光周期影响玉米开花转换的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热带、亚热带玉米种质具有丰富的遗传变异,是拓宽我国玉米种质遗传基础,提升育种水平的有效途径。然而,玉米的光周期反应是利用热带、亚热带种质的主要障碍。本研究以热带玉米自交系CML288和温带自交系黄早4为材料,采用长短日照相互挪移和激光扫描共聚焦显微镜观察等方法,研究了玉米光周期敏感时期及其对生长发育的影响,并在此基础上采用同源克隆等方法成功克隆与光周期反应和花发育相关的9个基因,分析这些基因在不同光周期条件下的表达规律,初步探讨了光周期敏感性和开花转换的分子机理。主要研究结果如下:
     1.将玉米的顶端分生组织形态、叶片数和生育期指标相结合,提出了研究玉米光周期敏感时期的方法,将玉米雄穗的光周期敏感时期分为光周期成花诱导期和早期花发育的敏感期。结果显示,在短日照条件下,热带自交系CML288的光周期成花诱导期和早期花发育的敏感期分别在第4~7片展开叶和第6~9片展开叶之间;温带自交系黄早4雄穗的光周期成花诱导期和早期花发育的敏感期分别在第4~6片展开叶和第6~8片展开叶之间。在长日照条件下,CML288雄穗的光周期诱导期和早期花发育的敏感期分别在4~14片展开叶和第14~22片展开叶之间;黄早4雄穗的光周期诱导期和早期花发育的敏感期分别在第4~8片展开叶和第8~11片展开叶之间。
     2.将玉米的叶片数、吐丝期和ASI值相结合,提出了研究玉米雌穗光周期敏感期的方法,确定了玉米雌穗的光周期敏感期。结果显示,在短日照条件下,黄早4和CML288雌穗的光周期敏感期分别在第5片展开叶展开的第2天到第9片叶展开的第3天,第6片展开叶展开的第2天到第10片叶展开的第3天;在长日照条件下,黄早4和CML288雌穗的光周期敏感期分别在第8~12片展开叶和第14~18片展开叶之间。
     3.光周期不仅影响玉米的成花诱导,同时还影响玉米雌雄穗的发育。两个自交系长日照条件的雄穗长度及雄穗分枝数要明显长于或多于短日照条件。在雄穗早期发育的光周期敏感期,长短日照相互挪移会造成雄穗分枝数和雄穗长度发生变化,而其它时期不会发生变化。热带自交系CML288从长日照向短日照挪移,第14片叶到19片叶之间的雌穗发育,表现出从发育完全正常到不发育的一个渐变过程,19片叶后雌穗不能发育。反之,从短日照移到长日照,第8片叶到12片叶之间的雌穗发育,表现出从不发育到发育完全正常的渐变过程,8片叶之前挪移雌穗也不能发育。
     4.采用同源克隆和RACE结合的方法,从两个自交系中分别克隆出了ZmGI、ZmHd1、ZmFT1(ZCN8)、ZmFT2(ZCN18)、ZmTFL1(ZCN1)、ZmTFL3(ZCN3)、ZmFD(ZmDLF1)、ZmLFY(ZFL)、ZmAP1(ZAP1)等9个基因的cDNA和gDNA序列。序列分析结果显示,在短日照和长日照植物中,光周期调控开花和花发育的遗传途径具有保守性,遗传途径的各个组成基因及其同源物都具有本基因的功能域,相互间的cDNA序列具有较高的同源性。但这9个基因的保守性还存在差别,并且单双子叶植物之内的差别小于单双子叶植物之间的差别。ZmGI基因的cDNA与水稻的OsGI、拟南芥的GI等基因cDNA的同源性分别为83%、63%:ZmGI蛋白的氨基酸序列与水稻、拟南芥的同源性分别达91%、69%。ZmHd1(CO)基因的氨基酸序列与单子叶植物水稻、双子叶植物拟南芥对应的氨基酸序列同源性分别达到75%、46%。ZCN1和ZCN3(玉米FT/TFL1家族成员)与水稻的RCN1、RCN3和CEN-like基因的同源性分别达到94%、92%和84%;与拟南芥(Arabidopsis thaliana)TFL1家族基因的TFL1、BFT和ACT的同源性分别达到73%、71%和65%。ZmFD(ZmDLF1)与水稻的Os-DLF1同源性达42%,与拟南芥FD的同源性达25%。ZmLFY2与水稻的RFL同源性达81%,与拟南芥的LFY基因的同源性达52%。ZmAP1氨基酸与水稻的OsMADS15同源性达87%。ZmM4、ZmM15和水稻的OsMADS14的同源性达76%,与拟南芥的FUL同源性达56%,与拟南芥的AP1、CAL的同源性为54%。
     5.在光周期敏感材料CML288与光周期钝感材料黄早4中,ZmFT2、ZmLFY2和ZmAP的氨基酸存在差别,而ZmTFL1、ZmTFL3、ZmFT1和ZmFD则没有差异。CML288的ZmFT2比黄早4的ZmFT2多7个氨基酸;CML288的ZmLFY2比黄早的多2个氨基酸,他们之间还有3氨基酸的置换;CML288的ZmAP1比黄早的缺2个氨基酸,他们之间还有5氨基酸的置换。此外在距ZmAP1基因的终止密码TAA外14个bp处,光周期敏感材料CML288与光周期钝感材料黄早4相比少了30个bp。
     6.光周期调控ZmGI、ZmHd1和ZmFT1的表达。在短日条件下,ZmGI、ZmHd1和ZmFT1在叶片中的表达存在着明显的昼夜节律表达,他们的表达峰值分别在光期、暗期和黎明时分。在长日照条件下,ZmGI和ZmHd1的变化不大,但ZmFT1的表达基本上检测不到。对于不同发育时期的叶片中的表达量来说,在短日照条件下,ZmGI、ZmHd1的高量表达时期与黄早4和CML288的光周期成花诱导期的完成相吻合;ZmFT1的高量表达时期与黄早4和CML288的成花诱导和早期花发育的光周期敏感时期相吻合。
     7.ZmFT1、ZmLFY、ZmAP1和ZmTFL1影响玉米的成花转换。在短日照条件下,ZmFT1的mRNA表达水平在营养生长阶段不断升高,并在开花转换前后达到最大量。在长日照条件下,ZmFT1的表达量下降,并且生育期也相应推迟。在营养生长阶段,ZmLFY在顶端叶分生组织处低量表达,在开花转换时随着ZmFT1高量表达而相继出现高量表达。ZmAP1在ZmFT1和ZmLFY出现高量表达后迅速出现高量表达。而ZmTFL1主要在茎顶端分生组织处,在开花转换前后也出现高量表达。这些结果显示,ZmFT1可能上调ZmLFY和ZmAP1的表达进而促进开花,而ZmTFL1的功能可能是维持花序的生长进而形成叶片或分枝。
An efficient way for increasing the maize breeding level in China is to broaden Chinese maize germplasm with tropical and subtropical germplasms which contain abundant hereditary variation.To unveil the mechanisms of floral transition in maize under different photoperiods and overcome the photoperiod sensitivity which severely restricts the use of tropical and subtropical germplasms,this study observes the effects of photoperiod on maize and determines the photoperiod-sensitive phases in maize.We clone some key genes related to maize photoperiod sensitivity and flower development,analyze their function,and studied the effects of photoperiod on maize by gene regulatory network.The main results are as follows:
     1.Combining the phenotypes of stem apical meristem,leaf number and flowering time,we determine the photoperiod sensitive phase in maize tassel,and divide the photoperiod sensitive phase into photoperiod-sensitive inductive phase and photoperiod-sensitive flower development phase.Under Short-Day(SD) condition, the photoperiod-sensitive inductive phase and photoperiod-sensitive flower development phase of Huangzao 4 are during the expansion of the 4th~6th full leaf and 6th~8th full leaf;the photoperiod-sensitive inductive phase and photoperiod-sensitive flower development phase of CML288 are during the expansion of the 4th~7th full leaf and 7th~9th full leaf.Under Long-Day(LD) condition,the photoperiod-sensitive inductive phase and photoperiod-sensitive flower development phase of Huangzao 4 and CML288 are respectively prolonged one time and five times. The results indicate that CML288 is more sensitive to photoperiod than Huangzao 4.
