凡纳滨对虾生长性状多元统计分析和遗传参数估计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
凡纳滨对虾(Litopenaeus vannamei)具有良好的适应性,快速的生长速度,较强的抗病力和抗逆能力等优良的特点,因而该对虾品种被大量地引进我国并且得到广泛的推广,结果凡纳滨对虾现在已经成为沿海和内陆地区的主要对虾养殖品种,其养殖量占对虾总养殖量的70%。因为我国海域没有凡纳滨对虾的自然分布,所以我国只能养殖多年前从国外引进的亲虾的多代留种后代。由于当时引进的凡纳滨对虾群体没有采取严格的和系统的良种选育和原种保存,结果导致凡纳滨对虾的生长性状表现了显著的变化,有利的表现包括降低的发病率,但是不良的表现包括减慢的生长速度,延长的养殖周期和分化严重的个体大小。近些年来,为了缓解凡纳滨对虾生长性状的退化,我国有些部门再次从国外引进大量的亲虾,采取这些方式确实可以使亲体的Fl代表现良好的生长性状,但是抗逆能力还是较低。虽然F2具有较高的抗逆能力,但是生长性状有显著的退化,另外大量引进亲体导致大量的外汇流失。
     因为上述的原因,所以需要尽快进行凡纳滨对虾的原种保存和建立良种选育体系。本研究建立在凡纳滨对虾新品种培育的基础上,进行了与目标性状相关的生长性状间的回归分析和判别分析,估计了凡纳滨对虾五月龄生长性状的遗传参数,为凡纳滨对虾的选择育种提供基本参数,科学合理地指导对虾生产实践。主要研究内容如下:
     1.凡纳对虾形态性状对体重的逐步回归分析
     选择5月龄凡纳对虾900只,测定了全长、体长、第一腹节背高、第三腹节背高、第一腹节背宽、头胸甲长、头胸甲宽、头胸甲高和体重共9个性状,采用相关分析和通径分析方法,计算了各形态性状与体重两两之间的相关系数、各形态性状为自变量对体重作依变量的通径系数及决定系数,定量地分析了形态性状对体重的影响效果。结果表明:凡纳对虾8个形态形状与体重两两之间的相关系数均达到极显著水平(P<0.01);通径分析揭示了多元分析中多个自变量与依变量的真实关系,全长、体长、第一腹节背高、第一腹节背宽、头胸甲宽和头胸甲高对体重通径系数达到极显著或显著水平,所以它们是直接影响体重的重要指标,其中全长对体重的直接影响(0.32838**)最大,是影响体重的最主要因素,其次为头胸甲宽(0.24249**)、体长(0.15095**)、头胸甲高(0.12038**)和第一腹节背宽(0.10981**),第一腹节背高对体重的直接影响(0.04922*)最小;第三腹节背高与体重的相关系数很大(0.73571**),但它与头胸甲长对体重的直接影响都非常小,所以它们主要通过与其它性状的相关来间接影响体重,是影响体重的次要因素,均被剔除;决定系数和通径分析结果有一致的变化趋势,所选形态性状与体重的复相关系数为R2=0.9449,说明影响体重的主要自变量已经找到;逐步回归分析建立了全长(X1)、体长(X2)、第一腹节背高(X3)、第一腹节背宽(X5)、头胸甲宽(X7)和头胸甲高(X8)对体重(Y)的多元回归方程,回归截距和相应的回归系数分别为-22.599,1.043,0.547,0.969,2.279,6.118和2.797,本研究为对虾育种提供了理论依据。
     2.凡纳对虾各月龄性状的主成分与判别分析
     为了研究凡纳对虾各性状增长规律和判定错过最佳生长季节的凡纳对虾的与其大小相符的月龄,本研究选择1-6月龄凡纳对虾各1000只,测定了全长、体长、第一腹节背高、第三腹节背高、第一腹节背宽、头胸甲长和体重共7个性状,采用主成分与判别分析方法。结果表明:各月龄凡纳对虾性状之间均呈现显著的正相关(P<0.01),其中以全长与体长的相关性最为明显,1月龄凡纳对虾体重与形态性状的相关系数较小。各月龄凡纳对虾的主成分有所不同,1-2月龄凡纳对虾的第一主成分为长度因子,第二主成分为宽度因子,第三主成分为高度因子;3月龄凡纳对虾的第一主成分与1-2月龄凡纳对虾一致,但第二主成分为高度因子,第三主成分为体重因子;4-6月龄凡纳对虾的第—主成分为体重因子,第二主成分为高度因子,第三主成分为宽度因子。由这些结果可以分析出:1-3月龄凡纳对虾形态性状的发育优先于体重,但4-6月龄凡纳对虾形态性状的发育被体重追赶上。错过最佳生长季节的凡纳对虾的与其大小相符的月龄可通过本文所述的判别式来判断,判别结果为:总的判别准确率为98.98%,其中2-4月龄凡纳对虾的判别准确率为100%。
     3.凡纳对虾五月龄生长性状遗传参数的估计
     采用系统设计(巢式设计)方法,每尾雄虾交配3尾雌虾,共建成21个父系半同胞家系,47个全同胞家系,分别测定了全长(TL)、体长(BL)、头胸甲长(CL)、头胸甲宽(CW)、头胸甲高(CD)、第一腹节背高(FASD)、第三腹节背高(TASD)、第一腹节背宽(FASW)和体重(BW)等9个性状,对虾测量总数为1387尾。利用MANOVA分析方法,利用MtdfremL软件中的多变量混合动物模型进行分析,估计了所有性状遗传力和遗传相关系数。结果表明全长(TL)、体长(BL)、第一腹节背高(FASD)、第三腹节背高(TASD)、第一腹节背宽(FASW)、头胸甲长(CL)、头胸甲宽(CW)、头胸甲高(CD)和体重(BW)的遗传力分别为0.39±0.08、0.30±0.07、0.23±0.09,0.25±0.05,0.33±0.12,0.28±0.06,0.32±0.07,0.35±0.14,0.46±0.11,均属于中度遗传力范围,其中第一腹节背高(FASD)的遗传力最低,体重(BW)的遗传力最高。各个性状间表现出高的正相关,其中全长(TL)和体重(BW)的遗传相关最大,全长(TL)和第三腹节背高(TASD)的遗传相关最小。
Litopenaeus vannamei has shown an excellent speed of cultivation since it was brought into our country. Because of its good compatibility, strong disease resistance, and high speed of growth, Litopenaeus vannamei has become the major cultivation breed. Litopenaeus vannamei has not been distributed to the coastal area of China and at present our country's variety is mainly the descendant of that introduced from overseas many years ago. Due to the fact that it has not been preserved as the original variety and selectively bred as a good variety, its growth characters have changed obviously, for example in spite of the low disease incidence rate, the growth speed has been reduced and the period of cultivation has been lengthened. Besides the size differentiation is quite serious. In resent years, minority departments have been making their efforts to solve the character evolution problem. Every year they bring in numerous parents from abroad for breeding, which not only loses lots of foreign exchange but also decreases the resistance ability of F1 and influences growth traits in F2 negatively.
