 2006. 442(7101): 461-5.
    45. Ehtesham, M., P. Kabos, M.A. Gutierrez, N.H. Chung, T.S. Griffith, K.L. Black, et al., Induction of glioblastoma apoptosis using neural stem cell-mediated delivery of tumor necrosis factor-related apoptosis-inducing ligand. Cancer Res, 2002. 62(24): 7170-4.
    46. Dickson, P.V., J.B. Hamner, R.A. Burger, E. Garcia, A.A. Ouma, S.U. Kim, et al., Intravascular administration of tumor tropic neural progenitor cells permits targeted delivery of interferon-beta and restricts tumor growth in a murinemodel of disseminated neuroblastoma. J Pediatr Surg, 2007. 42(1): 48-53.
    47. Weissleder, R. and V. Ntziachristos, Shedding light onto live molecular targets. Nat Med, 2003. 9(1): 123-8.
    48. Tang, Y., K. Shah, S.M. Messerli, E. Snyder, X. Breakefield, and R. Weissleder, In vivo tracking of neural progenitor cell migration to glioblastomas. Hum Gene Ther, 2003. 14(13): 1247-54.
    49. Zhang, Z., Q. Jiang, F. Jiang, G. Ding, R. Zhang, L. Wang, et al., In vivo magnetic resonance imaging tracks adult neural progenitor cell targeting of brain tumor. Neuroimage, 2004. 23(1): 281-7.
    50. Slotkin, J.R., L. Chakrabarti, H.N. Dai, R.S. Carney, T. Hirata, B.S. Bregman, et al., In vivo quantum dot labeling of mammalian stem and progenitor cells. Dev Dyn, 2007. 236(12): 3393-401.
    51. Loo, C., A. Lowery, N. Halas, J. West, and R. Drezek, Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett, 2005. 5(4): 709-11.
    52. Pike-Overzet, K., M. van der Burg, G. Wagemaker, J.J. van Dongen, and F.J. Staal, New insights and unresolved issues regarding insertional mutagenesis in X-linked SCID gene therapy. Mol Ther, 2007. 15(11): 1910-6.
    53. Aboody, K.S., J. Najbauer, and M.K. Danks, Stem and progenitor cell-mediated tumor selective gene therapy. Gene Ther, 2008. 15(10): 739-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700