     2.Leaf number,days to silking and ASI are used to determine photoperiods ensitivity phase in maize ear development.The results indicate that the ear photoperiod-sensitive phase of Huangzao 4 and CML288 are respectively during the second day of the 5th fully expanded leaf to the third day of the 9th fully expanded leaf and during the second of the 6th fully expanded leaf to the third day of the 10th fully expanded leaf under SD condition.Under LD condition,the time is during 8th~ 12th and 14th~18th 1 fully expanded eaf separately.
     3.Photoperiod affects the development of the tassel and ear during the photoperiod sensitive phase.The results show that Huangzao 4 and CML288 appear to be more vigorous,the length of tassel and the number of tassel tiller increase under LD.When the plants are transferred reciprocal between long-day(LD)(15hd~(-1)) and short-day conditions(SD)(9hd~(-1)) during the photoperiod-sensitive flower development phase,the length of tassel and the number of tassel tiller are affected. The maize ear development of CML288 is severely affected by transfer between long-day(LD)(15hd~(-1)) and short-day conditions(SD).Transferred from LD to SD during the period during the 14th fully expanded leaf to the 18th fully expanded leaf, the fecundity of ear is decreased,and the ear does not develop after the 19th fully expanded leaf.Transferred from SD to LD,the ear does not develop before the second day of 8th fully expanded leaf,the fecundity of ear is increased during the period from the 8th fully expanded leaf to the 11th fully expanded,leaf and ear developed normal after the 11th leaf fully expanded.
     4.ZmGI,ZmHd1(CO),ZmFT1(ZCNS),ZmFT2(ZCN18),ZmTFL1(ZCN1), ZmTFL3(ZCN3),ZmFD,ZmLFY and ZAP1 were isolated,or cloned,and analyzed. The result suggest that the component of the genetic network which controls flowering time and floral transition of plant in response to day length are conserved in monocots and dicots or in SD plants and LD plants.But the conservations of different gene in monocots or dicots are diversities.The results of homology analysis with its ortholog of rice and Arabidopsis are that ZmGI is 83%and 63%,ZmHd1 is 75%and 46%,ZmTFL3 is 94%and 73%,ZmFD is 42%and 25%,ZmLFY is 81%and 52%. The homology of amino acid of ZmGI between maize with rice and Arabidopsis is 91%and 69%.The homology of amino acid of ZAP1 between maize with Arabidopsis is 87%.
     5.The gene sequences are diversities in photoperiod-sensitive maize and photoperiod-insensitive maize.Seven amino acids are absented between the 66~(th) and the 74~(th) amino acids of ZmFT2 putative protein in Huangzao 4 compared with ZmFT2 in CML288.Two amino acids are defaulted and three amino acids are changed in putative protein of ZmLFY2 in Huangzao 4 compared with ZmLFY2 in CML288. Two amino acids are defaulted and five amino acids are changed in putative protein of ZmAP1 in CML288 compared with ZmAP1 in Huangzao 4.Moreover,30bp are lost between the 14~(th) and the 45~(th) bp outside the stop codon of ZmAP1 in CML288.
     6.The results of RT-PCR about maize leaves and stem apical suggest that the expression patterns of ZmGI,ZmHd1 and ZmFT1 are regulated by photoperiod. Under SD conditions,the expression of ZmGI,ZmHd1 and ZmFT1 in maize leaf have diurnal fluctuation,peaking in light,in dark and before dawn respectively.Under LD, the expression of ZmGI and ZmHd1 are upregulated slightly,ZmFT1 is downregulated,while the expression of ZmFT1 in CML288 can not be detected.For the expression patterns of those genes in leaves during different development stages, the high expression periods of ZmGI and ZmHd1 in Huangzao 4 and CML288 are consistent with their photoperiod-sensitive inductive phase,and ZmFT1 is consistent with its photoperiod-sensitive phase.
     7.ZmFT1,ZmLFY,ZmAP1 and ZmTFL1 regulate the floral transition.FT mRNA levels in leaves during vegetative growth in SD reach its maximum around the floral transition.FT expression is reduced in LD which is consistent with the delay of flowering time.ZmLFY expression is detected in stem apical and reach maximum followed with the maximum expression of ZmFT1.ZmAP1 expression sharply increases after the maximum expression of ZmFT1 and ZmLFY.ZmTFL1 expression is mainly in shoots apical and is upregulated around the floral transition.These results suggest that ZmLFY and ZmAP1 are upregulated by ZmFT1,and then ZmLFY and ZmAP1 together initiate the transition from the vegetative meristem to inflorescence meristem.However,ZmTFL1 maintains the shoot apical meristem in indeterminate stage to develop leaves and branches.ZmFT1 is relative to photoperiod-sensitivity in maize.
引文
Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T. (2005) .FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex[J].Science, 309: 1052-1056
    
    Adams S R, Pearson S, Hadley P. 1998. An appraisal of the use of reciprocal transfer experiments: assessing the stages of photoperiod sensitivity in chrysanthemum cv. Snowdon (chrysanthemum morifolium Ramat.). Journal of Experimental Botany, 49, 1405-1411
    
    Adams SR, Pearson S, Hadley P, Patefield WM.(1999). The effect of temperature and light integral on the phases of photoperiod sensitivity in Petuniaxhybrida. Annals of Botany 83, 263-269
    Adams S. R., M. Munir, V. M. Valdes, F. A. Langton, S. D. Jackson (2003). Using Flowering Times and Leaf Numbers to Model the Phases of Photoperiod Sensitivity in Antirrhinum majus L. Annals of Botany, 92, 689-696
    Ann JH, Miller D, Winter VJ, Banfield MJ, Lee JH, Yoo SY, Henz SR, Brady RL, Weigel D (2006) A divergent external loop confers antagonistic activity on floral regulators FT and TFL1.EMBO J 25: 605-614
    Alabadi,D.,Oyama,T.,Yanovsky,M.J.,Harmon,F.G.,Mas,P.andKay,S.A.(2001) Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock.Science 293,880-883
    Allison, J.C.S. and T.B. Daynard. Effects of change in time of flowing, induced by altering photoperiod or temperature, on attributes related to yield in maize. Crop Sci. 1979. 19:1-4
    Alvarez J,Guli C L,Yu X H,Smyth D R.Terminal flower(1992): a gene affecting inflorescence development in Arabidopsis thaliana[J].The Plant Journal 2(1): 103-116
    An H .,RoussotC .,Suarez-Lopez P .,CorbesierL .,Vincent C, Pineior M .,Hepworth S .,Mouradov A .Justin S .Jurnbull C .G .N .,and Coupland G (2004).CONSTANS acts in the phloem to regulate a systemic signalthat induces photoperiodic flowering of Arabidopsis.Development, 131:36 15-3626
    Arnold,c.y.1969.Enviromentally induced variations of sweet corn characteristic as they relate to time required for development.j.AM.Soc.Hortic.Sci:94:115-118
    Asumadu H, Summerfield RJ, Ellis RH, Qi A (1998). Variation in the durations of the photoperiod-sensitive and photoperiod-insensitive phases of post flowering development in maturity isolines of soyabean [Glycine max (L.) Merrill] 'Clark'.Annals of Botany 82, 773-778
    Ausin,I. etal.(2004)Regulation of fLowering time by FVE,a retinoblastoma- associated protein. Nat.Genet. 36,162-168
    AUKERMAN, M.J., HIRSCHFELD, M., WESTER, L., WEAVER, M., CLACK, T., AMASINO, R.M. and SHARROCK, R.A. (1997). A deletion in the PHYD genethe Arabidopsis Wassilewskija zecotype defines a role for phytochrome D in red/far-red light sensing. Plant Cell. 9: 1317-1326
    Banfield MJ, Barker JJ, Perry AC, Brady RL (1998) Function from structure? The crystal structure of human phosphatidylethanolamine-binding protein suggests a role in membrane signal transduction. Structure 6: 1245-1254
    Banfield M J,Brady R L(2000).The Structure of Antirrhinum Centroradialis Protein(CEN) Suggests a Role as a Kinase Regulator[J]. Mol. Biol, 297: 1159 -1170
    Bastow,R. etal.(2004) Vernalization requires epigenetic silencing of FLC by histonemethylation. Nature 427,164-167
    
    Battey NH, Lyndon RF(1990).Reversion of flowering.The Botanical Review 56, 162-189
    Ben-Jaacov J, Langhans RW( 1969).'After lighting' of chrysanthemums. New York State Flower Growers Bulletin 258, 1-3
    Bernier G(1988).The control of floral evocation and morphogenesis. Annual Review of Plant Physiology and Plant Molecular Biology 39, 175-219
    Bernier.G .,Havelange A .,Houssa C .,PetitjeanA .,and LejeuneP .1993.Physiological signals that induce flowering.Plant Cell,5:1147-1155
    Bertero HD, King RW, Hall AJ(1999). Modelling photoperiod and temperature responses of flowering in quinoa (Chenopodium quinoa Willd.). Field Crops Research 63, 19-34
    Blazquez M .A .,Green R .,Nilsson O .,Sussman M .R .,and Weigel D (1998).G ibberellins promote flowering of Arabidopsis by activating the LEAFY pormoter. Plant Cell, 10:791-800
    Blazquez M.A .,and Weigel D (2000).Integration of floral inductive signals in Arabidopsis.Nature,404:889 — 892
    Blazquez MA, Ferrandiz C, Madueno F, Parcy F. (2006) How floral meristems are built. Plant Molecular Biology 60 855-870
    Bomblies K, Wang RL, Ambrose BA, Schmidt RJ, Meeley RB, Doebley J. Duplicate FLORICAULA/LEAFY homologs zfl1 and zfl2 control inflorescence architecture and flower patterning in maize. Development(2003). Jun; 130(11):2385-95
    Bomblies K, Doebley JF. Pleiotropic effects of the duplicate maize FLORICAULA/LEAFY genes 2006 Jan; 172( 1 ):519-31. Epub 2005 Oct 3
    Bonhomme R, Derieu M, Emeades GO(1994). Flowering of dives maize cultivars in relation to temperature and period in mutilocation field trials.Crop Sci 34,156-164.