     1. Regression analysis of traits of Litopenaeus vannamei at different ages
     The effects of eight morphometric attributes on body weight of Litopenaeus vannamei were analyzed by studying the data collected from 900 five-month-old Litopenaeus vannamei in Banqiao Village of Dongfang City, Hainan Province. The total length(X1), body length(X2), first abdominal segment depth(X3), third abdominal segment depth(X4), first abdominal segment width(X5), carapace length(X6), carapace width(X7), carapace depth(X8) and body weight(Y) were measured. Correlation coefficients among all attributes were calculated. Also, path coefficients and determination coefficients were calculated in path analysis where eight morphometric attributes(X1-X8) were regarded as independent variables and body weight(Y) was used as a dependent variable. The results indicated that all correlation coefficients between morphometric attributes and body weight all achieved very significant difference (P<0.01) level. The path coefficient analysis revealed a truthful relationship between independent variables and the dependent variable. The path coefficients of total length(X1), body length(X2), first abdominal segment depth(X3), first abdominal segment width(X5), carapace width(X7), and carapace depth(X8) to body weight all reached a level of significance. These attributes were quite indicative of determining body weight, among which total length(X1) weighs the most(0.32838**) to body weight, so it was a key effective factor, while the direct effect of first abdominal segment depth(X3) on body weight was least(0.04922*). Although the correlation coefficient between third abdominal segment depth(X4) and body weight is rather large (0.73571**), its direct influence on body weight is quite small just like carapace length(X6). Therefore, third abdominal segment depth(X4) and carapace length(X6) affect body weight mainly by their relationship with other attributes, so they are insignificant factors influencing body weigh and eliminated. Similar results appear by calculating determination coefficients and path analysis. Furthermore, the multiple-correlation coefficient between the chosen attributes and body weight reaches as high as R2=0.9449. All above illustrate that the main attributes determining body weight have already been discovered. The stepwise regression analysis establishes the multiple regression equation on the overall effect of total length(X1), body length(X2), first abdominal segment depth(X3), first abdominal segment width(X5), carapace width(X7) and carapace depth(X8) on body weight(Y). The regression intercept and partial regression coefficients of the equation are 1.043,0.547,0.969,2.279,6.118 and 2.797. This paper lays a solid theoretical foundation for breeding shrimps.