    Bonrer R ..Kampmann G .,Chandler J. ,G leissner R .,Wisman E .,Apel K .,an d Melzer S(2000). A MADS domain gene involved in the transition to flowering in Arabidopsis.Plant J,24:591-599
    Bortiri E, Chuck G, Vollbrecht E, Rocheford TF, Martienssen R, Hake S. (2006) ramosa2 encodes a Lateral Organ Boundary domain protein that determines the fate of stem cells in branch meristems of maize. The Plant Cell 18 574-585
    Bowman J .L. ,AlvarezJ .,WeigelD , Meyerowitz E .M .,and Smyth D .R .19 93.Control of flower development in Arabidopsis thaliana by APETALA1 an d interacting genes.Development, 119:72 1-743
    Boyle TH, Stimart DP(1983). Developmental responses of Zinnia to photoperiod. Journal of the American Society of Horticultural Science 108,1053-1059.
    Bradley D,Carpenter R,Copsey L,Vincent C,Rothstein S,Coen E(1996).Control of inflorescence architecture in Antirrhinum[J].Nature,1379 (6568) : 791-797.
    Bradley D .J.,Ratclife 0 .,Vincent C .,Carpenter R .,and Coen E (1997).Inflorescence commitment and architecture in Arabidopsis[J].Science,275:80 -83
    Briggs, W. R. & Christie, J. M(2002). Phototropins 1 and 2: versatile plant blue-light receptors. Trends Plant Sci. 7204-210
    Brudler, R. et al(2003). Identification of a new cryptochrome class. Structure, function, and evolution. Mol. Cell 11, 59C67
    BUSCH, M.A., BOMBLIES, K., and WEIGEL, D. (1999). Activation of a floral homeotic gene in Arabidopsis. Science 285, 585-587
    Chailakhyan, M.K (1936a). [About the mechanism of the photoperiodic response.]. Dokl. Akad. Nauk SSSR (C. R. Acad. Sci. USSR) 1: 85-89 (in Russian)
    Chailakhyan, M.K (1936b) . [New facts supporting the hormonal theory of plant development.]. Dokl. Akad. Nauk SSSR (C. R. Acad. Sci. USSR) 4: 77-81 (in Russian)
    Chapman S. C., Edmeades G. O (1999) . Selection improves drought tolerance in tropical maize populations, Crop Sci.,39:1315-1324
    Chautard H, Jacquet M, Schoentgen F, Bureaud N, Benedetti H (2004) Tfs1 p, a member of the PEBP family, inhibits the Ira2p but not the Iralp Ras GTPase-activating protein in Saccharomyces cerevisiae. Eukaryot Cell 3: 459-470
    Cockshull KE (1972) . Photoperiodic control of flowering in the chrysanthemum. In: Rees AR,
    
    Cockshull KE, Hand DW, Hurd RG, eds. Crop processes in controlled environments. London: Academic Press, 253-250
    Cockshull K E. 1985. Antirrhinum majus. In:Halevy AHed. CRC handbook of flowering, Vol. I. Florida : CRC Press, 476-481
    Colasanti J, Yuan Z, Sundaresan V (1998). The indeterminate gene encodes a zinc finger protein and regulates a leaf-generated signal required for the transition to flowering in maize. Cell 93,593-603
    Collinson ST, Ellis RH, Summerfield RJ, Roberts EH ( 1992 ) . Durations of the photoperiod-sensitive and photoperiod-insensitive phases of development to flowering in four cultivars of rice (Oryza sativa L.). Annals of Botany 70, 339-346
    Collinson ST, Summerfield RJ, Ellis RH, Roberts EH ( 1993 ) . Durations of the photoperiod-sensitive and photoperiod insensitive phases of development to flowering in four cultivars of soya bean (Glycine max [L] Merrill). Annals of Botany 71, 389-394
    Conti L,Bradley D (2007) . TERMINAL FLOWER1 is a mobile signal controlling Arabidopsis architecture[J].The Plant Cell, 19 (3) : 767-778
    Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, et al (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030-1033
    Kirsten Bomblies , Rong-Lin Wang , Barbara A. Ambrose~*, Robert J. Schmidt , Robert B. Meeley and John Doebley (2003) Duplicate FLORICAULA/LEAFYhomologs zf1 and zf2 control inforescence architecture and fower patterning in maize[J]. Development 130, 2385-2395
    Davis G L,Mcmullen M D,Baysdorfer C et al (1996). A maize map standard with sequenced core marker,grass genome reference points and 932 expressed sequence tagged site (ESTs) in a 1736-locus map.Genetics, 152:1137-1172
    Deng X .W.,Matsici M .,and Wei N (1992) .COP 1,an Arabidopsis regulatory gene,encodes a protein with both a zinc-binding motify and a G beta homologous domain.Cell.71 :791
    Devlin,P.F.,Patel,S.R.and Whitelam,G.C.(1998).Phytochrome E influ-ences internode elongation and flowering time in Arabidopsis.Plant Cell. 10: 1479-1487
    Devlin, P.F., Robson, P.R.H., Patel, S.R., Goosey, L., Sharrock, R.A. and Whitelam, G.C. (1999). Phytochrome D acts in the shade-avoidance syndrome in Arabidopsis by controlling elongation growth and flowering time. Plant Physiol. 119: 909-915
    Doebley, J. (1992). Mapping the genes that made maize. Trends Genet. 8,302 -307.
    Doi.K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, YanoM, Yoshimura A (2004) . Ehd1, a B-type response regulatorin rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev 18 (8): 926-936
    Doyle,M.R.,Davis,S.J.,Bastow,R.M.,McWatters,H.G.,Kozma-Bognar,L.,Nagy,F., Millar, A.J. and Amasino,R.M.(2002) The ELF4 gene controls circadian rhythms and Fowering time in Arabidopsisthaliana.Nature(London)419,74 -77
    
    Eastburn D, Han M (2004) When Ras signaling reaches the mediator. Dev Cell 6:158-159
    Ellis RH,Sumerfield RJ and Edmeades GO (1992).Photoperiod,temperature,and the intervial from sowing inititation to emergence of maize. Crop Sci 32,1225-1232
    Ellis RH, Collinson ST, Hudson D, Patefield WM (1992) .The analysis of reciprocal transfer experiments to estimate the durations of the photoperiod-sensitive and photoperiod-insensitive phases of plant development: an example in soya bean. Annals of Botany 70, 87-92
    Esteban Bortiri~* and Sarah Hake (2007) . Flowering and determinacy in maize. Journal of Experimental Botany 58(5):909-916;
    Evans L .T. Flower induction and the florigen concept (1971) .Anna.Rev.Plant Physiol.Plant Mol.Biol.,22:365-394
    Fabien Chardon, Catherine Damerval (2005) . Phylogenomic Analysis of the PEBP Gene Family in Cereals[J].J Mol Evol. 61:579-590
    Fanchauser C .,Yeh K .C , and Lagarias J. C (1999) .PKSI,a substrate phospharylated by phytochrome that modulates light signaling in Arabidopsis.Science,284:1589
    Farre,E.M.,Harmer,S.L.,Harmon,F.G.,Yanovsky,M.J.andKay,S.A.(2005) Over lapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock Curr.Biol. 15,47-54
    Ferrandiz C , GuQ .,Martienssen R , and Yanofsky M .F (2000) .Redundant regulation of meristem identity and plant architecture by FRUITFULL,A PETALAI and CAULIFLOWER.Development, 127:725-734
    Francis,C. A, Sarria.D,Harpstead.D.and Cassalett.C ( 1972 ) .Identification of photoperiod insensitive strains of maize(Zea mays). II field tests in tropics with artificial lights.Crop Sci.9:675-677
    Francis,C.A,Grogan.C.O,and Sperling.D.W (1969) .Identification of photoperiod insensitive strains of maize(Zea mays). Crop Sci.9:675-677
    
    Francois.Parcy(2005). Flowering: a time for integration. Int. J. Dev. Biol. 49: 585-593
    Fowler S., Lee S., Onouchi H., Samarch A., Richardson K ., Morris B., Coupland G., Putterill J( 1999). GIGANTEA: a circadian clock-controlledgene that regulates photoperiodic flowering in Arabidopsis and encodesa protein with several possible membrane-spanning domains. EMBO J18:4679-4688
    
    Galinat W C, Naylor A W (1951) .Relation of photoperiod to inflorescence proliferation in zea mays L.Am.J.bot.38:8-47
    Gallavotti A, Zhao Q, Kyozuka J, Meeley RB, Ritter MK, Doebley JF, Pe ME, Schmidt RJ. (2004) The role of barren stalk1 in the architecture of maize. Nature 432 630-635
    Garner, W.W. and Allard, H.A (1923) . Further studies on photoperiodism, the response of plants to relative length of day and night. J. Agric. Res. 23: 871-920.
    Garner, W.W. and Allard, H.A (1920) . Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. J. Agric. Res. 18: 553-606
    Gendall,A.R. etal (2001) .The VERNALIZATION2 gene mediatesthe epigenetic regulation of vernalization in Arabidopsis. Cell 107, 525-553
    Gocal, G.F., Sheldon, C.C., Gubler, F., Moritz, T., Bagnall, D.J., Macmillan, C.P., LI, S.F., Parish, R.W., Dennis, E.S., Weigel, D., and King, R.W. (2001). GAMYB-like genes, flowering, and gibberellin signaling in Arabidopsis. Plant Physiol 127, 1682-1693
    Goto N, Kumagai T, Koornneef M (1991) Flowering responses to light-breaks in photomorphogenic mutants of Arabidopsis thaliana, a long-day plant. Physiol Plant 83: 209-215
    Goueanard B.J., Sanou,A.Oanouilie et al (1996) . Evaluation of agronomics traits and analysis ofexotic germplasm polymorphism in adapted x exotic maize crosses,T.A.G. 92:368-374
    Guan C M,Zhu S S,Li X G,Zhang X S (2006) .Hormone-regulated inflorescence induction and TFL1 expression in Arabidopsis callus in vitro[J].Plant Cell Reports. 1133-1137
    Guo H, Yang H, Mockler TC, Lin C (1998) Regulation of flowering time by Arabidopsis photoreceptors. Science 279: 1360-1363
    GUO, H., DUONG, H., MA, N. and LIN, C (1999). The Arabidopsis blue light receptor cryptochrome 2 is a nuclear protein regulated by a blue light-dependent post-transcriptional mechanism. Plant J. 19: 279-287
    Gu.Q ..Ferrandiz C.,Yanofsky M .F. ,and Martienssen R (1998) .The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development.Development, 125:1509-1517
    Halliday, K.J., KOORNNEEF, M. and WHITELAM, G.C (1994). Phytochrome B and at least one other phytochrome mediate the accelerated flowering response of Arabidopsis thaliana L. to low red/far-red ratio. Plant Physiol. 104: 1311-1315.
    Hamner, K.C. and Bonner, J (1938) . Photoperiodism in relation to hormones as factors in floral initiation and development. Bot. Gaz. 100: 388-431
    Hanzawa Y,Money T,Bradley D(2005).A single amino acid converts a repressor to an activator of flowering[J].PNAS. 101 (21 ):7748-7753
    Harmer,S.L.,Panda,S.and Kay,S.A (2001) Molecular bases of circadian rhythms. Annu.Rev.Cell Dev.Biol. 17,215-225
    Hayama R, Izawa T, Shimamoto K. Isolation of rice genes possibly involved in the photoperiodic control of flowering by a fluorescent differential display method. Plant Cell Physiol, 2002, 43 (5): 494-504
    Hayama,R.and Coupland,G(2003).Shedding light on the circadian clock and the photoperiodic control of fowering.Curr.Opin.PlantBiol.6,13-19
    Hayama R, Yokoi S, Tamaki S, Yano M, Shimamoto K (2003). Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422: 719-722
    Hazen,S.P.,Schultz,T.F.,Pruneda-Paz,J.L.,Borevitz,J.O.,Ecker,J.R.andKay,S.A. (2005) LUX ARRHYTHMO encodes a Myb domain protein essential for circadian rhythms.Proc.Natl.Acad.Sci.U.S.A.102,10387-10392
    Hengst U, Albrecht H, Hess D, Monard D (2001). The phosphatidylethanolamine-binding protein is the prototype of a novel family of serine protease inhibitors. J Biol Chem 276: 535-540
    Henfrey, A(1852). The vegetation of Europe, its conditions and causes. J. Van Voorst, London
    HEPWORTH, S.R., VALVERDE, F., RAVENSCROFT, D., MOURADOV, A., and COUPLAND, G. (2002). Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. Embo J 21, 4327-4337.
    Hesketh,J.D., ,Chase. S.S,and Nanda.D.k(1969). Enviromental and genetic modification of leaf number in maize,Sorghum,and Hungarian millet.Crop Sci.9:460-463
    He,Y. etal (2003).Regulation of Flowering time by histoneacetylation in Arabidopsis. Science 302,1751-1754
    He Y, Amasino RM. (2005) . Role of chromatin modification in flowering-time control. Trends Plant Sci. Jan; 10(1):30-5
    Hill, T. A., Day, C. D., Zondlo, S. C, Thackeray, A. G. and Irish, V. F.(1998). Discrete spatial and temporal cis-acting elements regulate transcription of the Arabidopsis floral homeotic gene APETALA3. Development 125,1711 -1721.