     2. Principal component and discriminant analysis of traits of Litopenaeus vannamei at different ages
     In order to research on the rule of the relative growth of traits of Litopenaeus vannamei and judging the age matching with the size of Penaeus vannamei missing the best growing season, the data acquired by measuring the total length(X1), body length(X2), first abdominal segment depth(X3), third abdominal segment depth(X4), first abdominal segment width(X5), carapace length(X6) and body weight(Y) of Penaeus vannamei at different ages in Banqiao Village of Dongfang City, Hanan Province were analyzed by principal component and discriminant analysis. The results illustrate that correlation coefficients between any two traits of Litopenaeus vannamei at different ages all reach very significant difference(P<0.01), among which those between the total length(X1) and body length(X2) are relatively larger and those between body weight(Y) and morphometric attributes are relatively smaller. The principal components of Litopenaeus vannamei at different ages are different. For example, the first principal component of Litopenaeus vannamei at from one month's age to two months is length factor, the second principal component is width factor and the third principal component is depth factor. Also, for Litopenaeus vannamei at three months'age, its first principal component is the same as that at from one month's age to two months, but its second principal component is depth factor and its third principal component is body weight factor. Finally, the first principal component of Litopenaeus vannamei at from four months'age to six months is body weight factor, the second principal component is depth factor and the third principal component is width factor. The results of principal component analysis reflect that the growth of morphometric attributes of Penaeus vannamei at from one month's age to three months takes priority compared with that of body weight, but the growth of body weight of Penaeus vannamei at from three months'age to six months is given priority to compared with that of morphometric attributes. The month age closely related to the size of Penaeus vannamei which has missed the best growing period can be deduced by employing the discriminant equations mentioned in this paper and the results of the discriminant analysis demonstrate that the overall accuracy is 98.98% and those of Litopenaeus vannamei at two months'age to four months all reach 100%.
     3. Estimates of the heritability for growth traits in market size of Pacific white shrimp, Litopenaeus vannamei
     Heritabilities were estimated for the body weight (BW), total length (TL), the body length (BL), first abdominal segment depth (FASD), third abdominal segment depth (TASD), first abdominal segment width (FASW), carapace length (CL), carapace width(CW) and carapace depth(CD) of Litopenaeus vannamei in the size of market at 5 month of age in Banqiao Village of Dongfang City, Hainan province. The estimates were calculated from 9 body measurements on progeny resulting from a nested mating design.21 half-sib families and 47 full-sib families of Litopenaeus vannamei were obtained by artificial assistant fertilization of 3 females by single male and measurements were made at the age of 5 months after metamorphism. Point estimate for heritabilities based on the sire component were moderate,0.39±0.08、0.30±0.07、0.23±0.09,0.25±0.05,0.33±0.12,0.28±0.06, 0.32±0.07,0.35±0.14 and 0.46±0.11 for total length (TL), the body length (BL), first abdominal segment depth (FASD), third abdominal segment depth (TASD), first abdominal segment width (FASW), carapace length (CL), carapace width(CW), carapace depth(CD) and the body weight (BW). All estimated heritabilities differ significantly from zero (P<0.01).The analysis of genetic correlations between traits demonstrated that strong positive genetic correlations existed between traits and the genetic correlation between total length (TL) and body weight (BW) is the largest while that between total length (TL) and third abdominal segment depth (TASD) is the smallest.
引文
Isabel PF, Brian K.1997. Panaeoid and Sergestoid shrimps and prawns of the world. Key and diagnoses for the families and genera [M]. Paris:Editions du Museum (Paris).
    刘瑞玉.2003.关于对虾类(属)学名的改变和统一问题[C]。甲壳动物学论文集,第四辑,北京:科学出版社(4):104-122。
    徐建春,钱志伟.2001.南美白对虾淡养获高产[J]。科学养鱼, (3):22。
    马波,金万昆.2004.散鳞镜鲤、团头鲂及其杂交F1肌肉营养成分的比较[J].水产学杂志,17(2):78-82.
    宋长太.2004.淡水养殖高产高效模式之二:池塘主养南美白对虾技术[J]。渔业致富指南,13:23。
    盛志廉.陈瑶生.1999.数量遗传学[M].北京:科学出版社.
    楼允东.2001.鱼类育种学[M].北京:中国农业出版社.
    胡今尧.1982.猪的遗传及育种[M].湖南:湖南科学技术出版社.
    吴仲庆.1991.水产生物遗传育种学[M].厦门:厦门大学出版社.
    童一中.1979.作物遗传育种知识[M].上海:上海科学技术出版社.
    杨纪珂.1979.数量遗传基础知识[M].北京:科学出版社.
    Falconer DS, Mackay TFC.1996.Introduction to quantitative genetics [M]. England:Longman Group Essex.
    华元渝,胡传林,张水元等.1982。主成分分析方法在日本沼虾生长体征指标分析中的应用.生态学报,3:15-24.
    王朝晖,齐雨藻,陈菊芳等.2006。大亚湾角毛藻细胞数量波动及其与环境因子关系的多元分析.生态学报,4:1096-1102.
    杨严鸥,李林春,操玉涛.2000.中华鲟繁殖力的主成分分析研究.信阳农业高等专科学校学报,l:46-49
    杨严鸥,姚峰.1999.淡水鱼类生态对策的主成分分析研究.湖北农学院学报,1:42-45.
    姚景龙,陈毅峰,李堃等.2006.中华鮡与前臀鮡的形态差异和物种有效性.动物分类学报,1:67-79.
    冯建彬,李家乐,王美珍等.2005.我国四海区不同群体文蛤形态差异与判别分析.浙江海洋学院学报(自然科学版),4:318-323.
    刘彩霞,彭作刚,何舜平等.2005.长臀属鱼类多变量形态分析及物种有效性研究.水生生物学报,5:507-512.