    Huang T, Bohlenius H, Eriksson S, Parcy F, Nilsson O (2005) The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science 309: 1694-1696
    Hunter,R.B., Hunt L.A., and Kannenburg. L.W(1974). Photoperiod and temperature effects on corn. Can.J. Plant Sci., 54,71-78
    Hunter,R.B,Tollenaar.M,and Breuer.C.M (1977) .Effects of photoperiod and temperature on vegetative and reproductive growth of maize(Zea mays)hybrid.Can.J.Plant Sci.54:71-78
    Imaizumi T, Tran HG, Swartz TE, Briggs WR, Kay SA (2003) FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature 426: 302-306
    Imamura, S (1967). Photoperiodic induction and the floral stimulus. In Physiology of flowering in Pharbitis nil (ed. S. Imamura), pp. 15-28. Japanese Society of Plant Physiologists, Tokyo
    Izawa T, Oikawa T, Sugiyama N, Tanisaka T, Yano M, Shimamoto K (2002) Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice. Genes Dev 16: 2006-2020
    Izawa T, Oikawa T,Tokutomi S, Okuno K, Shimamoto K (2000). Phytochromes confer the photoperiodic control of flowering in rice (a short-day plant). Plant J 22: 391-399
    Jakoby M, Weisshaar B, Droge-Laser W,Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F(2002).bZIP transcription factors in Arabidopsis. Trends Plant Sci. Mar;7(3): 106-11. Review
    
    Jack T(2004).Molecular and genetic mechanisms of floral contol.Plant Cell, 16:S16-S17
    Jofuku KD, den Boer BG, Van Montagu M, Okamuro JK(1994). Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell. Sep;6(9):1211-25
    
    Johnson E, Bradley M, Harberd NP, Whitelam GC (1994). Photoresponces of light grown phyA mutants of Arabidopsis. Plant Physiol 105: 141-149
    Johanson,U. etal.(2000).Molecularanalysisof FRIGIDA,a major determinan to of natural variation in Arabidopsis foweringtime. Science 290,344-347
    Kardailsky I,Shukla V K,Ahn J H,Dagenais N,Christensen S K,Nguyen J T,Chory J, Harrison M J,Weigel D(1999).Activation Tagging of the Floral Inducer FT[J].Science Reports . 286 (5446) : 1962-1965
    Kaczorowski,K.A.andQuail,P.H.(2003). Arabidopsis PSEUDO-RESPONSE REGULATOR7 is a signaling intermediate in phytochrome-regulated seedling Deetiolation and phasing of the circadian clock.Plant Cell 15,2654-2665
    Kempin S.A.,Savidge B.,and Yanofsky M.F(1995).Molecular basis of the cauliflower phenotype in Arabidopsis.Science,267:522-525
    Kerstetter RA, Laudencia-Chingcuanco D, Smith LG, Hake S (1997). Loss-of-function mutations in the maize homeobox gene, knotted1, are defective in shoot meristem maintenance. Development 124 3045-3054
    Kevel E.,and Nagy F(2003).Phytochrome controlled signaling cascades in higher plant. Physiologia Plantarum,l 17:305
    Kikis,E.A.,Khanna,R.andQuail,P.H (2005). ELF4 is a phytochrome-regulated Component of a negative-feedbackloop involving the central oscillator components CCA1 and LHY.PlanJ..44,300-313
    Kinet J.M(1993).Environmental,chemical and genetic conrtol of flowering. Horticultural Reviews, 15:279-334
    King, R.W., Evans, L.T., and Wardlaw, I.F( 1968). Translocation of the floral stimulus in Pharbitis nil in relation to that of assimilates. Z. Pflanzenphysiol. 59: 377-388
    Kiniry H.H. Ritchie. J.T (1983). The photoperiod sensitive intervial in maize. Agron. J.,, 75 : 687-690
    Kiniry,J.R., Ritchie J.T., and Musser R.L(1983).Dynamic nature of the photoperiod response in maize. Agron.J,75,700-703
    Kircher, S., Kozma-bognar, L., Kim, L., Adam, E., Harter, K., Schafer, E. and Nagy, F. (1999). Light quality-dependent nuclear import of the plant photoreceptors phytochrome A and B. Plant Cell. 11: 1445-1456
    Kircher,S.,Kozma-bognar,L.,Fejes, E., Speth, V.Husselstein-muller,T., Bauer,D., Adam, E., Schafer, E. an Nagy,F.(2002).Nucleocytoplasmic partitioning of the plant photoreceptor phytochrome A,B,C,D and E is regulated differentially by light and exhibits diurnal rhythm. Plant Cell. 14:1541-1555
    Kirsten Bombliesl, Rong-Lin Wang2, Barbara A. Ambrose3,~*, Robert J. Schmidt3, Robert B. Meeley4 and John Doebleyl, (2003) Duplicate FLORICAULA/LEAFY homologs zfl1 and zfl2 control inflorescence architecture and flower patterning in maize .Development 130, 2385-2395
    Klebs, G(1913). Uber das Verhaltnis der Auβenwelt zur Entwicklung der Pflanze. Sitzber. Akad. Wiss. Heidelberg B 5: 1-47
    Knott, J.E (1934) . Effect of a localized photoperiod on spinach. Proc. Am. Soc. Hortic. Sci. 31 (Suppl.): 152-154
    Kobayashi Y.,Kaya H.,Goto K.,Iwabuchi M.and Araki T.A.1999.Apair of related genes with antagonistic roles in mediating flowering signals[J].Science,286: 1960-1962
    Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M (2002). Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hdl under short-day conditions. Plant Cell Physiol 43:1096-1105
    Komatsu K, Maekawa M, Ujiie S, Satake Y, Furutani I, Okamoto H, Shimamoto K, Kyozuka J (2003a). LAX and SPA: major regulators of shoot branching in rice. Proceedings of the National Academy of Sciences, USA 100 11765-11770
    Komeda Y. (2004) Genetic regulation of time to flower in Arabidopsis thaliana. Annual Review of Plant Biology 55 521-535
    Koornneef M.,Hanhart C. J.,and van der Veen J. H(1991).A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana.Mol.Gen. Genet., 229:57-66
    Lang A(1952).Physiology of flowering.Annu.R ev.Plant Physiol.,3:265-306
    Lang A(1965).Physiology of flower in itiation.In:Encyclopedia of Plant Physiology, Vol.XV,Part 1(Ruhland,W.,ed.),pp.1380-1536.Berlin:Springer Verlag.
    Ledger S, Strayer C, Ashton F, Kay SA, Putterill J (2001). Analysis of the function of two circadian-regulated CONSTANS-LIKE genes. Plant J 26: 15-22
    Lee H.,Suh S.S.,Park E.,Cho E.,Alm J.H.,Kim S.G.,Lee J.S.,Kwon Y.M.,and Lee I(2000).The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis.Genes Dev.,14:2366-2376
    Letizia CK, Veyrieras JB, Madur D, Combes V, Fourmann M, Barraud S, Dubreuil P, Gouesnard B, Manicacci D and Charcosset A ( 2006) . Maize adaptation to temperate climate: relationship with population structure and polymorphism in the Dwarf8 gene. Genetics 172, 2449-2463.)
    Liljegren S J,Gustafson-Brown C,Pinyopich A,Ditta G S,Yanofsky M F( 1999). Interactions among APETALA1,LEAFY, andTERMINAL FLOWER1 Specify Meristem Fate[J].The Plant Cell.11: 1007-1018
    Lin, C. & Shalitin, D(2003). Cryptochrome structure and signal transduction. Annu. Rev. Plant Biol. 54, 469C496
    Lin MK, Belanger H, Lee YJ, Varkonyi-Gasic E, Taoka K, Miura E, Xoconostle-Cazares B, Gendler K, Jorgensen RA, Phinney B, et al (2007). FLOWERING LOCUS T protein may act as the long-distance florigenic signal in the cucurbits. Plant Cell 19: 1488-1506
    Locke,J.C.W.,Millar,A.J.andTurner,M.S (2005.)Modelling genetic networks with noisy and varied experimental data:the circadian clock in Arabidopsis thaliana. J.Theor.Biol.234,383-393
    Locke,J.C.W.,Southem,M.M.,Kozma-Bognar,L.,Hibberd,V.,Brown,P.E.,Turner, M.S. and Millar,A.J (2005).Extension of a genetic network model by iterative Experimentation and mathematical analysis. Mol.Syst.Biol., doi: 10.1038/msb 4100018
    LOHMANN, J.U., HONG, R.L., HOBE, M., BUSCH, M.A., PARCY, F., SIMON, R., and WEIGEL, D. (2001). A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell 105, 793-803
    Mandel, M. A., Gustafson-Brown, C., Savidge, B. and Yanofsky, M. F. (1992). Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360,273 -277.
    Ma H. 1998. Flowering time: from photoperiodism to florigen.Curr Biol. Sep 24; 8(19): R690-2
    MAS, P., DEVLIN, P.F., PANDA, S. and KAY, S.A (2000). Functional interaction of phytochrome B and cryptochrome 2. Nature. 408: 207-211
    Mas P, Alabadi D, Yanovsky MJ, Oyama T, Kay SA (2003). Dual role of TOC1 in the control of circadian and photomorphogenic responses in Arabidopsis. Plant Cell 15: 223-236
    Mazzella M A, Cerdan P D, Staneloni R J, Casal J J(2001). Hierarchical coupling of phytochromes and cryptochromes reconciles stability and light modulation of Arabidopsis development. Development, 128: 2291-2299.
    McDaniel CN, Singer SR, Smith SME(1992). Developmental states associated with the floral transition. Developmental Biology 153, 59-69
    McClung,C.R.,Salome,S.A.andMichael,T.P(2002). The Arabidopsis circadian system In The Arabidopsis Book (Somerville,C.R.and Meyerowitz,E.M.,eds.), American Society of Plant Biologists,Rockville,doi: 10.1199/tab0044
    McSteen P, Laudencia-Chingcuanco D, Colasanti J (2000). A floret by any other name: control of meristem identity in maize. Trends in Plant Science 5 61-66
    Melchers, G. 1937. Die Wirkung von Genen, tiefen Temperaturen und bluhenden Propfpartnern auf die Bliihreife von Hyoscyamus. Biol. Zbl. 57: 568-614
    Mena M, Mandel MA, Lerner DR, Yanofsky MF, Schmidt RJ. (1995).A characterization of the MADS-box gene family in maize. Plant J. Dec;8(6):845-54
    Menzel G., Apel K., and Melzer S(1996), Identification of two MADS box genes that are expressed in the apical meristem of the long-day plant Sinapis alba in transition to flowering, Plant J., 9: 399-408
    Michaels S.D.,and Amasino R.M(1999b).FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering.Plant Cell,11: 949-956
    Michaels S.D.,and Amasino R.M(2001).Loss of FLOWERING LOCUS C activity Eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to venrailzation.Plant Cell, 13:93 5-941
    Michaels S.D., He, Y., Scortecci, K.C., and Amasino, R.M (2003a). Attenuation of FLOWERING LOCUS C activity as a mechanism for the evolution of summer-annual flowering behavior in Arabidopsis. Proc Natl Acad Sci U S A 100,10102-10107.
    Michaels S.D., Ditta, G., Gustafson-brown, C., Pelaz, S., Yanofsky M., and Amasion, R.M. (2003b). AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalization. Plant J 33, 867-874
    Michaels S.D., Himelblau E., Kim S.Y., Schomburg F.M., Amasino R.M(2005). Integration of flowering signals in winter-annual Arabidopsis. Plant Physiol. 137: 149-156
    Michael G. Muszynski ,Thao Dam,Bailin Li,David M.Shir broun ,Zhenglin Hou, Edward Bruggemann,Rayeann Archibald,Evgueni V.Ananiev,and OlgaN.Danilevskaya. (2006).delayedfoweringl Encodesa Basic Leucine ZipperProtein That Mediates Floral Inductive SignalsAt the Shoot Apex in Maize. PlantPhysiology, December, Vol. 142,pp. 1523-1536
    Millar A.J, Carre I.A, Strayer C.A, Chua N.H, Kay S.A (1995). Circadian clock mutants in Arabidopsis identified by luciferase imaging. Science 267: 1161-1163
    Millar,A.J(2004).Inputsignalstotheplantcircadianclock.J.Exp.Bot.55,277-283
    Mizoguchi,T.,Wheatley,K.,Hanzawa,Y.,Wright,L.,Mizoguchi,M.,Song,H.-R.,Carre, I.A.andCoupland,G.(2002) LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis.Dev.Cell2,629-641
    Mizoguchi,T.,Wright,L.,Fujiwara,S.,Cremer,F.,Lee,K.,Onouchi,H.,Mouradov,A., Fowler,S.,Kamada,H.,Putterill,J.and Coupland,G (2005). Distinct roles of GIGANTEA Inpromoting fowering and regulating circadian rhythms in Arabidopsis .Plant Cell 17, 2255-2270
    Mizuno,T.andNakamichi,N(2005). Pseudo response regulators(PRRs) or true Oscillator components(TOCs).Plant Cell Physiol.46,677-685
    MONTE, E., ALONSO, J.M., ECKER, J.R., ZHANG, Y., LI, X., YOUNG, J., AUSTIN-PHILLIPS, S. and QUAIL, P.H .(2003). Isolation and characterization of phyC mutants in Arabidopsis reveals complex crosstalk between phytochrome signalling pathways. Plant Cell. 15: 1962-1980
    Moon J.,Suh S.S.,Lee H.,Choi K.R, Hong C.B.,Paek N.C.,Kim S.G,and Lee I.(2003a).The SOC1 MADS-box gene in tegrates venralization and gibberellin signals for flowering in Arabidopsis.Plant J.,35:613-623
    Moon J., Lee H., Kim M., Lee I.(2005). Analysis of flowering pathway integrators in Arabidopsis. Plant Cell Physiol. 46: 292-299
    Morandi EN, Casano LM, Reggiardo LM.(1988). Post-flowering photoperiod effect on reproductive efficiency and seed growth in soybean. Field Crops Research 18, 227-241.
    Moutiq,R., Ribaut, j.m., Edmeades G.,etal.(2001). Quantitative Trait Loci for photoperiod response in maize. Maize Genetics Conference Abstracts. 2002, 43:P147
    Muchow, R.C. and Carberry P.S.(1989) Environmental control of phenology and leaf growth in a tropically adapted maize. Field Crop Research. 20:221-236.
    Muszynski MG, Dam T, Li B, Shirbroun DM, Hou Zl, Bruggemann E, Archibald R, Ananiev EV, and Danilevskaya ON (2006). delayed floweringl Encodes a Basic Leucine Zipper Protein That Mediates Floral Inductive Signals at the Shoot Apex in Maize. Plant Physiology 142, 1523-1536
    Nagashree N. Rao, Kalika Prasad, Puja Ravi Kumar, and Usha Vijayraghavan (2008) Distinct regulatory role for RFL, the rice LFY homolog, in determining flowering time and plant architecturePNAS 105:3646-3651
    Nakamichi,N.,Kita,M.,Ito,S.,Sato,E.,Yamashino,T.andMizuno,T.(2005) PSEUDO-RESPONSE REGULATORS,PRR9,PRR7andPRR5,together play essential roles close to the circadian clock of Arabidopsis thaliana.Plant Cell Physiol.46,686-698
    Naylor, A.W.(1941). Effect of nutrition and age upon rate of development of terminal staminate inflorescences of Xanthium pennsylvanicum. Bot. Gaz. 103: 342-353.
    Nelson DC, Lasswell J, Rogg LE, Cohen MA, Bartel B (2000). FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis. Cell 101: 331-340
    Nemoto Y, Kisaka M, Fuse T, Yano M, Ogihara Y. Characterization and functional analysis of three wheat genes with homology to the CONSTANS flowering time gene in transgenic rice.Plant J. 2003 Oct;36(1):82-93.