    郑汉丰,张根芳,李家乐等.2006.三角帆蚌、池蝶蚌及其杂交F_1代早期形态差异分析.上海水产大学学报,1:225-230.
    侯建君,施正香,李保明等.2006.不同生长阶段长白猪体型特征的主成分分析[J].中国农业大学学报,11:56-60.
    张爱玲,张丽娟,耿社民等.2003.秦川母牛不同年龄阶段体尺和体重的主成分分析.西北农林科技大学,4:29-32.
    赵晓勤,倪娟,陈立侨等.2006.日本沼虾4种群的形态差异分析.中国水产科学,3:224-228.
    郭慧,陈立侨,杨国梁等.2006.不同罗氏沼虾种群形态差异的比较研究.中国水产科学,7:530-534.
    李朝霞,李健,王清印等.2006.中国对虾“黄海1号”选育群体与野生群体的形态特征比较.中国水产科学,5:384-388.
    王茜,李晓东,戴伟等.2006.不同水系绒螯蟹群体外部形态的判别分析.水产科学,3:125-128.
    张永普,林志华,应雪萍等.2004.不同地理种群泥蚶的形态差异与判别分析.水产学报,6:339-342.
    魏开建,熊邦喜,赵小红等.2003.五种蚌的形态变异与判别分析.水产学报,2:13-18.
    闻海波,顾若波,徐钢春等.2007.美国紫踵劈蚌与三角帆蚌和褶纹冠蚌的形态比较与判别分析.动物学杂志,42:84-89.
    高玮,王海涛,孙丹婷.2003.栗斑腹鵐的栖息地和巢址选择.生态学报,4:665-672.
    王学萌,聂宏声,郭常莲等.1994.山西省生态农业区域划分的研究.生态学报,1:16-23.
    程建峰,潘晓云,刘宜柏等.2005.水稻抗旱性鉴定的形态指标.生态学报,11:325-333.
    林琼武,艾春香,李少菁等.2006.凡纳滨对虾亲虾性腺成熟节律和交配率.中国水产科学,4:579-584.
    蔡生力,戴习林,臧维玲等.2002.南美白对虾的性腺发育、交配、产卵和受精.中国水产科学,4:335-339.
    蔡生力,刘福军,冯普刚.2002.南美白对虾卵和无节幼体脂肪酸组成及其与饵料的关系.中国水产科学,6:142-146.
    Turker H, Eversole AG.1998.Evaluation of nondestructive method for determining body composition of crayfish. Journal of Shellfish Research,17(1):339.
    Harue K, Mutsuyshi T, Katsuya M et al,2000. Estimation of body fat content from standard body length and body weight on cultured Red Sea bream. Fisheries Sience, Tokyo,66(2):365-371.
    Yang Hongsheng, Zhang Tao, Wang Jian et al,1999. Growth characteristics of Chlamys farreri and its relation with environmental factors in intensive raft culture areas of Sishiliwan Bay, Yantai. J Shellfish Res,18(1):71-76.
    Rhodes C P, Holdich D M.,1984.Length-weight relationship, muscle production and proximate composition of the freshwater crayfish Austropotamobius pallipes (Lereboullet). Aquaculture,37(1):107-123.
    Caputi N, Brown RS Phillips BF.1995.Predicting catches of the western rock lobster (Panulirus cygnus selective) based on indices of peurulus and juvenile abundance. ICES, Copenhagen (Denmark).287-293.
    刘小林,常亚青,相建海等.2002.栉孔扇贝壳尺寸性状对活体重的影响效果分析[J].海洋与湖沼,6:473-477.
    董世瑞,孔杰,万初坤等.2007.中国对虾形态性状对体重影响的通径分析[J].海洋水产研究,6:15-22.
    吴琴琴,黄鸿基,叶妃轩等.1992.养殖斑节对虾体长体重的关系[J].热带海洋,11(3):53-56.
    黄鸿基,吴琴琴,蒋静南.1990.墨吉对虾体长与体重关系的计算及其在生产中的应用[J].湛江水产学院学报,10(1):52-58.
    陈炎辉,洪心.1996.养殖长毛对虾虾体对体重关系式研究[J].福建水产,4:11-14.
    王渊源,方丽珊,陈世稀.1996.池养长毛对虾体长与体重的关系[J].台湾海峡,15(1):5-14.
    张灵侠,沈琪,胡超群等.2006.两个凡纳滨对虾家系体重与体长的关系[J].热带海洋学报,1:23-26.
    李卓佳,曹煜成,文国樑等.2005.集约式养殖凡纳滨对虾体长与体重的关系[J].热带海洋学报,6:67-71.
    李贵生,何建国,江静波.1999.斑节对虾体长与中肠腺细胞数相关性研究.中国水产科学,2:29-32.
    查广才,周昌清,黄建荣等.2006.低盐度养殖的凡纳滨对虾体长和体重的增长规律.水产学报,04:489-494.
    臧维玲,戴习林,罗春芳等.2007.凡纳滨对虾瞬时耗氧速率和体长及溶氧水平的关系.上海水产大学学报,02:114-117.