    Ng, M. and Yanofsky, M. F. (2001). Activation of the Arabidopsis B class homeotic genes by APETALA1. Plant Cell 13,739 -753
    Ni M, and Tepperman J.1999.M.Binding of phytochrome B to its nuclear signaling partner PIF3 is reversibly induced by light.Nature,400:781
    Niinuma,K.,Someya,N.,Kimura,M.,Yamaguchi,I.andHamamoto,H.(2005) Circadian rhythm of circumnutationinin forescence stems of Arabidopsis.Plant Cell Physiol. 46,1423-1427
    Nilsson O.,Lee I.,Blazquez M.A.,and Weigel D.(1998).Floweimg-time genes modulate the response of LEAFY activity.Genetics, 150:403-410
    Noh Y.S.,and Amasino R.M.(2003).PIE1,an ISWI family gene,is requried for FLC activation and floral repression in Arabidopsis.Plant Cell, 15:1671-1682
    Okamuro J.K.,den Boer B.G, Lotys-Prass C.,Szeto W.,and Jofuku K.D.(1996).Flowers into shoots:Photo and hormonal control of a meristem identity switch in Arabidopsis.Proc.Natl.Acad.Sci.USA,93:13831 -13836
    Okamuro J.K.,Szeto W.,Lotys-Prass C.,and Jofuku K.D.1997b.Photo and hormonal control of meristem identity in the Arabidopsis flower mutants apetala2 and apetalal.Plant Cell,9:37 —47
    Olga.N.Danilevskaya*,XinMeng,ZhenglinHou,EvgueniV.Ananiev,andCarlR.Simmons.(2008). A Genomic and Expression Compendium of the Expanded PEBP GeneFamily from Maize PlantPhysiology, January, Vol. 146,pp.250-264
    Onai,K.andIshiura,M.(2005).PHYTOCLOCKl encoding a novel GARP protein essential for the Arabidopsis circadian clock.Genes Cells 10,963-972
    Onouchi H.,Igeno M.I., Perilleaux C.,Graves K.,and Coupland G.(2000).Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis
    7 flowering-time genes.Plant Cell, 12:885-900
    Parcy F., Nilsson, O., Bush, M.A., Lee, I., and Weigel, D. (1998). A genetic framework for floral patterning. Nature 395, 561-566
    Parcy F,Bomblies K,Weigel D.Interaction of LEAFY, AGAMOUS and TERMINAL FLOWER1 in maintaining floral meristem identity in Arabidopsis[J]. Development,2002,129: 2519-252
    Parcy F.(2005). Flowering: a time for integration.Int J Dev Biol. 49(5-6):585-93. Review
    Patterson DT.(1995). Effects of photoperiod on reproductive development in velvetleaf (Abutilon theophrasti).Weed Science 43, 627-633
    Putterill J, Robson F, Lee K, Simon R, Coupland G .(1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80: 847-857
    Quail, P. H. Phytochrome photosensory signallinng tworks. Nature Rev. Mol. Cell Biol. 3, 85C93 (2002)
    
    Quail, P. H. (2002). Photosensory perception and signalling in plant cells: new paradigms?. Curr. Op. Cell Biol. 14: 180-188
    Ragot M., P. H. Sisco, D. A. Hoisington et al 1995, Molecular-marker-mediated characterization of favorable exotic alleles and quantitative trait loci in maize, Crop Sci.,35:1306-1315
    Ratcliffe O J,Amaya I C,Rothstein S,Carpenter R,Coen E S,Bradley D J.A.(1998). common mechanism controls the life cycle and architecture of plants[J]. Development , 125: 1609-1615
    Ratcliffe O J,Bradley D J,Coen E S. (1999).Separation of shoot and floral identity in Arabidopsis[J]. Development, 126: 1109-1120
    Reed, J.W., Nagatani, A., Elich, T.D., Fagan, M. and Chory, J. (1994). Phytochrome A and phytochrome B have overlapping but distinct functions in Arabidopsis development. Plant Physiol. 104: 1139-1149
    Riechmann, J. L., Wang, M. and Meyerowitz, E. M. (1996). DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS. Nucleic Acids Res. 24,3134 -3141
    Roberts EH, Summerfield RJ, Muehlbauer FJ, Short RW.(1986). Flowering in lentil (Lens culinaris Medic): the duration of the photoperiodic inductive phase as a function of accumulated daylength above the critical photoperiod. Annals of Botany 58, 235-248
    Roberts E.H., Summerfield R.J., Cooper J.P., Ellis R.H.(1988). Environmental control of flowering in barley (Hordeum vulgare L.). 1. Photoperiod-insensitive phase and effects of low-temperature and short-day vernalization. Annals of Botany, 62, 127-144
    Sablowski R. (2004). Plant and animal stem cells: conceptually similar, molecularly distinct? Trends in Cell Biology 14 605-611
    Sachs, J. 1865. Handbuch der Experimentalphysiologie der Pflanzen. W. Engelmann, Leipzig, Germany
    Sachs R.,and Hacket W.(1983).Source-sink relationships and flowering. In Strategies of Plant Reproduction.Beltsville Symposium Agric.Res.(Meudt,W.J.,ed.). Totowa: Allanheld,Osmun,pp.263 — 272
    Salome,P.A.and McClung,C.R.(2005).What makes Arabidopsi stick:lightand temperature entrainment of the circadian clock.Plant Cell Environ.28, 21-38
    Salome,P.A.and McClung,C.R.(2005). PRR7 and PRR9 are partially redundant genes essential for the temperature responsiveness of the Arabidopsis circadian clock. Plant Cell 17,791-803
    Samach A,Onouchi H., Gold S.E.,Dita G.S., Schwarz-Sommer Z., Yanofsky M. F.and Coupland G.(2000).Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis.Science,288:1613-1616
    Sangho Jeong, Steven E. Clark. 2005. Photoperiod Regulates Flower Meristem Development in Arabidopsis thaliana. Genetics, 169, 907-915.
    Schaffer,R.,Ramsay,N.,Samach,A.,Corden,S.,Putterill,J.,Carre,I.A.and Coupland, G. (1998) .LATEELONGATEDHYPOCOTYL,an Arabidopsis gene encodinga MYB transcription factor,regulates circadian rhythm icity and photoperiodic responses. Cell 93, 1219-1229
    Schmid M, Uhlenhaut N H, Godard F,Demar M, Bressan R, Weigel D, Lohmann J U.( 2003). Dissection of floral induction pathways using global expression analysis[J]. Development, 130: 6001-6012
    Schultz E.A.,and Haughn G.W.1991.LEAFY,a homeotic gene that regulates inflorescence development in Arabidopsis.Plant Cell,3:771-781
    Schultz,T.F.,Kiyosue,T.,Yanovsky,M.,Wada,M.and Kay,S.A.(2001). A role for LKP2 In the circadian clock of Arabidopsis.PlantCell 13,2659-2670
    Sclhfer E.,and Bowler H.2002.Phytochrome-mediated photoperception and signal transduction in higher plants.EMBO Reports,3:1042
    Searle I,He Y,Turck F,Vincent C,Fornara F,Krober S,Amasino R A,Coupland G. (2006).The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis[J].Genes and Development, 20:898-912
    SETH J. DAVIS.(2002). Photoperiodism: The coincidental perception of the season(J). Curr Biol, 12(24): 841-3
    SHARROCK, R.A. and CLACK, T. (2002). Patterns of expression and normalized levels of the five Arabidopsis phytochromes. Plant Physiol. 130: 442-456
    Sheldon C.C.,Rouse D.T.,Finnegan E.J.,Peacock W.J.,and Dennis E.S.(2000b).The molecular basis of venralization:The central role of FLOWERING LOCUS C.Proc.Natl.Acad.Sci.USA,97:3753-3758
    Somers DE, Devlin PF, Kay SA (1998). Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science 282: 1488-1490
    Somers,D.E.,Kim,W.Y.andGeng,R.(2004)The F-box protein ZEITLUPE confers dosage-dependent control on the circadian clock,photomorphogenesis,and fowering time.Plant Cell 16,769-782
    Song,H.-R.andCarre,I.A.(2005). DET1 regulates the proteasomal degradation of LHY, A component of the Arabidopsis circadian clock.Plant Mol.Biol.57,761-771
    Stuber CW, Lincoln SE, Wolff DW, Helentjaris T, Lander ES. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics.(1992). Nov;132(3):823-839.