    内蒙古农牧学院主编。家畜育种学[M].1979.北京:中国农业出版社。
    张沅。家系育种学[M].2001.北京:中国农业出版社.
    Pirchner, Population Genettes to Animal Breeding (2nd) [M].1983. New York and London:Plenum Press,.
    Falconer DS.1971.Improvement of litter size in a strain of mice at a selection limit [J]. Genet Res, 17:215-235.
    Fornshell G. Rainbow trout-challenges and solutions [J].2002. Reviews in Fisheries science, 10:545-557.
    Vandeputte M,Quillet E,Chevassus B.2002.Early development and survival in brown trout:indurect effect of selection for growth rate and estimateion of genetic parameters [J].Aquaculture,204:435-445.
    Kause A, Ritola O, Paananen T, et al.2002. Coupling body weight and its composition:a quantitative genetic analysis in rainbow trout [J]. Aquaculture,21 1(1-4):65-79.
    Roed KH, Fevolden SE, Fjalestad KT.2002.Disease resistance and immune chaaracteristics in rainbow trout (Oncorhynchus mykiss) selscted for lysozyme activity [J]. Aquaculture,209(1-4):91-101.
    Jones CS, Lockyer AE, Verspoor E, et al.2001.Towards selective breeding of Atlantic salmon for sea louse resistance:approaches to indetify trait markers [J]. Pest Management Science,58(6):559-568.
    Cipriano RC, Marchant D, Jones TE, et al.2002.Practical application of disease resistance:a brook trout fishery selected for resistance to furunculosis [J]. Aquaculture,206(1-2):1-17.
    Fevolden SE, Red K H, Fjalestad KT, et al.1999. Poststress levels of lysozyme and cortisol in adult rainbow trout:heritabilities and genetic correlations [J]. J Fish Biol,54:900-910.
    Oeverli OE, Pottinger TG, Carrick TR, et al.2002. Differences in behaviour beteween rainbow trout selected for high-and low-stress responsiveness [J]. J Exp Biol,205:391-395.
    Tanck MWT, Claes T, Ovenhuis H, et al.2002. Exploring the genetic background of stredd using isogenic progenies of common carp selected for high or low stress-related cortisol response [J]. Aquaculture,204:419-434.
    Paaver T, Tohvert T, Kangur M.2001. History of aquaculture research in Estonia. Proceedings of the Estonian Academy of Sciences [J]. Biology Ecology,50:211-221.
    Liao IC.2001.Achievements and Prospects of Fisheries Research in Taiwan [M]. Taiwan:Aquaculture and Fisheries Resources Management.
    Bieniarz K, Koldras M, Kaminski J, et al.2001. Fatty acids, fat and cholesterol in some lines of carp (Cyprinus carpio L.) in Poland [J]. Archives of Polish Fisheries,9:5-24.
    Li SF, Wang CH.2001.Gnetic diversity and selective breeding of red common carps in China [J]. Naga,24:56-61.
    Hulata G.2001.Genetic manipulations in aquaculture:a review of stock improvement by classical and modern technologies [J]. Genetica,111:155-173.
    Acsta BO, Williams MJ.2001.The role of an Intemation Research Organization in Tilapia aquaculture. Tilapia:production, marketing and technological developments:proceedings of the Tilapia 2001 Internation Technical and Conference on Tilapia [J]. Kuala Lumpur Malaysia, pp:49-58..
    Bolivar RB, Newkrik GF.2002. Response to within family selection for body weight in Nile tilapia (Oreochromis niloticus) using a single-trait animal model [J]. Aquaculture.204:371-381.
    Watanabe WO, Losordo TM, Fitzsimmons K, et al.2002.Tilapia production systems in the America: technological advances, trends and challenges [J]. Review in Fisheries Science.10:465-498.
    Dunham RA, Smitherman RO.1983.Response to selection and realized heritability for body weight in three straits of channel catfish, Ictalurus punctatus, grown in earthen ponds [J]. Aquaculture,33:89-96.
    Poleo GA, Lang RP, Riley KL et al.2001. Artifical spawning and genetic improvement in the catfish industry [J]. Aquaculture,5:32.
    Crenshaw JWJ, Heffernan PB, Walker RL.1991.Heritability of growth rate in the southern bay scallop Argopecten Irradians Concentricus [J]..Journal of shellfish Research,10(1):55-63.
    Hadley LE, Newkirk GF, Waugh DW, et al.1975. A report on the quantitative genetics of growth and survivorship of the American oyster Crassostrea virginica under laboratory conditions (10th) [M]. Wetteren: Eur Symp Mar Bio, Universa Press.
    Hadley NH, Dillon RTJ, Manzi J.1991. Realized heritability of growth rate in the hard clam Mercenaria mercenaria [J]. Aquaculture,93:109-119.
    Mahon GAT.1983.Selection Goals in oyster breeding [J]. Aquaculture,33:141-148.
    Newkirk GF, Haley LE.1983. Selection for growth rate in the eurpean oyster, ostrea edulis:response of second generation groups [J]. Aquaculture,33:149-155.