    Suarez-Lopez P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G (2001). CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410: 1116-1120
    Sung,S.andAmasino,R.M.(2004)Vemalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 427, 159-164
    Takada S, Goto K (2003). TERMINAL FLOWER2, an Arabidopsis homolog of HETEROCHROMATIN PROTEIN 1, counteracts the activation of FLOWERING LOCUS T by CONSTANS in the vascular tissues of leaves to regulate flowering time. Plant Cell 15: 2856-2865
    Takahashi Y, Shomura A, Sasaki T, Yano M (2001) Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the a subunit of protein kinase CK2. Proc Natl Acad Sci USA 98: 7922-7927
    Takano, M. et al.(2005). Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice. Plant Cell 17, 3311C3125
    Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K (2007) Hd3a protein is a mobile flowering signal in rice. Science 316: 1033-1036
    Thomas B, Vince-Prue D.(1984). Juvenility, photoperiodism and vernalization.In: Wilkins MB, ed. Advanced plant physiology. London: Pitman, 408-439.
    Thomas, B. and Vince-Prue, D.(1997). Photoperiodism in plants. Academic Press, New York
    Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001). Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28, 286-289
    Tilly, J. J., Allen, D. W. and Jack, T. (1998). The CArG boxes in the promoter of the Arabidopsis floral organ identity gene APETALA3 mediate diverse regulatory effects. Development 125,1647-1657
    Tollenaar M, Hunter R B. (1983). A photoperiod and temperature sensitive period for leaf nember of maize. Crop Sci. 23:457-460.
    Tournois, J. (1912) . Influence de la lumiere sur la floraison du houblon japonais et du chanvre determinees par des semis haitifs. C. R. Acad. Sci. Paris 155:297-300
    Tseng,T.-S.,Salome,P.A.,McClung,C.R.andOlszewski,N.E.(2004) SPINDLY and GIGANTEA interact and act in Arabidopsis thaliana pathways involved in light responses,fowering,and rhythms in cotyledon movements.Plant Cell 16,1550-1563
    Valverde,F.,Mouradov,A.,Soppe,W.,Ravenscroft,D.,Samach,A.and Coupland,G.(2004) Photoreceptor regulation of CONSTANS protein and the mechanism of photoperiodic fowering.Science303,1003-1006
    V F Irish and I M Sussex (1990) . Function of the apetala-1 gene during Arabidopsis floral development. Plant CelLAugust; 2(8): 741-753
    Vince-Prue D.(1999). Photoperiodism in plants. London: McGraw Hill Vladutu C, McLaughlin J, Phillips RL. Fine mapping and characterization of linked quantitative trait loci involved in the transition of the maize apical meristem from vegetative to generative structures. Genetics. Oct;153(2):993-1007.
    Viktoriya Coneva ,TongZhu and Joseph Colasanti.(2007). Expression differences between normal and indeterminate Maize suggest downstream targets of ID1.a floralTransition regulator in maize. Journal of Experimental Botany, Vol.58, No.l3,pp.3679-3693,
    Wang Z, Acock MC, Acock B.( 1997a). Photoperiod sensitivity during flower development of opium poppy (Papaver somniferum L.). Annals of Botany79, 129-132
    Wagner, D., Sablowski, R. W. and Meyerowitz, E. M. (1999). Transcriptional activation of APETALA1 by LEAFY. Science 285,582 -584.
    Wagner, D., Wellmer, F., Dilks, K., William, D., Smith, M.R., Kumar, P.P., Riechmann, J.L., Greenland, A.J., and Meyerowitz, E.M. (2004). Floral induction in tissue culture: a system for the analysis of LEAFY-dependent gene regulation. Plant J 39, 273-282
    Webb,A.A.R.(1998).Stomatal rhythms.In Biological Rhythms and Photoperiodism in Plants(Lumsden,P.J.and Millar,A.J.,eds.),pp.69-79,BioScientific Publications Oxford
    Webb,A.A.R.(2003)The physiology of circadian rhythms in plants.NewPhytol.160, 281-303
    WEIGEL,D.,Alvarez,J.,Smyth,D.R.,Yanofsky,M.F.,and Meyerowitz,E.M.(1992).LEAFY controls floral meristem identity in Arabidopsis.Cell 69,843-859.
    Weigel,D.and Meyerowitz,E.M.(1993).Activation of floral homeotic genes in Arabidopsis.Science 261,1723-1726
    Wigge PA,Kim MC,Jaeger KE,Busch W,Schmid M,Lohmann JU,Weigel D.(2005).Integration of spatial and temporal information during floral induction in Arabidopsis[J].Science.Aug 12;309(5737):1056-9
    Wilkerson GG,Jones JW,Boote KJ,Buol GS.(1989).Photoperiodically sensitive interval in time to flower of soybean.Crop Science 29,721-726
    Yang,J.,Lin,R.,Sullivan,J.,Hoecker,U.,Liu,B.,Xu,L.,Deng,X.W.andWang,H.(2005) Light regulates COP1-mediated degradation of HFR1,atranscription factor essential for light signaling in Arabidopsis.PlantCell 17,804-820
    Yanovsky MJ,Kay SA(2002).Molecular basis of seasonal time measurement in Arabidopsis.Nature 419:308-312
    Yano M,Katayose Y,Ashikari M,Yamanouchi U,Monna L,Fuse T,Baba T,Yamamoto K,Umehara Y,Nagamura Y,et al.(2000).Hdl,a major photoperiod sensitivity quantitative trait locus in rice,is closely related to the Arabidopsis flowering time gene CONSTANS.Plant Cell 12:2473-2484
    Yin X,Kropff MJ,Ynalvez WA.(1997).Photoperiodically sensitive and insensitive phases of preflowering development in rice.Crop Science 37,182-190
    Yoo S K,Chung K S,Kim J,Lee J H,Yoo S Y,Lee J S,Ahn J H..CONSTANS activates SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 through FLOWERING LOCUS T to promote flowering in Arabidopsis[J].Plant Physiology,2005,139:770-778
    Yu,H.,Ito,T.,Wellmer,F.and Meyerowitz,E.M.(2004).Repression of AGAMOUS-LIKE 24 is a crucial step in promoting flower development.Nat.Genet 36,157-161[
    Yu,H.,Xu,Y.,Tan,E.L.,and Kumar,P.P.(2002).AGAMOUS-LIKE 24,a dosage-dependent mediator of the flowering signals.Proc Natl Acad Sci U S A 99,16336-16341.
    Zeevaart,J.A.D.(1958).Flower formation as studied by grafting.Meded.Landbouwhogesch.Wageningen 58:1-88
    陈彦惠,吴连成,吴建宇,等.2000.两种纬度生态条件下热带、亚热带玉米群体的鉴定(J).中国农业科学,33(增):40-48.
    陈彦惠,张向前.2003.热带玉米光周期敏感相关性状的遗传分析.中国农业科学,36(3):248-253
    程芳芳.玉米光周期敏感相关性状的QTL定位(D),郑州:河南农业大学硕士论文.22-39
    高伟;陈晓;库丽霞;任永哲;常胜合;王铁固;陈彦惠.2006.玉米类LFY基因的克隆及其在不同光周期条件下的表达,作物学报8(32):1256-1260
    郭瑞,2005玉米光周期敏感相关基因的QTLs定位及性状分析(D),郑州:河南农业大学硕士论文.38-45
    李思远,陈晓,王新涛,陈彦惠,玉米光周期敏感类Hd6基因的克隆和实时定量表达分析.ACTA AGRONOMICA SINICA 2008,34(4):713-717
    李晓梅,吴存祥等.2005.大豆品种自贡冬豆花芽分化及开花逆转过程的形态解剖学研究作物学报Vol.31,No.11,1437-1442
    刘纪麟主编.玉米育种学(M).北京,1991,农业出版社
    任永哲.2006.玉米光周期反应和类EMF基因的克隆与分析.河南农业大学硕士学位论文
    任永哲,陈彦惠,库丽霞,常胜合,高伟,陈晓.玉米光周期反应及一个相关基因的克隆,中国农业科学.2006,7
    荣廷昭,潘光堂,黄玉碧,等.1998.热带玉米种质在温带的应用,作物杂志,增:12-14
    张世煌,石德权,徐家舜,等.1995.对两个亚热带优质蛋白玉米群体的适应性混合选择研究[J].作物学报,21(3):271-280

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700