    Hershberger WK, Perdue JA, Beattie JH.1984. Genetic selection and systematic breeding in pacific oyster culture [J]. Aquaculture,39:237-245.
    Wada KT.1986. Genetic selection for shell traits in the Japanese Pearl oyster, Pinctaada fucata martensii [J]. Aquaculture,57:171-176.
    Lester LJ.1988.Difference in lavel growth among families of Peneaus stylirostris Stimpson and P.vannamei Boone [J]. Aquacult Fish Mangage,19:243-251.
    Sbordoni V, Matthaeis E, Cobdli S, et al.1986. Bottleneck effects and the depression of genetic variability in hatchery stocks of Penaeus japonicas [J]. Aquaculture,57:239-251.
    Sunden SLE, Davis SK.1991. Evaluation ofgenetic variation in a domestic population of Penaeus vannamei Boone:a comparison with three natural populations [J]. Aquaculture,97:131-142.
    Goyard E, Patrois J, Peignon JM, et al.2002. Selection for beter growth ofpenaeus stylirodtris in Tahiti and New Caledonic [J]. Aquaculture,204:461-468.
    Argue BJ, Aree SM, Lolz JM, et al.2002.Selective breeding of Pacific white shrimp(Litopenaeus vanname) for growth and resistance to Taura Syncrome Virus [J]. Aquaculture,204:447-460.
    Wolfus, GM,Garciad DK. Alicivar WA.1997.Application of the microsatellite technique for analyzing genetic diversity in shrimp breeding programs [J]. Aquaculture,152:35-47.
    John N, Michael HK, Christopher JN, et al.1996.Applied Linear Statistical Models [M]. McGreawill.
    SPSS12.0 Command syntax Reference [M].2003. Chicago, SPSS Company.
    Richard Johnson.2001.实用多元统计分析(陆璇译)[M].北京:清华大学出版社.
    金丕焕。医用统计方法(第二版)[M].2003.上海:复旦大学出版社.
    Douglas MB,Donald GW.1997.现代外国统计学优秀著作译丛:非线性回归分析及其应用(韦博成主译)[M]。北京:中国统计出版社.
    易单辉。统计预测:方法与应用[M].2001.北京:中国统计出版社.
    方积乾.2001.医学统计学与电脑实验[M]。上海:上海科技出版社.
    张文彤.2002.SPSSl 1统计分析教程(高级篇)[M].北京:北京希望电子出版社.
    陈峰.2003.现代医学统计方法与Stata应用[M].北京:中国统计出版社.
    盛志廉,吴常信.1995.数量遗传学[M].北京:中国农业出版社.
    魏法山,韩瑞丽,康相涛.2005.不同性别固始鸡生长曲线的分析[J].河南畜牧兽医,26(6):4-5。
    Darmani KH, Kebreab E, Lopez S, et al.2003. An evaluation of different growth function for describing the profile of live weight with time (age) in meat and eggs trains of chicken [J]. Poult Sci, 82:1536-1543.
    Wu RL, Ma C-X, Myronchang, et al.2002. A logistic mixture model for characterizing genetic determinants causing differentiation in growth trajectories [J]. Genet Res,79:235-245.
    Laird AK.1966. Postnatal growth of birds and mammals [J]. Growth,,30:1027-1038.
    Darmani-Kuhi H, Kebreab E, Lopez S, et al.2002. A derivation and evaluation of the von Bertalanffy equation for describing growth in broilers over time [J]. J Anim Feed Sci,11:109-125.
    Knizetova H, Hyanek J, Knize B, et al.1991.Analysis of growth Curves of fowl I chickens [J]. Br Poult Sci,32:1027-1038.
    Fan Y, Ye S.1997.A study on the growth curve and maximum profit from layer-type cockerel chicks [J]. Poult Sci,38:445.
    郑光美。鸟类学[M].1995.北京:北京师范大学出版社.
    Mignon GS, Beaumont CL, Bihan DE,et al.1999. Genetic parameters of growth curve parameters in female chickens [J]. Poult Sci,40(1):44.
    邢黎峰,孙明高,王元军等.1998.生物生长的Richards模型[J].生物数学学报,1998,13(3):348-353。
    欧阳敏,喻晓,陈道印.2002.鄱阳湖团头鲂生长的研究[J]。江西水产科技,2002,1:10-16。
    张浩,吴常信,李俊英等.2005.藏鸡和低地鸡种的生长曲线拟合与杂种优势分析[J].中国畜牧杂志,41(5):34-37.
    张显华,张永春,钱松晋等.1997.中国西门塔尔牛草原型生长模型的建立[J].草与畜杂志,2:25-26.
    马志科。丹秦Fl母牛生长曲线模型研究[J].1995.黄牛杂志,76:87-88。
    曹洪战,李振宽,韩杰昌等.2005.丹系长白猪哺乳期生长发育规律的研究[J]。Animal Husbandry & Veterinary Medicine,37(6):22-23.
    李庆岗,陶立,张东红等.2005.皖系白猪早期生长发育规律的研究[J]。安徽农业科学,33(9):1663-1664.
    陈景仁.1995.雷州母山羊生长曲线及体重校正系数研制方法的探讨[J]。佛山农牧高等专科学校学报,l:38-41.
    李秀元,金云山,洪淳锡.2005.用复合函数回归式估测延边黄牛幼牛正常生长发育曲线研究[J]。 黄牛杂志,31(2):7-9.
    张文举.1998.徽成盆地黄牛生长曲线方程的研究[J]。甘肃畜牧兽医.28(1):3-5.
    姜勋平,刘桂琼,杨利国等.2001.海门山羊生长规律及其遗传分析[J].南京农业大学学报,24(1):69-72。
    刘海斌,吴占福,闫贵龙等.2007.塞北肉用型乌骨鸡早期生长发育规律及生长曲线拟合研究[J].河北北方学院学报(自然科学版),23(1):28-31。
    张元跃,金枚荷.1994.番鸭生长方程的研究[J].山东家畜,1997(1):3-14.
    樊月钢,叶树真.1994.肉用仔鸡生长曲线的拟合及最大经济效益点的研究[J]。中国畜牧杂志,30(3):30-31.
    角田俊平,中井和夫.1994.皇姑鱼的年龄和生长[J]。齐鲁渔业,11(3):45-46。
    熊邦喜,陈志奋,高云.1996.不同体形鱼类的年龄与生长相关表达式的拟合研究[J]。水利渔业5:22-25。
    王艳君,多部田修,任一平.1999.东海产长木叶鲽的年龄与生长[J]。青岛海洋大学学报,29(4):604-610。
    谢恩义,何学福.1999.瓣结鱼的年龄和生长的研究[J]。动物学杂志,34(5):8-12。
    吴莉芳,张东鸣,黄权.1999.黄花泡乌鳢年龄与生长的研究[J]。吉林农业大学学报,2l(增刊):70-73。
    王克行.1996.虾蟹类增养殖学[M]。北京:中国农业出版社.
    陈淑玲,李金峰,刘建玉.2003.科学养虾问答[M]。北京:中国农业出版社.
    Nunes AJP.1997. Data of production and water quality from a commercial and semi-intensive culture of the shrimp Penaeus subtilis and P. vannamei with the utilization of feeding trays [J]. Boletim-do-Instituto-de-Pesca-Sao-Paulo,24:221-231.
    Scholz U.1999.Enhancement of vibriosis resistance in juvenile Penaeus vannamei by supplementation of diets with different yeast products [J]. Aquaculture,176:271-283.
    Intermediate Topics:SPSS for Windows 10.0(v10.0 Revised)[M].1999. SPSS Inc. Chicago, Illinois.
    Advanced Statistical Analysisi Using SPSS (v10.0 Revised)[M].2000. SPSS Inc. Chicago, Illinois.
    Advanced Techniques:ANOVA (SPSS 10.0)[M].2000. SPSS Inc. Chicago, Illinois.
    Statistical Analysisi Using SPSS 10.0 (v10.0 Revised)[M].2000. SPSS Inc. Chicago, Illinois.
    刘小林,吴长功,张志怀.2004.凡纳滨对虾形态性状对体重的影响效果分析[J].生态学报,24(4):857-862.
    王金玉,陈国宏.2004.数量遗传与动物育种[M].南京:东南大学出版社.
    南疆生物技术有限责任公司.2001.南美白对虾良种选育项目可行性报告.
    Kinghorn, P.B.1983. A review of quantitative genetics in fish breeding[J].Aquaculture,31:283-304.
    李思发.1990.淡水鱼类种群生态学[M].北京:农业出版社.
    李思发,蔡完其.2000.团头鲂双向选育效应研究[J].水产学报,24(3):201-205.
    Hines N O.1976. Fish of Rare Breeding-Salmon and Trout of the Donaldson Strains[M]. Smithsonian Institution Press,City of Washington.
    Grjedrem T.1979. Selection for growth rate and demostication in Atlantic salmon[J]. Z Tierz Zuchtungsbiol,96:56-59.
    Kirpichinikov V V.1981. Genetic Bases of Fish Selection[M]. Spring-V erlag, Berlin, New York.40-43.
    Wohlfarth G W, Lahman M, Hulata G, et al.1980. The story of "Dor-70", a selected strain of the Israeli common carp[J]. Bamidgeh,32:3-5.
    Eknath A E, Tayamen M M, Palada-de Vera M S, et al.1991.Genetic improvement of farmed tilapias: the growth performance of eight strains of Oreochromis niloticus tested in different farm environments[J].Aquac,111:171-188.
    张建森,孙小异.1994.建鲤综合育种新技术[C].建鲤育种研究论文集.北京:科学出版社.22-26.
    刘明华,沈俊宝,张铁齐.1994.选育中的高寒鲤[J].中国水产科学,1(1):10-19.
    Allendorf F W, Ryman N, Cltter F M, et al. Genetics and Fishery Management:Past, Present,and Future[A].In:RymanN, UtterF,eds Population Genetics and Fishery Management[C]. Washington Sea Grant Program, University of Washington Press, Seattle,1-19.
    INGA.1997.Breeding plan for common carp(Cyprinuscarpio) in Indonesia:multiple-trait selection[M]. Manila,Philippines.ICLARM.
    B.J.; Arce S.M.; Lotz J.M.2002. Selective breeding of Pacific white shrimp (Litopenaeus vannamei) for growth and resistance to Taura Syndrome Virus[J]. Aquaculture, Volume 204, Number 3,11 February, pp.447-460(14).
    BOLIVAR Remedios B.; NEWKIRK Gary F. Response to within family selection for body weight in Nile tilapia (Oreochromis niloticus) using a single-trait animal model[J].Aquaculture.
    Smitherman, R.O.& R.A. Dunham.1985. Genetics and breeding,pp.283-316 in Channel Catfish Culture, edited by C.S. Tucker.Elsevier Scientific Publishing, Amsterdam, The Netherlands.
    Dunham, R.A.& R.E. Brummett.1999. Response of two generations of selection to increased body weight in channel catfish,Ictalurus punctatus, compared to hybridization with blue catfish,I. furcatus, males. J. Appl[J]. Aquacult.9:37-45.
    Gjerde, B.1986. Growth and reproduction in fish and shellfish.Aquaculture[J].57:37-55.
    Gjerde, B.& S.A. Korsvoll,1999. Realized selection differentials for growth rate and early sexual maturity in Atlantic salmon,pp.73-74 in Towards Predictable Quality, Abstracts of Contributions Presented at the Aquaculture Europe 99. European Aquaculture Society Special Publication 27, Oostende, Belgium. Gjedrem, T.2000. Genetic improvement of cold-water fish species.Aquacult[J]. Res.31:25-33.
    Hershberger, W.K., J.M. Meyers, W.C. McAuley & A.M. Saxton.1990.Genetic changes in growth of coho salmon (Oncorhynchus kisutch) in marine netpens, produced by 10 years of selection.Aquaculture[J]. 85:187-197.
    Myers, J.M., P.O. Heggelund, G. Hudson & R.N.2001.Iwamoto. Genetics and broodstock management of coho salmon. Aquaculture[J].197:43-62.
    Eknath, A.E., M.M. Tayamen,, M.S. Palada-de Vera, J.C. Danting,R.A. Reyes, E.E.Dionisio, J.B. Capili, H.L. Bolivar, T.A. Abella,A.V. Circa, H.B. Bentsen, B. Gjerde, T. Gjedrem & R.S.V. Pullin.1993. Genetic improvement of farmed tilapias:the growthperformance of eight strains of Oreochromis niloticus tested in different farm envuronments.Aquaculture[J].111:171-188.
    Bentsen, H.B., A.E. Eknath, M.S. Palada-de Vera, J.C. Danting,H.L. Bolivar, R.A. Reyes, E.E. Dionisio, F.M. Longalong, A.V.Circa, M.M. Tayamen & B. Gjerde.1998. Genetic improvement of farmed tilapias:growth performance in a complete diallel cross experiment with eight strains of Oreochromis niloticus. Aquaculture[J].160:145-173.
    Basiao, Z.U.& R.W. Doyle.1999.Test of size specific mass selection for Nile tilapia, Oreochromis niloticus L., cage farming in the Philippines. Aquacult[J].Res.10:373-378.
    Su, GS; Liljedahl, LE; Gall, GAE.1999. Estimates of phenotypic and genetic parameters for within-season date and age at spawning of female rainbow trout. Aquaculture[J].171, no.3-4, pp.209-220.
    Tave D. Genetics for Fish Hatchery Managers[M].1986. Van Nostrand Reinhold, New York.246.
    Ibarra, A.M., Cruz, P. and Romero, B.A.1995. Effects of inbreeding on growth and survival ofself-fertilized catarina scallop larvae, Argopecten circularis [J]. Aquaculture,134:37-47.
    Beattie J H, Perdue J, Hershberger W, Chew K.1987. Effects of inbreeding on growth in the Pacific oyster(Crassostrea gigas) [J]. Shellfish Res,6:25-28.
    Mallet, A.L. and Haley, L.E., Effects of inbreeding on larval and spat performance in the American oyster [J].Aquaculture,33:229-235.
    Su G S, Liljedahl L E, Gall G A E.1996. Effects of inbreeding on growth and reproductive traits in rainbow trout (Oncorhynchus mykiss) [J].Aquaculture,142:139-148.
    Rye and I.L. Mao.1998. Nonadditive genetic effects and inbreeding depression for body weight in Atlantic salmon (Salmo salar L. [J]. Livest. Prod. Sci.1998,57:15-22.
    Pante M J R, Gjerde B, McMillan 1.2001. Inbreeding levels in selected populations of rainbow trout,Oncorhynchus mykiss[J].Aquaculture,192:213-224.
    张国范,刘述锡,刘晓等.2003.海湾扇贝自交家系的建立和自交效应[J].中国水产科学,10(6):441-445.
    李思发,杨学明.1996.双向选择对团头鲂生化遗传变异的影响[J].中国水产科学,3(1):1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700